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Abstract: This is a didactic exploration of the basic assumptions and concepts of 
the Zitterbewegung interpretation of quantum mechanics. Its novelty is in applying 
the concepts to photons and relating it to other uses of the wavefunction. As such, 
we could have chosen another title for this paper: the physics of quantum physics. 
However, all we present are interpretations, hypotheses and assumptions only, of 
course. As such, we preferred the title above: the metaphysics of physics. 

Keywords: Zitterbewegung, Uncertainty, mass-energy equivalence, wavefunction 
interpretations. 

Contents 

1. The wavefunction of an electron ........................................................................................................... 1 

2. The wavefunction of a photon .............................................................................................................. 5 

3. The relativistic invariance of the wavefunction .................................................................................... 7 

4. Planck’s constant and the concept of Uncertainty ............................................................................. 10 

References .................................................................................................................................................... 14 

 

Acknowledgements: The author would like to thank dr. Giorgio Vassalo (Dipartimento 
dell'Innovazione Industriale e Digitale (DIID), Università degli Studi di Palermo) for his 
encouraging comments on a previous draft. He also thanks Dr. Christoph Schiller (Motion 
Mountain Physikverein) for saying the mountain cannot be climbed. For a mountaineer, 
that is an encouragement.  

  



1 
 

The metaphysics of physics 
1. The wavefunction of an electron 

The wavefunction is a wonderful mathematical object which, we argue, has several 
physical interpretations. In the Zitterbewegung interpretation of an electron1, it will 
describe the circular oscillatory motion of an electron (the Zitterbewegung) or – possibly – 
of any charged particle, as depicted below. 

 

Figure 1: The force and position vector 

The illustration above makes it clear that, within this rather particular interpretation of 
the wavefunction, we need to develop a dual view of the reality of the real and imaginary 
part of the wavefunction. On the one hand, they will describe the physical position (i.e. 
the x- and y-coordinates) of the pointlike charge – the green dot in the illustration, whose 
motion is described by:  

r = a·ei = x + i·y = a·cos(ωt) + i·a·sin(ωt) = (x, y) 

As such, the (elementary) wavefunction is viewed as an implicit function: it is equivalent 
to the x2 + y2 = a2 equation, which describes the same circle.  
On the other hand, the zbw model implies the circular motion of the pointlike charge is 
driven by a tangential force, which we write as: 

                                      
1 Erwin Schrödinger derived the Zitterbewegung as he was exploring solutions to Dirac’s wave equation for 
free electrons. In 1933, he shared the Nobel Prize for Physics with Paul Dirac for “the discovery of new 
productive forms of atomic theory”, and it is worth quoting Dirac’s summary of Schrödinger’s discovery: 
“The variables give rise to some rather unexpected phenomena concerning the motion of the electron. These 
have been fully worked out by Schrödinger. It is found that an electron which seems to us to be moving 
slowly, must actually have a very high frequency oscillatory motion of small amplitude superposed on the 
regular motion which appears to us. As a result of this oscillatory motion, the velocity of the electron at any 
time equals the velocity of light. This is a prediction which cannot be directly verified by experiment, since 
the frequency of the oscillatory motion is so high and its amplitude is so small. But one must believe in this 
consequence of the theory, since other consequences of the theory which are inseparably bound up with this 
one, such as the law of scattering of light by an electron, are confirmed by experiment.” (Paul A.M. Dirac, 
Theory of Electrons and Positrons, Nobel Lecture, December 12, 1933) 
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F = Fx·cos(ωt+π/2) + i·Fx·sin(ωt+π/2) = F·ei(+π/2) 

The line of action of the force is the orbit because a force needs something to grab onto, 
and the only thing it can grab onto in this model is the oscillating (or rotating) charge. 
We think of F as a composite force: the resultant force of two perpendicular oscillations.2 
This leads us to boldly equate the E = mc2 and E = m·a2·ω2 formulas. We can think of 
this as follows. The zbw model – which is derived from Dirac’s wave equation for free 
electrons – tells us the velocity of the pointlike charge is equal to c. If the zbw frequency is 
given by Planck’s energy-frequency relation (ω = E/ħ), then we can combine Einstein’s 
E = mc2 formula with the radial velocity formula (c = a·ω) and find the zbw radius, 
which is nothing but the (reduced) Compton wavelength: 

𝑎 =
ℏ

m𝑐
=

λୣ

2π
≈ 0.386 × 10ିଵଶ m 

Because the energy in the oscillator must be equal to the magnitude of the force times the 
length of the loop, we can calculate the magnitude of the force, which is rather enormous 
in light of the sub-atomic scale: 

E = Fλୣ ⟺ 𝐹 =
E

λୣ
≈

8.187 × 10ିଵସ J

2.246 × 10ିଵ  m
≈ 3.3743 × 10ିଶN 

The associated current is equally humongous:  

I = qୣ𝑓 = qୣ

E

ℎ
≈ (1.6 × 10ିଵଽ C)

8.187 × 10ିଵସ J

6.626 × 10ିଷସ Js
≈ 1.98 A (𝑎𝑚𝑝𝑒𝑟𝑒) 

A household-level current at the sub-atomic scale? The result is consistent with the 
calculation of the magnetic moment, which is equal to the current times the area of the 
loop and which is, therefore, equal to: 

μ = I ∙ π𝑎ଶ = qୣ

m𝑐ଶ

ℎ
∙ π𝑎ଶ = qୣ𝑐

π𝑎ଶ

2π𝑎
=

qୣ𝑐

2

ℏ

m𝑐
=

qୣ

2m
ℏ 

It is also consistent with the presumed angular momentum of an electron, which is that of 
a spin-1/2 particle. As the oscillator model implies the effective mass of the electron will 
be spread over the circular disk, we should use the 1/2 form factor for the moment of 
inertia (I).3 We write: 

L = 𝐼 ∙ ω =
𝑚𝑎ଶ

2

𝑐

𝑎
=

𝑚𝑐

2

ℏ

𝑚𝑐
=

ℏ

2
 

                                      
2 A metaphor for such oscillation is the idea of two springs in a 90-degree angle working in tandem to 
drive a crankshaft. The 90-degree ensures the independence of both motions. See: Jean Louis Van Belle, 
Einstein’s mass-energy equivalence relation: an explanation in terms of the Zitterbewegung, 24 November 
2018 (http://vixra.org/pdf/1811.0364v1.pdf). 
3 Symbols may be confusing. For example, I refers to the current, but I refers to the moment of inertia. 
Likewise, E refers to energy, but E may also refer to the magnitude of the electric force. We could have 
introduced new symbols but the context should make clear what we are talking about. We also try to use 
italics consistently. Note that bold letters (F versus F, for example) will usually denote a vector, i.e. a 
quantity with a magnitude (F) and a direction.  
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We now get the correct g-factor for the pure spin moment of an electron: 

𝛍 = −g ቀ
qୣ

2m
ቁ 𝐋 ⇔

qୣ

2m
ℏ = g

qୣ

2m

ℏ

2
⇔ g = 2 

The vector notation for 𝛍 and L (boldface) in the equation above should make us think 
about the plane of oscillation. This question is related to the question of how we should 
analyze all of this is a moving reference frame. This is a complicated question. The Stern-
Gerlach experiment suggests we may want to think of an oscillation plane that might be 
perpendicular to the direction of motion, as illustrated below. 

 

Figure 2: The zbw electron traveling through a Stern-Gerlach apparatus? 

Of course, the Stern-Gerlach experiment assumes the application of a (non-homogenous) 
magnetic field. In the absence of such field, we may want to think of the plane of 
oscillation as something that is rotating in space itself. The idea, then, is that it sort of 
snaps into place when an external magnetic field is applied. We will discuss this idea 
when introducing Uncertainty in Section 4 of this paper.  
As for the question of how we should look at the motion in a moving reference frame – 
and, in particular, when the electron would move at a relativistic speed, this will be 
discussed more in detail in Section 3. We first want to think about how we can use the 
wavefunction concept to interpret the nature of a photon, which we do in Section 2. 
Before we move on, however, we should say something about the nature of the force. The 
assumption is that the force grabs onto a pointlike charge. Hence, the force must be 
electric. We write: 

F = qeE. 

Because the force is humongous (a force of 0.0375 N is equivalent to a force that gives a 
mass of 37.5 gram (1 g = 10-3 kg) an acceleration of 1 m/s per second), and the charge is 
tiny), we get an incredible field strength: 

𝐸 =
𝐹

qୣ
≈

3.3743 × 10ିଶ N

1.6022 × 10ିଵଽ C
≈ 0.21 × 10ଵ଼ N/C 
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This is an incredible number because the most powerful accelerators may only reach field 
strengths of the order of 109 N/C (1 GV/m).4 The associated energy density can be 
calculated as: 

𝑢 = 𝜖𝐸ଶ ≈ 8.854 × 10ିଵଶ ∙ (0.21 × 10ଵ଼)ଶ
J

mଷ
= 0.36 × 10ଶସ  

J

mଷ
= 0.63 × 10ଶସ  

J

mଷ
  

This amounts to about 7 kg per mm3 (cubic millimeter). Do this make any sense? Maybe. 
Maybe not. The rest mass of the electron is tiny, but the zbw radius of an electron is also 
exceedingly small. We will leave it to the reader to verify the calculation and – perhaps – 
make some more. It would be very interesting, for example, to think about what happens 
to the curvature of spacetime with such mass densities: perhaps our pointlike charge goes 
round and round on a geodesic in its own (curved) space. We are not familiar with 
general relativity theory and, hence, we are just guessing here. The point is: there is no 
wire to confine its motion. The E = ma2ω2 = mc2 is intuitive: the energy of any oscillation 
will be proportional to the square of (i) the (maximum) amplitude of the oscillation and 
(ii) the frequency of the oscillation, with the mass as the proportionality coefficient. But 
what does it mean? 
This question is difficult to answer. Is there another – other than the idea of a two-
dimensional oscillation – to explain the Zitterbewegung? We do not see any. We explored 
the basic ideas elsewhere5 and, hence, we will not dwell on them here. We will only make 
one or two remarks below which may or may not help the reader to develop his or her 
own interpretation.    
When everything is said and done, we should admit that the bold c2 = a2·ω2  assumption 
interprets spacetime as a relativistic aether – a term that is taboo but that is advocated 
by Nobel Prize Laureate Robert Laughlin6. It is inspired by the most obvious implication 
of Einstein’s E = mc2 equation, and that is that the ratio between the energy and the 
mass of any particle is always equal to c2: 

𝐸௧

𝑚௧
=

𝐸௧

𝑚௧
=

𝐸௧

𝑚௧
=

𝐸௬ ௧

𝑚௬ ௧
= 𝑐ଶ 

This reminds us of the ω2 = C1/L or ω2 = k/m of harmonic oscillators – with one key 
difference, however: the ω2= C1/L and ω2 = k/m formulas introduce two (or more) 
degrees of freedom. 7 In contrast, c2= E/m for any particle, always. This is the point: we 
can modulate the resistance, inductance and capacitance of electric circuits, and the 
stiffness of springs and the masses we put on them, but we live in one physical space 
only: our spacetime. Hence, the speed of light c emerges here as the defining property 

                                      
4 Such field strength assumes a very-high frequency oscillation of the field. To be precise, the oscillations 
should be in the 30-50 GHz range to reach such field strength. This is high, but the zbw frequency is much 
higher: fe = ωe/2π = E/ħ ≈ 0.123×10−21 Hz. 
5 See the reference above (Jean Louis Van Belle, 2018). 
6 Robert Laughlin (2005), as quoted in the Wikipedia article on aether theories 
(https://en.wikipedia.org/wiki/Aether_theories).   
7 The ω2= 1/LC formula gives us the natural or resonant frequency for an electric circuit consisting of a 
resistor (R), an inductor (L), and a capacitor (C). Writing the formula as ω2 = C1/L introduces the concept 
of elastance, which is the equivalent of the mechanical stiffness (k) of a spring. We will usually also include 
a resistance in an electric circuit to introduce a damping factor or, when analyzing a mechanical spring, a 
drag coefficient. Both are usually defined as a fraction of the inertia, which is the mass for a spring and the 
inductance for an electric circuit. Hence, we would write the resistance for a spring as γm and as R = γL 
respectively. This is a third degree of freedom in classical oscillators.   
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of spacetime. It is, in fact, tempting to think of it as some kind of resonant frequency but 
the c2 = a2·ω2 hypothesis tells us it defines both the frequency as well as the amplitude of 
what we will now refer to as the rest energy oscillation. 
This model is bizarre. The weirdest result may well be the product of the calculated force, 
zbw circumference (Compton wavelength) and zbw frequency. It gives us an amount of 
(physical) action that is equal to Planck’s constant (h):   

𝐹 ∙ λୣ ∙ T =
E

λୣ
∙ λୣ ∙

1

𝑓
ୣ

= E ∙
ℎ

E
= ℎ 

How should we interpret this? We will come back to this in Section 4. We will first look 
at how we can use the very same wavefunction to describe the conceptual opposite of 
matter: the photon. 

2. The wavefunction of a photon 
Photons may or may not have a wavefunction but, if they do, we would probably want to 
visualize it as a circularly polarized wave, as illustrated below: a rotating electric field 
vector (E) which can be analyzed as the sum of two orthogonal components: E = Ex + 
Ey.   

 

 

Figure 3: LHC- and RHC-polarized light 

This is a very different view of the (elementary) wavefunction. It is not an implicit 
function anymore. It is a proper function now. To be precise, we think of a·ei as a 
function from some domain (Δx, Δt) to an associated range of values a·ei. We may 
write this as: 

(x, t) → a·ei = a·ei(ω·t  k·x) = a·cos(ω·t  k·x) + i·a·sin(ω·t  k·x) 

Hence, while the domain of this wavefunction has to be limited in space and in time, the 
wave itself will, effectively, occupy some space at any point in time and, conversely, will 
only have non-zero values over a limited time interval at any point in space. Of course, 
the amplitude is not necessarily uniform. If you have ever recorded someone playing the 
guitar (yourself, perhaps), then you are probably aware of how an actual wave packet 
looks like: it is a transient oscillation, as shown below. Note that its shape reverses 
depending on whether we take the horizontal axis to be time (t) or spatial position (x).   
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Figure 4: An actual wave is usually a transient8 

This may look outlandish but it makes sense if we think photons are emitted – and 
absorbed – by an atomic transition from one energy state to another. We think of these 
atoms at atomic oscillators, and we can calculate their Q: it’s of the order of 108 (see, for 
example, Feynman’s Lectures, I-33-3), which means that, after about as many oscillations, 
the amplitude will have died by a factor 1/e ≈ 0.37. Let us give an example, because it 
gives rise to interesting questions. For sodium light – which has a frequency of 500 THz 
(500×1012 oscillations per second) and a wavelength of 600 nm (600×10–9 meter) – the 
decay time of the radiation will be some 3.2×10–8 seconds. That makes for about 16 
million oscillations. Now, the wavelength is small but the speed of light is huge. The 
length of the wave train is, therefore, still quite considerable: about 9.6 meter. 
This sounds lunatic: a photon with a length of 9.6 meter? Yes. Fortunately, we are saved 
by relativity theory: as this wave train zips by at the speed of light, relativistic length 
contraction reduces its length to zero. What about the field strength? Because the electric 
field is perpendicular to the direction of propagation, we like to think the amplitude 
remains what it is. However, that requires, perhaps, a more careful consideration. 
At this point in the argument, we have no choice but to think about relativistic 
transformations of the wavefunction or, to be precise, relativistic transformations of its 
argument. Before we do so, we need to make one more note. It should, intuitively, be 
obvious that the energy of a photon – the energy of the wave train, really – is packed over 
many oscillations. Zillions, literally. Each of these oscillations will, therefore, pack an 
exceedingly small (but real) amount of energy. As any oscillation, each oscillation takes 
some time (the cycle time) and, in the case of the photon, some space (the wavelength). 
In contrast, the electron picture was different: one oscillation – one cycle, really – packs 
all of the energy E = Fλୣ = mec2. Hence, the magnitude of the associated electric field is 
humongous as compared to the amplitude of the oscillations of our photon.  
Let relativity enter the picture now. 

                                      
8 The image on the left depicts the amplitude of a musical note from a guitar string. 
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3. The relativistic invariance of the wavefunction 
Let us consider the idea of a particle traveling in the positive x-direction at constant 
speed v. This idea implies a pointlike concept of position and time: we think the particle 
will be somewhere at some point in time. The somewhere in this expression does not 
necessarily mean that we think the particle itself will be dimensionless or pointlike. It just 
implies that we can associate some center with it. Think of the zbw model here, for 
example: we have an oscillation around some center, but the oscillation has a physical 
radius, which we refer to as the Compton radius of the electron.9 Of course, two extreme 
situations may be envisaged: v = 0 or v = c. However, let us not consider these right now 
(we will do so later, of course).   
The point is: in our reference frame, we have a position – a mathematical point in space, 
that is – which is a function of time: x(t) = v·t. Let us now denote the position and time 
in the reference frame of the particle itself by x’ and t’. Of course, the position of the 
particle in its own reference frame will be equal to x’(t’) = 0 for all t’, and the position 
and time in the two reference frames will be related as follows: 

𝑥ᇱ =
𝑥 − 𝑣𝑡

ට1 −
𝑣ଶ

𝑐ଶ

=
𝑣𝑡 − 𝑣𝑡

ට1 −
𝑣ଶ

𝑐ଶ

= 0 

𝑡ᇱ =
𝑡 −

𝑣𝑥
𝑐ଶ

ට1 −
𝑣ଶ

𝑐ଶ

 

Hence, if we denote the energy and the momentum of the electron in our reference frame 
as Ev and p = m0v, then the argument of the (elementary) wavefunction a·ei can be re-
written as follows: 

θ =
1

ℏ
(E௩𝑡 − p𝑥) =

1

ℏ

⎝

⎛
E

ට1 −
𝑣ଶ

𝑐ଶ

𝑡 −
E𝑣

𝑐ଶට1 −
𝑣ଶ

𝑐ଶ

𝑥

⎠

⎞ =
1

ℏ
E

⎝

⎛
𝑡

ට1 −
𝑣ଶ

𝑐ଶ

−

𝑣𝑥
𝑐ଶ

ට1 −
𝑣ଶ

𝑐ଶ ⎠

⎞ =
E

ℏ
𝑡′ 

We have just shown that the argument of the wavefunction is relativistically invariant.10 
It makes us think that of the argument of the wavefunction and – therefore – the 
wavefunction itself – might be more real – in a physical sense, that is – than the various 
wave equations (Schrödinger, Dirac, Klein-Gordon) for which it is some solution. Let us, 
therefore, further explore this. We have been interpreting the wavefunction as an implicit 
function again: for each x, we have a t, and vice versa. There is, in other words, no 
uncertainty here: we think of our particle as being somewhere at any point in time, and 
the relation between the two is given by x(t) = v·t. We will get some linear motion. If we 
look at the ψ = a·cos(p·x/ħ − E·t/ħ) + i·a·sin(p·x/ħ − E·t/ħ) once more, we can 
write p·x/ħ as Δ and think of it as a phase factor. We will, of course, be interested to 
know for what x this phase factor Δ = p·x/ħ will be equal to 2π. Hence, we write:  

Δ = p·x/ħ = 2π ⇔ x = 2π·ħ/p = h/p = λ 

                                      
9 The language is quite subtle: the Compton radius is the reduced Compton wavelength: a = rC = λe/2π. 
10 E0 is, obviously, the rest energy and, because p’ =  0 in the reference frame of the electron, the argument 
of the wavefunction effectively reduces to E0t’/ħ in the reference frame of the electron itself. 
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We now get a meaningful interpretation of the de Broglie wavelength. It is the distance 
between the crests (or the troughs) of the wave, so to speak, as illustrated below.  

 

Figure 5: An interpretation of the de Broglie wavelength 

Of course, we should probably think of the plane of oscillation as being perpendicular to 
the plane of motion – or as oscillating in space itself – but that doesn’t matter. Let us 
explore some more. We can, obviously, re-write the argument of the wavefunction as a 
function of time only:    

θ =
1

ℏ
(E௩𝑡 − p𝑥) =

1

ℏ

E

ට1 −
𝑣ଶ

𝑐ଶ

ቀ𝑡 −
𝑣

𝑐ଶ
𝑣𝑡ቁ =

1

ℏ

E

ට1 −
𝑣ଶ

𝑐ଶ

ቆ1 −
𝑣ଶ

𝑐ଶ
ቇ 𝑡 = ඨ1 −

𝑣ଶ

𝑐ଶ
·

E

ℏ
𝑡 

We recognize the inverse Lorentz factor here, which goes from 1 to 0 as v goes from 0 to 
c, as shown below.  

 

Figure 6: The inverse Lorentz factor as a function of (relative) velocity (v/c) 

Note the shape of the function: it is a simple circular arc. This result should not surprise 
us, of course, as we also get it from the Lorentz formula: 
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𝑡ᇱ =
𝑡 −

𝑣𝑥
𝑐ଶ

ට1 −
𝑣ଶ

𝑐ଶ

=
𝑡 −

𝑣ଶ

𝑐ଶ 𝑡

ට1 −
𝑣ଶ

𝑐ଶ

= ඨ1 −
𝑣ଶ

𝑐ଶ
∙ 𝑡 

What does it all mean? We can go through a simple numerical example to think this 
through. Let us assume that, for example, that we are able to speed up an electron to, 
say, about one tenth of the speed of light. Hence, the Lorentz factor will then be equal to 
 = 1.005. This means we added 0.5% (about 2,500 eV) – to the rest energy E0: Ev = E0 
≈ 1.005·0.511 MeV ≈ 0.5135 MeV. The relativistic momentum will then be equal to mvv 
= (0.5135 eV/c2)·(0.1·c) = 5.135 eV/c. We get:   

θ =
E

ℏ
𝑡′ =

1

ℏ
(E௩𝑡 − p𝑥) =

1

ℏ

⎝

⎛
E

ට1 −
𝑣ଶ

𝑐ଶ

𝑡 −
E𝑣

𝑐ଶට1 −
𝑣ଶ

𝑐ଶ

𝑥

⎠

⎞ = 0.955
E

ℏ
𝑡 

This is interesting, and then it is not. A more interesting question is what happens to the 
radius of the oscillation. Does it change? It must, but how should we interpret this? In 
the moving reference frame, we measure higher mass and, therefore, higher energy – as it 
includes the kinetic energy. The c2 = a2·ω2 identity must now be written as c2 = a’2·ω’2. 
Instead of the rest mass m0 and rest energy E0, we must now use mv = m0 and Ev = E0 
in the formulas for the Compton radius and the Einstein-Planck frequency, which we just 
write as m and E in the formula below: 

m𝑎′ଶω′ଶ = m
ℏଶ

mଶ𝑐ଶ

mଶ𝑐ସ

ℏଶ
= m𝑐ଶ 

This is easy to understand intuitively: we have the mass factor in the denominator of the 
formula for the Compton radius, so it must increase as the mass of our particle increases 
with speed. Conversely, the mass factor is present in the numerator of the zbw frequency, 
and this frequency must, therefore, increase with velocity. It is interesting to note that we 
have a simple (inverse) proportionality relation here. The idea is visualized in the 
illustration below (for which credit goes to the modern zbw theorists Celani et al.), which 
depicts an accelerating electron: the radius of the circulatory motion must effectively 
diminish as the electron gains speed. Once again, however, we should warn the reader 
that he or she should also imagine the plane of oscillation to be possibly parallel to the 
direction of propagation, in which case the circular motion becomes elliptical.  

 

Figure 7: The Compton radius must decrease with increasing velocity 
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Can the velocity go to c? This is where the analysis for an electron – or any other matter-
particle – and for a photon part ways. In the zbw model, we have a rest energy which is 
explained by the Zitterbewegung of a pointlike electric charge. Hence, relativity tells us we 
can never accelerate it to the speed of light, because its mass – a measure for inertia to 
movement – becomes infinite. 
In contrast, we have no such constraint for a photon. In fact, it does not have any rest 
energy (or rest mass). All of its energy is in its motion. What happens to the argument of 
the wavefunction? If we still think of the photon just like we would think of a particle – 
i.e. in terms of it being at some specific point in space at some specific point in time – 
then the argument vanishes: 

θ =
1

ℏ
(E · 𝑡 − p · 𝑥) =

1

ℏ
(p𝑐 · 𝑡 − p · 𝑐𝑡) = 0 

What does this tell us? In our humble view, this tells us that we should not think of a 
photon as we think of a particle. If we want to associate a wavefunction with a photon, 
then we should not think of it as an implicit function, but as a proper function, i.e. a 
function from some domain (Δx, Δt) to an associated range of values a·ei. We can then 
use the superposition principle to shape it anyway we would want to shape it, and we 
should probably think of some transient here, rather than a nice symmetrical wave 
packet. 

4. Planck’s constant and the concept of Uncertainty 
It may look like we do not have any uncertainty in the wavefunction concept as we have 
used it so far. The particle is always somewhere at some point in time. As for the photon, 
we assume that – in its own frame of reference – we have some precise value for the 
electromagnetic field at any point in space and in time. On the other hand, we do not 
have a precise position for the pointlike charge. As for the photon, it appears both as an 
incredibly long string (in its own frame of reference) as well as a point (in our frame of 
reference): what is the reality of the position here? Is this, then, the concept of 
Uncertainty? 
Perhaps. Perhaps not. We will only offer a few remarks here that may or may not help 
the reader to develop his or her own views on it. Let us look at the argument of the 
elementary wavefunction once again: 

θ =
1

ℏ
(E · 𝑡 − p · 𝑥) 

Planck’s constant (ħ) appears a scaling constant here: it looks like Nature is telling us to 
measure E·t – p·x in units of ħ. Planck’s constant is the quantum of action. The 
concept of (physical) action is not often used. One of its uses is in the Principle of Least 
Action in classical mechanics. We will come back to that. As for now, we should note that 
action is measured in N·m·s, so that is a force times some distance times some time. We 
know force times distance is energy, and force times time is momentum. Hence, we can 
think of action – and of the quantum of action itself – in two ways: 

1. Some energy that is available for some time.  
2. Some momentum that is available over some distance.   

It is not obvious to intuitively understand what this means. Think of the Sun as a huge 
reservoir of energy. One day, its energy will be depleted, and we can calculate its life span 
because we have some idea of the power it delivers, which is the energy it delivers per 
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second. We understand energy and we understand power – because power times time 
gives us energy again – but what is energy times time? The same goes for momentum. We 
can think of a 5,000 kg lorry traveling at 70 km per hour and associate the related p = 
m·v momentum with that idea, but what is momentum times distance? 
Let us give an example. Let us assume that we move some object over some distance x. 
To make it simple, we will assume that we move in free space, so there is no potential. 
We apply some force F which will give the object an acceleration a. The acceleration is 
just the ratio between the force and the mass (a = F/m). The x = a·t2/2 then gives us 
the following equation for the time that is needed: 

𝑡 = ඨ
2 ∙ m ∙ x

F
 

This shows that if we want to halve the time t, we need to quadruple the force F. The 
distance remains the same, so the total amount of physical action, which we will write as 
S, doubles. We get the following formula for the action associated with some distance x 
and some force F: 

S = F ∙ x ∙ t = F ∙ x ∙ ඨ
2 ∙ m ∙ x

F
= √F ∙ xଷ/ଶ ∙ √2m 

Conversely, we can also write the action in terms of F and t: 

S = F ∙ x ∙ t = F ∙
F ∙ tଶ

m ∙ 2
∙ t =

Fଶ ∙ tଷ

2m
 

The reader can fill in some numbers. For example, a force equal to 2 N that is acting on a 
2 kg mass over a distance of 2 m amounts gives us S = 8 N·m·s. Does this make us any 
wiser? Probably not. However, the formulas may help to get us more intuitively 
understand what the concept of physical action implies: it embodies some real event – but 
incorporating all aspects of it: not only distance, but also time, and vice versa. 
Let us go back to the zbw model. The S that is associated with one loop is equal to h:  

𝑆 = 𝐹 ∙ λୣ ∙ T =
E

λୣ
∙ λୣ ∙

1

𝑓
ୣ

= E ∙
ℎ

E
= ℎ 

We can think of this in three different ways: (1) some energy over some time (F·λe times 
T), (2) some momentum over some distance (F·T times λe) and (3) some force over some 
distance over some time. As such, it is associated with some path in space and in time – 
i.e. a path in spacetime. Different paths in spacetime will be associated with different 
amounts of action. Let us illustrate this. 
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Figure 8: Different paths in spacetime 

We can take some mass m – ourselves, perhaps – from point (x1, t1) to point (x2, t2) in 
two ways: we can take the straight-line path, or we can take the weird curved path. If we 
want to get from x1 to x2 in the same time T = t2  t1, then we will need a lot more 
action along the curved path: we will need to go a lot faster and, therefore, we will need a 
lot more force. Hence, the curved path will be associated with more action. We write:  

ΔS = S’  S = F’·X’·T  F·X·T = (F’·X’  F·X)·T = (E’  E)·T  
Can we take any path ? In classical mechanics, we can. However, in quantum mechanics, 
we may want to think action comes in discrete amounts: h, 2h, 3h,… n·h,... This, then, 
explains Feynman’s explanation for diffraction (see below): not enough arrows. We should 
read this as: we only have a discrete set of possible paths in a limited space, and the 
relevant scale factor is given by Planck’s constant: the amount of action that is associated 
with these paths differs by h, 2h, 3h,… n·h, etcetera. 

 

  Figure 9: Explaining diffraction11 

                                      
11 Source: Richard Feynman, The Strange Theory Of Light and Matter, 1985 
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Here, we have yet another use of the wavefunction: we will associate each path in 
spacetime with the related action, and this amount of action is then used to calculate the 
probability amplitude that is associated with the path. We then add the amplitudes – 
Feynman’s arrows – to get the combined amplitude. 
The amplitude is given by the propagator function. If our physical interpretations of the 
wavefunction makes any sense, then we will, somehow, need to relate them to the 
propagator function – for a matter-particle as well as for a photon. This is a topic we 
would like to explore in future papers. 

Jean Louis Van Belle, 27 November 2018  
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