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In this paper, a previously unknown form of gravity is presented what has been named by ”dy-
namic gravity”. Under dynamic gravity, we mean the phenomenon of gravitation between moving
masses. The nearly 300-year success of the Newtonian gravitation theory has always been based on
the implicit assumption that the gravitational force is the same size between standing and moving
masses in non-relativistic cases. In the 1990s, gravitational experiments were carried out in Hungary
in which the gravitational effects were studied between moving masses. Surprisingly, the moving
source masses generated more powerful gravitational force than expected by the Newtonian gravity.
In addition, in these experiments gravitational repulsion also appeared with the same strength as
the attraction, depending on the moving directions of the interactive masses. The theoretical in-
vestigations have shown that the newly explored gravitational phenomenon is direct consequence of
the special relativity.
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I. INTRODUCTION

In this paper, a previously unknown form of gravity is
presented what has been named by ”dynamic gravity”.
Under dynamic gravity, we mean the phenomenon of
gravitation between moving masses. The nearly 300-year
success of the Newtonian gravitation theory has always
been based on the implicit assumption that the gravita-
tional force is the same size between standing and moving
masses in non-relativistic cases. In the Newton’s gravi-
tational theory has central role of the universal gravita-
tional constant G, whose numerical determination since
the birth of the Newtonian theory has been of paramount
importance in physics. The first laboratory, surprisingly
accurate G determination is connected to the name of
H. Cavendish [1]. Over the past centuries, many grav-
itational constant determinations have been made, in
a wide range of measurement methods, in laboratories
and beyond. In each of the gravitational experiments,
the so-called ”source masses” that created the measur-
ing gravitational field were static (standing) masses. No
one designed gravity measurement at which the source
mass (or masses) perform slow, periodic movements. In
the 1990s, gravitational experiments were carried out in
Hungary in which the gravitational effects were studied
between moving masses. Surprisingly, the moving source
masses generated more powerful gravitational force than
expected by the Newtonian gravity. In addition, in these
experiments gravitational repulsion also appeared with
the same strength as the attraction, depending on the
relative velocity of the interactive masses. Finally, the
experienced strong gravitational force has been named
dynamic gravity.
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II. GRAVITY AND SPECIAL RELATIVITY

The one of the most important equation of the special
relativity can be written into the next form

E2 = m2c4 + c2p2 = c2
(
p20 + p2

)
, (1)

where E is the energy, c is the speed of light, m is the
rest mass, p is the mechanical impulse vector and p0
is the ”static” impulse associated with the rest mass of
a point-like object. Let Eg,tot be the total relativistic
gravitational energy of the multi-body point-like masses

Eg,tot ∝ (

n∑
i,j=1

p0,ip0,j +

n∑
i,j=1

pipj). (2)

According to our present knowledge, the gravitational
interaction energy is

Eg ∝
n∑

i 6=j=1

p0,ip0,j = −G
2r̂

n∑
i6=j=1

mimj , (3)

where r̂ is an averaged distance value depending on the
distribution of the point-like masses, G is the Newtonian
constant of gravity. The Eq. (3) supposes that the gravi-
tational energy is the same for static and moving masses
in the frame of the Newtonian gravity theory. The rea-
son for this is simply that in the gravitational interactions
studied so far, the second member of Eq. (2) was in all
cases constant (in most situations it is zero)

n∑
i,j=1

pipj = const. (4)

That is why the impulse- (speed-) dependence of the
gravitational force has not appeared in the Newtonian
law of gravity.
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III. THE DYNAMIC GRAVITY PHENOMENON

The tacit attitude has remained so far is that the grav-
itational interaction is independent of the speeds of the
interactive masses. It is factual that Newton’s gravita-
tional force explicit does not include the speeds of the
interactive masses. According to the Eq.(2) the relativis-
tic gravitational energy formula contains the impulse de-
pendence of the interacting masses, including their speed-
dependence. The question arises, why does ordinary ex-
perience not show the speed dependence of gravity (i.e.
dynamic gravity)? We have gave the answer with the Eq.
(4) in the previous chapter.

Nevertheless, there is exist a theoretical possibility
when the gravitational interaction includes the impulse-
dependent gravitational interaction by the relativistic
Eq. (2), i.e. for the existence of the dynamic gravitation.
This can be occurred when the equation Eq. (4) is not
fulfilled. In this general case the energy of gravitational
interaction may be the following

Eg = −Gstat
2r̂

n∑
i 6=j=1

mimj −
Gdyn

2r̂

n∑
i 6=j=1

pipj , (5)

where

Gstat = G (6)

is the static gravitational constant which is equal to New-
tonian gravitational constant and Gdyn is an unknown
dynamic gravitational constant.

Probably for the first time in the world, in Hungary
in the 1990s, successful gravitational experiments were
carried out, where both the source masses and detector
masses were in continuous periodical motion. In these
experiments, the detector masses were the constituent
masses of a relatively large size, vertical, dumbbell-
shaped physical pendulum having about 60 - 80 second
period. The periodic movement of the source masses
continuously increased the amplitude of the pendulum
swing by a mysterious strong gravitational effect. By
these experiments the presence of the dynamic gravita-
tional effect was clearly demonstrated, what was magni-
tudes stronger than Newtonian static gravity and what
the relatively weak-sensing physical pendulum was able
to detect.

The purpose of this paper is to determine the dynamic
gravity constant Gdyn as precise as possible. In the first
step we define this supposed constant theoretically with
the investigation of the relativistic impulse-four vector.
In the second step, we try to reconstruct the measure-
ment data of our gravity experiment with mathematical
simulation. This program defines the dynamic gravity
constant by comparison with the experimental data.

IV. THE THEORETICAL BACKGROUND OF
DYNAMIC DRAVITY

In those gravitational experiments in which the inter-
acting masses are in motion, must be taken account of the
second term of Eq. (2) if the Eq. (4) is not fulfilled. The
question has long persisted in how to interpret the dy-
namic gravitational constant Gdyn theoretically. In Eq.
(1) one can see that the mechanical impulse p is harmo-
nizes to the ”static” impulse p0 = mc. The gravitational
interaction, similarly to the electromagnetic interaction,
is a product of two factors: the vector of the gravita-
tional force multiplied by the sample mass at the given
point of the force field. In case of Newtonian gravity the
gravitation field strength is

Γstat =
γ

c

p0
r2

r

r
= −Gstat

m

r2
r

r
. (7)

where m is the source mass of the static gravity field.
Similarly, the field strength vector of the dynamic gravity
can be specified

Γdyn = γ
p,
r2

r

r
= −Gdyn

p,
r2

r

r
, (8)

where p is the source impulse of the dynamic gravity. Ac-
cording to the last two statements, the numerical value of
the dynamic gravitational constant is equal to the static
(Newtonian) gravitational constant numerical value mul-
tiplied by the numerical value of the light speed

{Gdyn} = {c} {G} . (9)

This means that the theoretically obtained dynamic grav-
ity constant is (in SI system)

Gdyn = 2.0008...× 10−2 m/kg. (10)

V. THE DYNAMIC GRAVITY EXPERIMENT

Our unconventional gravity measuring method is illus-
trated in FIG. 1. The ms source mass is periodically
moved by outer force which causes modulation in the
movement of the physical pendulum through an unknown
(suspected gravitational) interaction with the lower mass
mp of the pendulum.

Some of the technical features of the realised physical
pendulum are

Pendulum arms: 2.5 + 2.5 m
Upper and lower masses: 24 - 24 kg, (cubic lead)
Pendulum frame: made of aluminum
Total mass with frame: 54.7 kg
Support of pendulum: two ”in-line” hard steel wedges
Damping: hydraulic damper
Pendulum period: 60 - 80 s
Position detector: optoelectronic
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FIG. 1: Setup for gravity measurement. (P: pivot point, C:
mass-center, S: iron isolation plate, mp: pendulum masses,
ms: source mass).

Due to the relatively large dimensions, the period ad-
justment of the pendulum is relatively easy. The small
pendulum amplitude results an acceptable low level of
the friction. The test masses used were made of lead
cubes. During the control tests, we put an iron isolation
plate into the gap between roundtable and pendulum to
prevent magnetic and air-draft disturbances. Reliable
grounding of the apparatus is necessary for protecting it
against the electrostatic disturbances.

The pendulum movement was recorded on-line by a per-
sonal computer, and was displayed in zoomed graphic
form on computer screen. For the recording of the pen-
dulum movement, an optical measuring system was de-
veloped. The sampling period of pendulum position is
adjustable between 0.2 and 2.0 s; the resolution of the
position detector is about 5 - 10 microns. Our laboratory
is situated at about 500 meters from the nearest traffic
road, in an environment of low gravitational and mechan-
ical noise. The building of the laboratory is hermetically
closed against the outer air draft. Nevertheless, on the
floor of the laboratory continuous small mechanical vi-
brations could be observed, and the coupled vibration
energy was transferred to the pendulum. This is a finally
not eliminable background noise source of the minimal
pendulum movement.

An important part is not shown on FIG. 1, a plastic
container filled with water, in which rides a light plas-
tic damping sheet of about 500 cm2 surface area con-
nected to the lower arm of the pendulum. This works as
a hydraulic damper that minimizes the high frequency
disturbances of the pendulum. The remaining low fre-
quency components of the background noise cause per-
manent swinging of the pendulum with amplitude about
2 - 3 mm. To avoid any gravitational noises, no per-

FIG. 2: Setup for a resonance measurement of the dynamic
gravity (P = pivot of pendulum; C= mass center of pendulum,
S: iron isolation plate, mp: pendulum masses, ms1,s2: source
masses ).

sons should be present in or near the laboratory during
measurements.

VI. THE RESONANCE MEASURING METHOD

For the purpose of detailed investigation of the dy-
namic gravity we have realized a resonance measure-
ment method [2] using the physical pendulum introduced
above. The experimental setup of our measurement is
shown in FIG. 2.

The two source masses (ms1 = 24 kg, ms2 = 12 kg,)
placed diametrically on a rotating table driven by a small
electromotor. The turntable is made of hard wood in our
particular case, but generally any non-magnetic mate-
rial could be used for this purpose. The turntable and
its driver system are placed on the floor, while the sus-
pension of the pendulum is fixed to the ceiling of the
laboratory. This solution gives a good isolation against
the coupled vibrations of the whole instrument.

The preliminary control tests proved that there was no
measurable mechanical coupling between the turntable
and the pendulum. It has also been shown that the au-
tomatic driver system for the source masses movement
did not affect the pendulum movement. The radius of
the turntable was 0.5 meter; the minimum distance be-
tween the source masses and the pendulum lower mass
was about 0.25 meter.

In our most successful measurement, the period of the
pendulum was about 72 s, and the rotation period of the
turntable was about 4 x 72 s = 288 s. The pendulum
amplitude increased up to 10 mm from the background
noise amplitude (2 - 3 mm). The rotating source masses
produced energy transfer to the pendulum amplitude by
the dynamic gravity effect.
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FIG. 3: A part of gravity measure with resonance method.
The pendulum movement in ”plan view”. The black arrow
shows the direction of the source masses.

VII. THE SIMULATION OF THE DYNAMIC
GRAVITY EXPERIMENT

The motivation of our computer simulation was to
prove the validity of the force law of the experienced dy-
namic gravity. It was supposed that the free pendulum
movement is nearly harmonic, considering the relatively
very small amplitude of its motion. The dynamic grav-
ity effect acts on the pendulum as excitation force. From
the theory of the mechanics, the movement of the pendu-
lum is determined with an inhomogeneous second order
differential equation

ẍ = −ω2x− 2λẋ+ f, (f = F/meff ) . (11)

Here ω is the natural frequency of the pendulum, λ is the
damping factor, F is the acting force to the pendulum,
meff is the effective mass of the pendulum. In opti-
mal circumstances, the pendulum has a sharp resonance
curve and the outer excitation force rigorously affects to
the pendulum with the same pendulum frequency. In
a real situation, these conditions are far from fulfilled.
The pendulum behaves as a broadband radio receiver in
a certain frequency domain. The two rotating source
masses act to the pendulum gravitationally with differ-
ent frequencies. From an approximately periodic part of
measured pendulum movement (FIG. 3.) we calculated
the dominant pendulum frequencies and their intensities
with Fast Fourier Transformation (FFT). In the FFT
calculation, to the natural pendulum period 72 seconds,
the 36 and 18 seconds periods (harmonics) also occurred.
In addition, the 144 and 288 seconds periods mainly dom-
inated in the motion movement, which are from the 288
seconds period of the roundtable. Thus for all five har-
monics has to solve the motion equation of the pendulum,
and then the solutions has to be ”super-positioned” with
appropriate weight factors. To summarize, the following
periods were involved into the computer simulation of the
pendulum motion

Tn ⇒ 288 s, 144 s, 72 s, 36 s, 18 s, (12)

which means that in the movement of the pendulum only
the even harmonics are the major ones. For calculation,
the speed harmonics of the pendulum motion is required

vn = anωn sinωnt;
ωn = 2nω0, ω0 = 2π/288s, n = 0, 1, 2, 3, 4.

(13)

At the first stage of the simulation process, the pendu-
lum amplitude was set for a small value, and after the
periodic excitation the pendulum amplitude was continu-
ously growing, which was feed backed to the input of the
computer program. The reachable maximum amplitude
was limited by the damping factor of the pendulum. The
excitation of the pendulum movement harmonics

ẍn = −ω2
nxn − 2λẋn + fdyn, (n = 0, 1, ...4), (14)

where

fdyn = −Gdyn
meff

(
ps1pp
r21

+
ps2pp
r22

)
. (15)

The given dynamic gravity force density contains the im-
pulses of source masses and pendulum mass, and the
distance-squares between them. The solutions of these
second-order equations

xn(t) =

∫ t

0

e−λt sinωn(t)fdyn(t− τ)dτ, (n = 0, 1, ...4).

(16)
Instead of this convolution integration, Verlet integration
method [3] was chosen to solve these equations.

The pendulum movement is described by the superpo-
sition of the harmonics

x(t) =
∑

cnxn(t) ≈
4∑

n=0

cnxn(t),
∑

cn = 1. (17)

The amplitudes of the harmonics increase in proportion
to the frequency, that is, the power of two, so the super-
position weight factors are the following

cn = 2n/

4∑
k=0

2k, (n = 0, 1, ..4). (18)

FIG. 4 shows the final result of the pendulum movement
simulation.

VIII. ERROR ANALYSIS

The finally realized simulation program of our grav-
ity experiment contains error calculation. The computer
program contains two important parameters; the dy-
namic gravity constant Gdyn and the pendulum damping
factor λ. These parameters depend on each other in the
final result of the simulation program. Our intention was
to determine the dynamic gravity constant with the using
of measured data, so the primary condition was to define
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FIG. 4: The simulation of the dynamic gravity measure cor-
responding to FIG. 3. The calculated pendulum movement
vs. time.

the damping factor of the pendulum. Regrettably, the
damping factor in this experiment cannot be considered
constant. The damping factor of the high swing-period
physical pendulum depends on the actual state of the
wedges providing the pendulum suspension. According
to the experimental tests, the pendulum damping factor
can be determined with a relative precision of 4%

λ = (5.45± 0.22)× 10−4s−1; ∆λ/λ = ±4%. (19)

The relative precision of the sizes of the measuring masses
is about

∆m/m = ±2%. (20)

In the simulation program the interactive masses were
taking account as a point-like objects, having effect for
the Gdyn calculation relative error about 3%. This error
has been represented simply by mass density error

∆ρ/ρ = ±3%. (21)

In addition, the final result of the simulation program is
determined by the continuous distant measures between
the moving masses, having about relative error

∆r/r = ±2%. (22)

Finally, the relative standard deviation of the dynamic
gravity constant Gdyn can be calculated by the Gaussian

error propagation law

σGdyn = 6.7%. (23)

The result of the simulation model for the dynamic grav-
ity constant is

Gdyn = (1.92± 0.13)× 10−2m/kg, (24)

which is considered as the experimental value of Gdyn.

IX. CONCLUSION

Based on the experiments carried out so far and by
theoretical investigation, it can now safely assert that
the strong gravitational effect, i.e. the here described
dynamic gravitational interaction really exists between
the moving objects (masses) in the nature. The condition
for the appearance of dynamic gravity is that the sum
of the impulses of the gravitationally interacting objects
is not constant, which presupposes the effect of time-
depending external force (forces).

The expression of the dynamic gravity force differs sig-
nificantly from the known formula of the Newtonian grav-
ity force. We have shown in both theoretically and exper-
imentally that the dynamic gravity is proportional to the
scalar product of the impulses of the interacting masses.
The dynamic gravitational constant Gdyn (in numerical
value) is the product of the Newtonian constant of grav-
ity multiplied by the speed of light.

The phenomenon of dynamic gravity does not appear
in the ordinary experience as spectacularly as Newtonian
gravity. The simple reason for this is that, in everyday
gravitational phenomena, the big masses being practi-
cally in rest state, dominate the static gravitational fields.

Actually, this newly discovered speed dependent grav-
itational interaction is still unknown in physics and re-
quires further proofs and certifications.

Finally it is important to mention the currently
strongly investigated problem regarding with the dark
energy and dark matter of the Universe [4]. It seems the
dynamic gravity explored in our experiment will help to
solve this complicated problem in the future.
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