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Abstract

The Goldbach conjecture dates back to 1742 ; we refer the reader to [1]-[2] for a
history of the conjecture. Christian Goldbach stated that every odd integer greater
than seven can be written as the sum of at most three prime numbers. Leonhard
Euler then made a stronger conjecture that every even integer greater than four can
be written as the sum of two primes. Since then, no one has been able to prove the
Strong Goldbach Conjecture.
The only best known result so far is that of Chen [3], proving that every su�ciently

large even integer N can be written as the sum of a prime number and the product
of at most two prime numbers. Additionally, the conjecture has been veri�ed to be
true for all even integers up to 4.1018 in 2014 , Jërg [4] and Tomás [5]. In this paper,
we prove that the conjecture is true for all even integers greater than 8.
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Introduction

The Goldbach conjecture asserts that every even integer greater than 4 is equal to
the sum of two primes , for example 10 = 3+7 = 5+5 and 16 = 3+13 = 5+11.
At present there is no proof of this conjecture in sight.
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for every integer positive n we have 2n = (n− k) + (n+ k) ,So let

Sn =
{
k ∈ N : 0 ≤ k ≤ n | n− k ∈ P and n+ k ∈ P

}
In this paper we yield the more detailed proofs of the binary Goldbach's theorem
using only this set Sn .

1 About new set Sn

Corollary 1 Let n be positive integer greater than 4 , and let:

Sm
n =

{
k ∈ N : 0 6 k 6 n | n− k ∈ P

}
(1)

Then for every positive integer n great than 4 we have : Sm
n 6= ∅

PROOF. Let n be positive integer greater than 4 . So if we pose k = n− 2 then
n− k = 2 ∈ P 2

Corollary 2 Let n be positive integer greater than 4 , and let:

SM
n =

{
k ∈ N : 0 6 k 6 n | n+ k ∈ P

}
(2)

Then for every positive integer n great than 4 we have : SM
n 6= ∅

To prove this corollary we need to used Bertrand's postulate

Lemma 3 Bertrand's postulate

for every positive integer n great than 2 there is always at least one prime p such

that n ≺ p ≺ 2n.

PROOF. There are many proofs of Bertrand's postulate ,First proved by Cheby-
shev (1850) and we refer to read Erdos's proof [6] and Ramanujan proof [7] 2

PROOF. Of corollary 2
For every positive integer k between 0 and n we have always n 6 n + k 6 2n,
and from Lemma 3 there is always at least one prime p such that n ≺ p ≺ 2n
So if we pose k = p− n then n+ k = p ∈ P. 2
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Example 4 For n
.
= 40 and n

.
= 29 we have :

Sm
40
.
= {3 9 11 17 21 23 27 29 33 35 37} and SM

40
.
= {1 3 7 13 19 21 27 31 33 39}

Sm
29
.
= {6 10 12 16 18 22 24 26} and SM

29
.
= {2 8 12 14 18 24}

Remark 5 For every integer n � 2 we have :

Sm
2n+1 ⊂ 2N and Sm

2n ⊂ 2N+ 1

SM
2n+1 ⊂ 2N And SM

2n ⊂ 2N+ 1

Proposition 6 Let n be positive integer greater than 4 , and let δm(n) = card
(
Sm
n

)
,

then :

δm(n) = π(n) (3)

with : π(n) =
{
Number of numbers prime less than n

}

PROOF. Let n be positive integer greater than 4 ,then :

δm(n) =
n∑

k=1
n−k∈P

1 =
∑

16p6n
p∈P

1 = π(n) 2

.

Proposition 7 Let n be positive integer greater than 4 , and let δM(n) = card
(
SM
n

)
,

then :

δm(n) = π(2n)− π(n) (4)

with : π(n) =
{
Number of numbers prime less than n

}

PROOF. Let n be positive integer greater than 4 ,then :

δM(n) =
n∑

k=1
n+k∈P

1 =
∑

n6p62n
p∈P

=
∑

06p62n
p∈P

1−
∑

06p6n
p∈P

1 = π(2n)− π(n) 2

.

Theorem 8 (Principal) Let n be positive integer greater than 4 , and let :

Sn =

{
k ∈ N : 0 ≤ k ≤ n | n− k ∈ P and n+ k ∈ P

}
.
= Sm

n

⋂
SM
n (5)

Then for every positive integer n ≥ 4 we have : Sn 6= ∅.
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PROOF. Let n be positive integer greater than 4 , and we put :
Cn =

{
k ∈ N : 0 6 k 6 n | k 6∈ P

}
and Pn =

{
p ∈ N : 0 6 p 6 n | p ∈ P

}
.

Suppose we have that : Sn = ∅ , then : ∀ k ∈ SM
n ⇒ k 6∈ Sm

n

and as ∀ i ∈
{
1, 2, ..., π(2n)− π(n)

}
We have : ki ∈ SM

n =⇒ n+ ki ∈ P i.e n+ ki is an odd number .

since ∀ i ∈
{
1, 2, ..., π(2n)− π(n)

}
we have : 0 6 n− ki 6 n.

So according to the assumed hypothesis we have n− ki ∈ Cn

Now , if n is an even number , then every number n , n− 2,n− 4,...,n− n is the
element of ∈ Cn

if n is an odd number , then every number n− 1,n− 3,...,n− n+ 1 is in Cn

Hence : Card
(
Cn

)
= n

2
+ π(2n)− π(n) ,Since [[0, n]] = Cn ∪ Pn

Then : Card
(
[[1, n]]

)
= Card

(
Cn ∪ Pn

)
⇒ Card

(
Cn

)
+ Card

(
Pn

)
= n+ 1

Finally :
n

2
+ π(2n)− π(n) + π(n) = n+ 1

then 2π(2n)− 2 = n which is absurd .

So ∃ i ∈
{
1, 2, ..., π(2n)− π(n)

}
such that n+ ki ∈ P and n− ki ∈ P.

as a result for any positive integer n � 4, we have SM
n 6= ∅. . 2

2 Proof of Goldbach Conejcture and Sebastian Martin Ruiz Conjec-
ture

Conjecture 9 (GoldBach Conjecture) Let n ∈ N such that n � 3.
Then : ∃ p, q ∈ P such that 2n = p+ q .

PROOF. Let n ∈ N Such that n � 4.
Then from theorem 8 : ∃ k ∈ Sn such that n− k ∈ P et n + k ∈ P . since
n− k + n+ k = 2n .
Then for every positive integer n � 4 they exist two prime numbers p et q such
that :

2n = p+ q with p = n− k and p = n+ k , k ∈ Sn
2

Conjecture 10 (Sebastian Martin Ruiz Conjecture) Let n ∈ N Such that

n � 3.
Then : ∃ k ∈ {1, 2, ..., n− 1} tel que φ(n2 − k2) = (n− 1)2 − k2.
with φ is Euler's totient : φ(n) = Card{k ∈ N : n 6 n/ pgcd(n, k) = 1}
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PROOF. Let n ∈ N Such that n � 4.
Then : ∃ k ∈ Sn 8 such that n− k ∈ P and n+ k ∈ P .
Then : φ((n− k)(n+ k)) = φ(n− k)φ(n+ k) (because gcd(n− k, n+ k) = 1).
Since n−k and n+k are prime numbers, then φ(n−k) = n−k−1 et φ(n+k) =
n+ k − 1.
Then φ((n− k)(n+ k)) = (n− k − 1)(n+ k − 1) = (n− 1)2 − k2 2
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