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Who needs wave equations? 
Introduction 

In one of his introductory Lectures on electrodynamics (Lectures, Volume II, Chapter 5), Feynman briefly 
discusses the Rutherford-Bohr model of an atom. He duly notes the model’s key advantage over the 
preceding static models (the electrons are kept from falling in toward the nucleus by their orbital 
motion), but then dismisses it based on the usual objection: “With such motion, the electrons would be 
accelerating (because of the circular motion) and would, therefore, be radiating energy. They would lose 
the kinetic energy required to stay in orbit and would spiral in toward the nucleus.” He then sums up the 
quantum-mechanical model of an atom as follows: 

“The electrostatic forces pull the electron as close to the nucleus as possible, but the electron is 
compelled to stay spread out in space over a distance given by the Uncertainty Principle. If it 
were confined in too small a space, it would have a great uncertainty in momentum. But that 
means it would have a high expected energy—which it would use to escape from the electrical 
attraction. The net result is an electrical equilibrium not too different from the idea of 
Thompson—only is it the negative charge that is spread out, because the mass of the electron is 
so much smaller than the mass of the proton.” 

This explanation is a bit sloppy, and one has to patiently wait for Feynman to introduce Schrödinger’s 
equation and the related derivation of the electron orbitals to get the following clarification:  

“The wave function ψ(r) for an electron in an atom does not describe a smeared-out electron 
with a smooth charge density. The electron is either here, or there, or somewhere else, but 
wherever it is, it is a point charge.” (Feynman’s Lectures, III-21-4) 

This leaves us somewhat bewildered, because it is not clear at all how this quantum-mechanical picture 
is supposed to solve the radiation problem! Indeed, if the pointlike charge is sometimes here, and 
sometimes there, then it must – logically – also go from here to there once in a while, and then it should 
generate some electromagnetic radiation too. In addition, the quantum-mechanical model comes with 
its own set of interpretation problems. The solutions for the spherical shells, for example, imply that the 
electron spends most of its time in the nucleus itself – which is a solution we would probably want to 
avoid. Most importantly, the quantum-mechanical picture feels like a deus ex machina: we have a wave 
equation – and the solutions to it – but we have no idea what those solutions actually are. There is no 
mechanism. In short, there is no physical explanation, really. 

We, therefore, want to re-examine the Rutherford-Bohr model but add some whistles and bells to 
address its perceived shortcomings. 
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The Rutherford-Bohr model 

In our previous papers, we developed a physical model of an electron in free space. We want to 
combine these with an augmented Bohr model of an atom.1 The illustrations below depict the 
hypothetical geometry of the two situations – which can be described by the same mathematical object 
(the elementary wavefunction – Euler’s function, in other words) but are very different. 

 

Figure 1: The position, force and momentum vector in a Bohr loop 

The Bohr model has a positively charged nucleus at its center and its electron has an effective rest mass: 
the radial velocity v = a·ω of the electron is, therefore, some fraction of the speed of light (v = α·c). It 
also has some non-zero momentum p = m·v which we can relate to the electrostatic centripetal force 
using the simple classical formula F = p·ω = mv2/a. In contrast, the model of an electron in free space is 
based on the presumed Zitterbewegung, which combines the idea of a very high-frequency circulatory 
motion with the idea of a pointlike charge which – importantly – has no inertia and can, therefore, move 
at the speed of light (v = c).  

 

Figure 2: The Zitterbewegung model of a free electron 

The center of the Zitterbewegung is plain nothingness and we must, therefore, assume some two-
dimensional oscillation makes the charge go round and round. The angular frequency of the 
Zitterbewegung rotation is given by the Planck-Einstein relation (ω = E/ħ) and we get the 
Zitterbewegung radius (which is just the Compton radius a = rC = ħ/mc) by equating the E = m·c2 and E = 
m·a2·ω2 equation.2 The energy and, therefore, the (equivalent) mass is in the oscillation and we, 

                                                           
1 Jean Louis Van Belle, Bohr’s Atom, the Photon, and the Uncertainty Principle, 3 December 2018 
(http://vixra.org/pdf/1812.0028v1.pdf).  
2 Jean Louis Van Belle, The Metaphysics of Physics, 30 November 2018 (http://vixra.org/pdf/1811.0399v3.pdf).  
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therefore, should associate the momentum p = E/c with the electron as a whole or, if we would really 
like to associate it with a single mathematical point in space, with the center of the oscillation – as 
opposed to the rotating massless charge. 

We should note that the distinction between the pointlike charge and the electron is subtle, perhaps, 
but essential. The electron is the Zitterbewegung as a whole: the pointlike charge has no rest mass, but 
the electron as a whole does. In fact, that is the whole point of our Zitterbewegung model: we explain 
the rest mass of an electron by introducing a rest matter oscillation. The model cannot be verified 
because of the extreme frequency (fe = ωe/2π = E/h ≈ 0.123×10−21 Hz) and sub-atomic scale (a = rC = 
ħ/mc ≈ 386×10−15 m). It is, therefore, a logical model only: it gives us the right values for the angular 
momentum (L = ħ/2), the magnetic moment (μ = (qe/2m)·ħ, and the gyromagnetic factor (g = 2).  

The formulas in the Bohr-Rutherford model are derived from the quantum-mechanical that angular 
momentum comes in units of ħ = h/2π. We rephrased that rule as: physical action comes in unit of h. We 
also associated Planck’s quantum of action with a cycle: one rotation will pack some energy over some 
time (the cycle time) or – what amounts to the same – some momentum over some distance (the 
circumference of the loop). We wrote: 

S = h = E·T = L·2π·rB 

Using the v = α·c and rC = α·rB relations3 one can easily verify this for the momentum formulation: 

𝑆 = p ∙ 2π ∙ 𝑟 = m𝑣 ∙ (𝑟େ/α) = mα𝑐 ∙
2πħ

αmc
= h 

We can also calculate S by calculating the force and then multiply the force with the distance and the 
time. The force is just the (centripetal) electrostatic force between the charge and the nucleus 

F =
qୣ

ଶ

4πε𝑟
ଶ

= α ∙
ħ𝑐

𝑟
ଶ
 

We can then recalculate S as: 

𝑆 = F ∙ 𝑟 ∙ T = α ∙
ħ𝑐

𝑟
ଶ

∙ 𝑟 ∙
2π𝑟

𝑣
= α ∙

h𝑐

α𝑐
= h 

All is consistent. However, we should note the implied energy concept is somewhat surprising: 

𝑆 = ℎ = E ∙ T = E ∙
2π𝑟

𝑣
= E ∙

ℎ
αm𝑐
α𝑐

⇔ E = αଶm𝑐ଶ 

This is twice the ionization energy of hydrogen (Ry = α2mc2/2), and it is also twice the kinetic energy 
(ħ2/2ma2 = α2mc2/2). It is also just a fraction (α2 ≈ 0.00005325) of the rest energy of the electron.4 This 

                                                           
3 These relations come out of the model. They are, therefore, not some new hypothesis. The α in the formula is the 
fine-structure constant. It pops up in (almost) all of the equations we get. As such, it does appear as some magical 
dimensionless number that relates almost all (physical) dimensions of the electron (radii, circumferences, energies, 
momenta, etcetera). 
4 The reader can check the conversion of the Rydberg energy in terms of the fine-structure constant and the rest 
mass (or rest energy) of the electron. 
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somewhat odd result can be explained if we would actually be thinking of a two-dimensional oscillation 
here. In that case, we would effectively write the force as F = Fx + Fy (as suggested in the illustration 
above) in a moment) and, hence, we should therefore add the kinetic and potential energy of two 
oscillators. As the reader might simply switch off now (read: stop reading), we would like to redraw his 
or her attention to an alternative view of Schrödinger’s equation. Before we do, however, we would like 
to sum up the key results in regard to the values we got for the mentioned quantum-mechanical 
qualities of the electron – as a free particle (or a spin-only electron, we might say) in the Zitterbewegung 
model or, alternatively, as an electron in a Bohr orbital. We should mention that the calculated values 
for the angular momentum and the magnetic moment for a Bohr orbital assume one electron only. They 
are, therefore, the angular momentum and the magnetic moment of a theoretical no-spin electron in 
the 1st, 2nd, 3rd, etc. orbital of the hydrogen atom.5 

The model of a two-dimensional oscillator is inherent in both the zbw model as well as the Bohr model 
of the electron orbitals. Now, the professional physicist may reluctantly want to envisage such oscillator 
model but he or she will – or should! – immediately ask: what is the propagation mechanism here? If the 
real and imaginary part of the wavefunction are to be interpreted as field vectors, how do they 
propagate? We will address this in the next section. 

The equivalence with Schrödinger’s equation 

The Zitterbewegung model and the Bohr model are very different but complementary at the same time 
– as we will try to show here by exploring the idea of Schrödinger’s equation as a diffusion equation. 
Feynman (III-16-1) summarized that idea as follows:  

“We can think of Schrödinger’s equation as describing the diffusion of the probability amplitude 
from one point to the next. […] But the imaginary coefficient in front of the derivative makes the 
behavior completely different from the ordinary diffusion such as you would have for a gas 
spreading out along a thin tube. Ordinary diffusion gives rise to real exponential solutions, 
whereas the solutions of Schrödinger’s equation are complex waves.” 

We would like to think the behavior is different – but not all that different. Schrödinger's equation is one 
equation but, because the wavefunction is complex, one gets two equations for the price of one, and we 
may, therefore, try to compare them to Maxwell’s equations in free space (no charges, no currents). 
Note that we will use the Schrödinger equation in free space (no potential) to not complicate matters 
for the time being.6  

𝜕𝜓

𝜕𝑡
= 𝑖

ℏ

2𝑚
∇ଶ𝜓 

                                                           
5 For the detailed calculations, see: Jean Louis Van Belle, The Metaphysics of Physics, 30 November 2018 
(http://vixra.org/pdf/1811.0399v3.pdf).  
6 The potential only transforms linear motion into circular motion and, hence, we do not need to consider it when 
focusing on the propagation mechanism only. 
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We get the following schema7: 

 

Figure 3: Propagation mechanisms 

The red arrows visualize the propagation mechanism. For an electromagnetic wave, we have Maxwell’s 
equations in free space (no charges, no potential): a changing electric field (∂E/∂t) will cause some 
(infinitesimal) circulation of E, so that is some curl (∇×E), and that causes a change in the magnetic field 
(∂B/∂t), and so we have some curl of a magnetic field (∇×B), and so that is equivalent to 
some ∂E/∂t again. The mechanism for Schrödinger's equations is different, of course. A curl operator 
(∇×) is not a Laplacian (∇2). So, let us just get through it. How should we think of a Laplacian operator 
with the real and imaginary 'operators' Re(z) and Im(z)? Laplacians pop up in energy diffusion equations, 
like the heat diffusion equation, which is easy to represent geometrically. However, here we have 
cyclical functions. Let us do the calculations for the elementary wavefunction aei = aei(kxt): 

𝑅𝑒 ቀ
డట

డ௧
ቁ = 𝑅𝑒൫−𝑖𝑎𝜔𝑒ఏ൯ = 𝑅𝑒൫−𝑖𝑎𝜔(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)൯ = 𝑅𝑒(−𝑖𝑎𝜔𝑐𝑜𝑠𝜃 − 𝑖ଶ𝑎𝜔𝑠𝑖𝑛𝜃) = 𝑎𝜔𝑠𝑖𝑛𝜃 

𝐼𝑚(∇ଶ𝜓) = 𝐼𝑚(
డቆ

ങቀೌഇቁ

ങೣ
ቇ

డ௫
) = 𝐼𝑚(

డ൫ഇ൯

డ௫
) = 𝐼𝑚(−𝑎𝑘ଶ𝑒ఏ) = 𝐼𝑚(−𝑎𝑘ଶ(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)) = −𝑎𝑘ଶ𝑠𝑖𝑛𝜃 

𝐼𝑚 ቀ
డట

డ௧
ቁ = 𝐼𝑚൫−𝑖𝑎𝜔𝑒ఏ൯ = 𝐼𝑚൫−𝑖𝑎𝜔(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)൯ = 𝐼𝑚(−𝑖𝑎𝜔𝑐𝑜𝑠𝜃 − 𝑖ଶ𝑎𝜔𝑠𝑖𝑛𝜃) = −𝑖𝑎𝜔𝑐𝑜𝑠𝜃 

𝑅𝑒(∇ଶ𝜓) = 𝑅𝑒(
డቆ

ങቀೌഇቁ

ങೣ
ቇ

డ௫
) = 𝑅𝑒(

డ൫ഇ൯

డ௫
) = 𝑅𝑒(−𝑎𝑘ଶ𝑒ఏ) = 𝑅𝑒(−𝑎𝑘ଶ(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)) = −𝑎𝑘ଶ𝑐𝑜𝑠𝜃 

What can we do with this? If we substitute the de Broglie relations (E = ħ·ω and p = ħ·k), we can get the 
energy concept that is used in Schrödinger’s equation – which is just kinetic energy: 

𝑅𝑒 ൬
𝜕𝜓

𝜕𝑡
൰ = −

ℏ

2𝑚
𝐼𝑚(∇ଶψ) ⟺ 𝑎𝜔𝑠𝑖𝑛𝜃 =

ℏ

2𝑚
𝑎𝑘ଶ𝑠𝑖𝑛𝜃 ⟺  

ℏ

2𝑚
𝑘ଶ = 𝜔 ⟺

ℏ

2𝑚

𝑝ଶ

ℏଶ
=

𝐸

ℏ
⟺ 𝐸 =

𝑝ଶ

2𝑚
 

Substituting once more (ω = E/ħ = (p2/2m)/ħ and p = ħ·k), we get the equivalent two-equations 
expression of the Schrödinger equation once again: 

                                                           
7 Two complex numbers are a+ib and c+id are equal if their real and imaginary parts are equal. One also needs to 
use the i(c+id)=ic+i2d = −d+ic equality here. 
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𝑅𝑒 ൬
𝜕𝜓

𝜕𝑡
൰ = 𝑎𝜔𝑠𝑖𝑛𝜃 = 𝑎

pଶ

2𝑚

1

ℏ
𝑠𝑖𝑛𝜃 = 𝑎

kଶℏଶ

2𝑚ℏ
𝑠𝑖𝑛𝜃 = −

ℏ

2𝑚
𝐼𝑚(∇ଶψ) 

𝐼𝑚 ൬
𝜕𝜓

𝜕𝑡
൰ = 𝑎𝜔𝑐𝑜𝑠𝜃 = 𝑎

pଶ

2𝑚

1

ℏ
𝑐𝑜𝑠𝜃 = 𝑎

kଶℏଶ

2𝑚ℏ
𝑐𝑜𝑠𝜃 =

ℏ

2𝑚
𝑅𝑒(∇ଶψ) 

 

However, we should note that we have to be consistent here: the energy E in the E = ħ·ω expression 
excludes the rest energy. It must because, if we would use the E = mc2 equations, the equations become 
contradictory: 

E = m𝑐ଶ ≠
pଶ

2m
=

mଶ𝑣ଶ

2m
=

m𝑣ଶ

2
 

Note that the 1/2 factor is there even for v = c. Hence, if we would want Schrödinger’s equation to also 
fit the Zitterbewegung model, then we have to interpret half of the E = mc2 as kinetic and half of it as 
potential – and we would, once again, consider the kinetic energy only.8 However, the Zitterbewegung 
model is not what we are interested in here. We will want to substitute the energy and momentum 
formulas we get for the Bohr atom (E = α2mc2/2 and p = ħ·k = mαc or k = mαc/ħ). We get: 

𝑅𝑒 ൬
𝜕𝜓

𝜕𝑡
൰ = 𝑎𝜔𝑠𝑖𝑛𝜃 = 𝑎

αଶm𝑐ଶ

2ℏ
𝑠𝑖𝑛𝜃 = 𝑎

kଶℏ

2𝑚
𝑠𝑖𝑛𝜃 = −

ℏ

2𝑚
𝐼𝑚(∇ଶψ) 

𝐼𝑚 ൬
𝜕𝜓

𝜕𝑡
൰ = 𝑎𝜔𝑐𝑜𝑠𝜃 = 𝑎

αଶm𝑐ଶ

2ℏ
𝑐𝑜𝑠𝜃 = 𝑎

kଶℏ

2𝑚
𝑐𝑜𝑠𝜃 =

ℏ

2𝑚
𝑅𝑒(∇ଶψ) 

That is good. It had better be because the E = α2mc2/2 expression is, of course also compatible with the 
(kinetic) energy expression: E = p2/2m = m2α2c2/2m = α2mc2/2. So how should we interpret this? We 
interpret the sine and cosine functions as an oscillation in two dimensions. The sine and cosine are, 
effectively, the same function but with a 90-degree phase difference. The kinetic energy of the first 
oscillator is equal to a22sin2 and, hence, the energy transfer from this oscillator to the other is given 
by:  

2a22·sinθ·d(sinθ)/dθ = 2 a22·sinθ·cosθ 

This is absorbed by the other oscillator, whose motion is given by the cosθ function, which is equal to 
sin(θ+π /2). Hence, its kinetic energy is equal to a22cos2 = sin2(θ+π /2), and how it changes – as a 
function of θ – will be equal to: 

2a22·sin(θ+π /2)·cos(θ+π /2) = −2a22·cosθ·sinθ 

All that remains to be done is to simplify the 2a22 by substituting a for the Bohr radius radius (a = rB) 
and  for the angular frequency of the rotation ( = v/rB). We get the following: 

𝑎ଶ𝜔ଶ = 𝑟
ଶ

𝑣ଶ

𝑟
ଶ

= αଶ𝑐ଶ 

                                                           
8 This may sound phony to the reader and, to some extent, it effectively is: the Schrödinger equation is non-
relativistic and should, therefore, not be used in the context of the Zitterbewegung model. It should also not be 
used to model a photon. In short, Schrödinger’s equation assumes a non-relativistic tangential velocity.  
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We get the following equation: E = α2·m·c2 = m·a2·ω2. All is wonderfully consistent.  The total energy 
that is stored in the system is the sum of the kinetic and potential energies of the two oscillators:  

m𝑎ଶωଶ =
m𝑎ଶωଶ

2
+

m𝑎ଶωଶ

2
= αଶm𝑐ଶ 

What about the argument of the wavefunction? It must have a consistent interpretation too. It has. The 
model circular model implies that the position and momentum vector are always at right angles to each 
other. Hence, the vector dot product p·x disappears, and the argument of the wavefunction therefore 
reduces to (E/ħ)·t = ω·t.9 In fact, even if the p·x product would not disappear, we have an invariant four-
vector product here that we can re-write as E’·t’ (the product of the energy and time in the stationary 
reference frame) and because velocities are non-relativistic here, t and t’ will not be (very) different. 
Hence, the aei = aei(kxt) wavefunction just gives us where the electron actually is at every point in time. 
There is nothing magical about it. Who needs wave equations? 

The meaning of the complex conjugate 

We should make one more point here. Schrödinger’s equation does not work for the complex conjugate 
of the elementary wavefunction. That is an aberration. Indeed, most introductory courses on quantum 
mechanics will show that both  = exp(i) = exp[i(kxt)] and * = exp(i) = exp[i(kxt)] = 
exp[i(tkx)] =  are acceptable waveforms to describe a particle that is propagating in the x-direction. 
Both have the required mathematical propertiesas opposed to, say, some real-valued sinusoid.10 We 
would then think some proof should follow of why one would be better than the other or, preferably, 
one would expect as a discussion on what these two mathematical possibilities might representbut, 
no. That does not happen. The physicists conclude that “the choice is a matter of convention and, 
happily, most physicists use the same convention.”11 Instead of making a choice here, we could, 
perhaps, use the various mathematical possibilities to incorporate spin in the description, as real-life 
particles – think of electrons and photons here – have two spin states (up or down), as shown below. 

Table 1: Matching mathematical possibilities with physical realities?12 

Spin and direction of travel Spin up Spin down 

Positive x-direction  = exp[i(kxt)] * = exp[i(kxt)] = exp[i(tkx)] 

Negative x-direction χ = exp[i(kx+t)] = exp[i(tkx)] χ* = exp[i(kx+t)]  

 

                                                           
9 Even if the p·x product would not disappear, we have an invariant four-vector product here that we can re-write 
as E’·t’: this is the product of the energy and time in the stationary reference frame. Because velocities are non-
relativistic here, t and t’ will not be (very) different. 
10 The argument is based on whether or not the superposition of similar waveforms gives us a sensible composite 
waveform. Our formulas only give the elementary wavefunction. The wave packet will be a Fourier sum of such 
functions. 
11 See, for example, the MIT’s edX Course 8.04.1x (Quantum Physics), Lecture Notes, Chapter 4, Section 3.  
12 Of course, the formulas only give the elementary wavefunction. The wave packet will be a Fourier sum of such 
functions. 
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This seems to make sense. Theoretical spin-zero particles do not exist and we should therefore, perhaps, 
use the extra degree of freedom in the mathematical description to describe the spin state of our 
particle. An important added benefit here is that the weird 720-degree symmetry of spin-1/2 particles 
collapses into an ordinary 360-degree symmetry and that we would, therefore, have no need, perhaps, 
to describe them using spinors and other complicated mathematical objects. We have written about this 
at length elsewhere13 and so we won’t repeat ourselves here.  

By now, the reader might wonder: what is the point? The point is: we do not need the Schrödinger 
equation to construct a hydrogen atom model. It does not explain anything. The Rutherford-Bohr model 
does. Let us, therefore, now return to it. 

How to understand the atom 

The Rutherford-Bohr model gave us the following formulas14: 

Table 2: Matching mathematical possibilities with physical realities? 

Spin-only electron (free electron) Orbital electron (Bohr atom) 

μ = I ∙ π𝑟େ
ଶ =

qୣ

2m
ℏ 

 

μ = I ∙ π𝑟
ଶ = 𝑛 ∙

qୣ

2m
ℏ 

 

L = 𝐼 ∙ ω =
ℏ

2
 

 

L = 𝐼 ∙ ω = 𝑛 ∙ ℏ 
 

g =
2m

qୣ

μ

L
= 2 

 

g =
2m

qୣ

μ

L
= 1 

 
 

The n is the orbital number, of course. Note that the 1/2 factor in the angular momentum (L) is due to 
the form factor – which is inherent to the very different model (Zitterbewegung – or rest matter 
oscillation – versus Bohr orbitals). Also note that we assume that the Bohr atom has one electron only 
(the solutions to Schrödinger’s equation also model a hydrogen atom only). 

Now we need to combine the magnetic moments from the spin and orbital angular momentum. The 
magnetic moment will be measured in units of the Bohr magneton: μB = qeħ/2m. Students are often 
confused here, because the electron is said to be a spin-1/2 particle. The table above shows the free 
electron will, effectively, have an angular momentum that is equal to ± ħ/2, but its magnetic moment 
will be equal to the Bohr magneton itself. That is because the gyromagnetic factor is equal to 2. Hence, 
in an external magnetic field (B), it will get an energy that is equal to: 

μ =  μB·B 

                                                           
13 Jean Louis Van Belle, Euler’s wavefunction (http://vixra.org/abs/1810.0339, accessed on 30 October 2018) 
14 The I and the I in the equations stand for the current and the moment of inertia respectively. These are two very 
different concepts but we did not want to invent new symbols. 
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Figure 4: Spin values and magnetic energy of an electron15 

What about a Bohr atom with one electron? Here things are very interesting because we now need to 
combine the spin and orbital angular momentum somehow. We have three possibilities here, as shown 
below. 

 

Figure 5: Combining orbital angular momentum with spin angular momentum16 

We took a screenshot from an actual physics book, which refers to the spin angular momentum as the z-
component, to show that the Rutherford-Bohr model does incorporate the same quantum numbers as 
the Schrödinger model. The question, of course, is: how can the spin angular momentum be zero? The 
answer is: it could, possibly, be orthogonal to the magnetic field.  

If this is how it goes, how do we explain a silver atom has only spin 1/2? Some think the magnetic 
moment of the various orbitals will cancel each other out because of their respective orientation. That is 
a little bit vague. Let me quote a more precise explanation: “There are 47 electrons surrounding the 
silver atom nucleus, of which 46 form a closed inner core of total angular momentum zero – there is no 
orbital angular momentum, and the electrons with opposite spins pair off, so the total angular 
momentum is zero, and hence there is no magnetic moment due to the core. The one remaining 
electron also has zero orbital angular momentum, so the sole source of any magnetic moment is that 
due to the intrinsic spin of the electron.”17 

We can combine angular and spin orbital momentum in various ways. For example, the ground state of 
a helium atom (which has two electrons) will actually be that of a spin-zero particle. This is, obviously, 
because both the orbital as well as the spin orbital angular momenta (and the associated magnetic 
moments) for the two electrons cancel each other out. 

                                                           
15 The illustrations in this section come out of Feynman’s Lectures (II-34 and III-19). 
16 The illustrations in this section come out of Feynman’s Lectures (II-34 and III-19). 
17 See: J D Cresser, 2009, http://physics.mq.edu.au/~jcresser/Phys301/Chapters/Chapter6.pdf.  
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Conclusions 

This was a lot of fun. The only objective of this paper is to show that we actually do not need symmetric 
and anti-symmetric wavefunctions or complicated wave equations to explain electron orbitals and the 
associated atomic behavior. The Rutherford-Bohr model is simple, intuitive and – most importantly – it 
explains how things work – rather than just describe them. 

Jean Louis Van Belle, 6 December 2018 
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