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Abstract: This paper is the 5th in a series of explorations to see if simple geometric and physical 
interpretations of the quantum-mechanical wavefunction could possibly make sense. It acknowledges 
the usual objections to naïve interpretations head-on, but it also challenges these objections by 
presenting some heuristic arguments on how the basic axioms of quantum mechanics may be subject to 
some interpretation themselves.  

The arguments in this paper are what they are: heuristic. They do, therefore, not provide any 
mathematical proof. This is to be expected, as we are discussing interpretations of the wavefunction 
only: we surely do not want to challenge the math ! Hence, one should not expect formal proofs: 
thought experiments were the initial inspiration for quantum mechanics, and they still play the same 
role in contemporary physics.  

The paper focuses on two of the usual objections to geometric or physical interpretations of the 
wavefunction:  

1. The superposition of wavefunctions is done in the complex space and, hence, the assumption of 
a real-valued envelope for the wavefunction is, therefore, not acceptable.  

2. The wavefunction for spin-1/2 particles cannot represent any real object because of its 720-
degree symmetry in space. Real objects have the same spatial symmetry as space itself, which is 
360 degrees. Hence, physical interpretations of the wavefunction are nonsensical. 

The author hopes that this paper might contribute to a less dogmatic interpretation of the quantum-
mechanical mathematical framework. If anything, the ideas presented in this paper – which is, in 
essence, a detailed discussion on why some visualizations make more sense than others – might 
contribute to a better didactic model for teaching quantum mechanics. 
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Euler’s wavefunction1 
Introduction 
The structural similarities between the classical electromagnetic theory and QED inspires easy geometric 
and physical interpretations of the wavefunction. Here we need to specify what we mean with a physical 
interpretation, because any course in quantum mechanics will state that the interpretation of |(x, t)|2 
as the probability to find a particle at x and t amounts to a physical interpretation. 2 However, a true 
physical interpretation should explain these probabilities in terms of something real (mass or energy 
densities, for example), and that is where these courses leave the student bewildered. Can it be done? 

It looks easy enough. A true physical interpretation will present the real and imaginary part of the 
elementary wavefunction a·ei as real field vectors driven by the same function but with a phase 
difference of 90 degrees: 

a·ei = a·(cos + i·sin) = a·sin(+/2) + i·a·sin 

The visualization below – which shows a propagating circularly polarized electric field – is common but 
triggers many questions. How do we account for the direction of the magnetic moment (or spin) of a 
particle, for example? We analyzed such questions before – and they can be answered. Such answers 
are speculative, of course, but that is not the point: the question is whether a geometric interpretation 
makes sense at all. If we have a geometric interpretation, we have a physical interpretation: all that 
needs to be done is to also associate the real and imaginary part of the wavefunction with some physical 
dimension, say force per unit charge, or force per unit mass. The first interpretation looks at the wave 
packet as an electromagnetic oscillation. The second interpretation looks at the wave packet as a 
gravitational wave (N/kg = m/s2). 

Figure 1: A complex wave?3 

 

                                                           
1 Pun intended. Earlier working titles were Schrödinger’s wavefunction, or Einstein’s wavefunction – to refer to 
their sentiment that the wavefunction must, somehow, represent something real. However, such title would have 
sounded very arrogant. 
2 See, for instance, the MIT OCW courses 8.04 and 8.05. 
3 Credit: https://commons.wikimedia.org/wiki/User:Dave3457. The author only added the wavelength which – in a 
physical interpretation of the wavefunction – can be interpreted as the de Broglie wavelength for a particle. For 
more details, see http://vixra.org/pdf/1709.0390v5.pdf.  
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These models are nice and intuitive, but we should confront them with the basic axioms of quantum 
mechanics. We will discuss some of these below.  

Real or complex amplitudes? 
The term amplitude is ambiguous: it may refer to the maximum amplitude of some real-valued wave or, 
alternatively, to a complex-valued probability amplitude. In the first case, we think of the a in the a·ei 
expression and, hence, it is a coefficient, a scaling factor (think of normalization) or – when building the 
wave packet – a weight.  In the second, the term amplitude refers to the whole a·ei function. The 
question is: in any geometric and/or physical interpretation of the wavefunction we think of a as some 
real-valued number.  

That may be problematic because, in quantum mechanics, we do not exclude linear operations using 
complex-valued coefficients. For example, when using the framework of state vectors, we may write 
something like |X⟩ = α|A⟩ + β|B⟩, and  and  would be complex numbers. We also know that, if 1 
and 2 are solutions to the Schrödinger equation, then 𝛼𝜓ଵ + 𝛽𝜓ଶ will be a solution too. Of course, we 

can always multiply with 1/ and then we get |A⟩ + ஒ


|B⟩ or  𝜓ଵ +

ஒ


𝜓ଶ to get one complex parameter 

only: the β/α ratio, which is equivalent to two real parameters.4  

I am not aware of any formal proof that, by a suitable choice of the base states (or representation as it is 
referred to in quantum mechanics), we can substitute and get real-valued coefficients. However, I do 
note that, in practice, we always end up with wavefunctions with real-valued coefficients. Let me give 
two notable examples here: the solutions to the Schrödinger equation in a potential (the model of the 
hydrogen atom), and the standard representation of the wavefunction as a Fourier sum. 

1. The correct description of the electron orbitals of the hydrogen atom is one of the main feats of 
quantum mechanics, and these descriptions are wavefunctions with real-valued coefficients. Of course, 

the wavefunction for an electron orbital will routinely include a factor like − ଵ

√ଶ
∙ sinθ ∙ 𝑒ம so, yes, there 

is a complex number there5 but note how the complex factor appears: it is just a phase shift. The 
envelope for the oscillation is some real number.  

2. This is also the case for the description of the wave packet in terms of a Fourier sum. We can use 
complex-valued coefficients but, in practice, we use real-valued coefficients. Let us also be explicit here 
so we are all clear on this. The description of a wave packet in space (freezing time) is given by: 

𝜓(𝑥, 0) = න Φ(𝑘)𝑒௫𝑑𝑘
ାஶ

ିஶ

 

                                                           
4 See: Prof. Dr. Barton Zwiebach, Quantum Mechanics, MITx 8.01.1x, Chapter 1, Section 4. A complex number x + iy 
effectively consists of two parts (x and y) and can therefore reflect the (two) degrees of freedom of the physics of 
the situation. The example that is given is that of an elliptically polarized wave, whose shape is determined by the 
ratio of the axes of the ellipse (b/a) and its tilt ().   
5 The formula gives us the angular dependence of the amplitude for the orbital angular momentum number l = 1. 
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The Φ(𝑘) function gives us the weight factors for each of the waves that make up the packet6 and we 
will want to think of Φ(𝑘) as a real-valued function, centered around some value 𝑘 =

బ

ℏ
 and width Δk.7  

Of course, the argument above is heuristic only: it is not a formal proof that we can always find a 
suitable base to ensure real-valued coefficients. However, it should debunk the myth that the 
coefficients in front of wavefunctions are generally complex and that, therefore, we should not try to 
find a physical or geometric interpretation of the wavefunction 

Theoretical spin-zero particles versus real spin-1/2 particles 
It is interesting that, using suitable conventions, we can rewrite Maxwell’s equations using complex 
numbers. Indeed, if we think of the imaginary unit as a unit vector pointing in a direction that is 
perpendicular to the direction of propagation of the wave, we can write the magnetic field vector as B = 
i·E/c.  

Note the minus sign in the B = i·E/c.8 It is there because we need to combine several conventions here. 
Of course, there is the classical physical right-hand rule  for E and B, but we also need to combine the 
right-hand rule for the coordinate system with the convention that multiplication with the imaginary 
unit amounts to a counterclockwise rotation by 90 degrees. Hence, the minus sign is necessary for the 
consistency of the description. It ensures that we can associate the a·ei and a·ei functions with left- 
and right-handed polarization respectively. 

Figure 2: Left- and right-handed polarization9 

 

 

 

It is, therefore, very peculiar that, in quantum mechanics, we do not have such consistency. For 
example, in the MIT’s introductory course on quantum physics10, it is shown that only  = exp(i) = 
exp[i(kxt)] or  = exp(i) = exp[i(kxt)] = exp[i(tkx)] would be acceptable waveforms for a 

                                                           
6 You will usually see a ଵ

√ଶగ
 factor in front of the integral, and it should be there, but we left it out for clarity. 

7 The http://www.thefouriertransform.com/series/complexcoefficients.php site gives examples of Fourier 
transforms of common functions using complex-valued coefficients, but shows that the same results can be 
obtained by using real-valued coefficients. 
8 Boldface letters represent geometric vectors – the electric and magnetic field vectors E and B in this case. 
9 Credit: https://commons.wikimedia.org/wiki/User:Dave3457. 
10 See, for example, the MIT’s edX Course 8.04.1x, Lecture Notes, Chapter 4, Section 3.  
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particle that is propagating in the x-direction – as opposed to, say, some real-valued sinusoid. We would 
then think some proof should follow of why one would be better than the other, or some discussion on 
why they might be different, but that is not the case. The professor happily concludes that “the choice is 
a matter of convention and, happily, most physicists use the same convention.” 

This is very surprising – and that’s an understatement. Why? We know, from experience, that theoretical 
or mathematical possibilities in quantum mechanics often turn out to represent real things. Think of the 
experimental verification of the existence of the positron (or of anti-matter in general) after Dirac had 
predicted its existence based on the mathematical possibility only. So why would that not be the case 
here? Occam’s Razor tells us that we should not have any redundancy in the description. Hence, if there 
is a physical interpretation of the wavefunction, then we should not have to choose between the two 
mathematical possibilities: they would represent two different physical situations. 

What could be different? There is only one candidate here: spin.  

This brings us to what is – without any doubt – the most challenging objection to a physical 
interpretation of the wavefunction: wavefunctions of spin-1/2 particles (which is what we are thinking 
of here) have a weird 720° symmetry.11 Any real object that we can think of has a 360-degree symmetry 
in space. Why? Because space is three-dimensional. 

We can try to solve this contradiction in two ways. The first way is to accept the 720° symmetry and try 
to interpret it by accepting the measurement apparatus and the object establish some absolute space. 
The metaphor here is Dirac’s belt trick. We have written about this before and, hence, we will not 
repeat ourselves here.12 

The second way – much more radical – is to prove that the 720-degree symmetry would reduce to what 
we would expect for anything real in space – i.e. a 360-degree symmetry – when we would, effectively, 
use the two mentioned mathematical possibilities to distinguish between two particles that are identical 
but for their spin. The idea is that we would associate the a·ei and a·ei functions with the quantum-
mechanical equivalent of left- and right-handed polarization respectively. The wavefunction would then 
no longer describe a theoretical spin-zero particle, which should be fine – because we all know spin-zero 
particles don’t exist: real particles (electrons and quarks) have spin-1/2. 

Now, I do not have a mathematical proof that this would solve our problem, but I do have some serious 
questions on the thought experiments that is used to prove the mentioned 720° symmetry.13 In fact, a 
discussion of those questions and issues is the main subject of this paper. However, before we get going 
on this, we should note that the a·ei and a·ei functions are each other’s complex conjugate and, 
therefore, reflect on a possible physical meaning of the complex conjugate. 

                                                           
11 See, for example, Feynman’s Lectures, Vol. III, Chapter 6. 
12 See: Why it is hard to understand – and, therefore, explain – quantum math, 
http://vixra.org/pdf/1806.0183v1.pdf (accessed on 21 October 2018). 
13 We will use the above-mentioned standard reference material here, i.e. Feynman’s Lectures, Vol. III, Chapter 6 
(Spin One-Half). 
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The reality of the complex conjugate of a wavefunction   
The idea of associating the complex conjugate of a wavefunction with a particle that is identical but for 
its (opposite) spin might be outlandish so, let us first explore a simpler idea. When we take the complex 
conjugate of  = exp(i) = exp[i(k·x·t)], we get * = exp(i) = exp[i(k·x+·t)]. Hence, x becomes x 
and t becomes t. Hence, we may say that the complex conjugate of a wavefunction describes whose 
trajectory in space and in time is being reversed. 

It is not merely time symmetry: we are talking reversibility here. It is like playing a movie backwards. We 
may relate this discussion to the Hermiticity of (many) quantum-mechanical operators. An operator A 
that is operating on some state |ψ⟩ will be written as14:  

A|ψ⟩ 

Now, we can then think of some (probability) amplitude that this operation produces some other state 
|ϕ⟩, which we would write as:  

⟨ϕ|A|ψ⟩ 

We can now take the complex conjugate: 

⟨ϕ|A|ψ⟩* = ⟨ψ|A†|ϕ⟩ 

A† is, of course, the conjugate transpose of A – we write: A†ij=(Aji)* – and we will call the operator (and 
the matrix) Hermitian if the conjugate transpose of this operator (or the matrix) gives us the same 
operator matrix, so that is if A† = A. Many quantum-mechanical operators are Hermitian. Because of the 
reversibility condition. Think of the meaning of the complex conjugate as presented above: a reversal of 
both the direction in time as well in space. Hence, what is the meaning of the complex conjugate of 
⟨ϕ|A|ψ⟩? 

The ⟨ϕ|A|ψ⟩ expression gives us the amplitude to  go from some state |ψ⟩ to some other state ⟨ϕ|. 
Conversely, the ⟨ψ|A|ϕ⟩ = ⟨ψ|A†|ϕ⟩ = = ⟨ϕ|A|ψ⟩* expression tells us we were in state |ϕ⟩ but now we 
are in the state ⟨ψ|, and the ⟨ψ|A|ϕ⟩ expression gives us the amplitude for that. Hence, the Hermiticity 
condition amounts to a reversibility condition. 

Here we need to highlight a subtle point. Time has one direction only: we cannot reverse time. We can 
only reverse the direction in space. We can do so by reversing the momentum of a particle. If we do so, 
our k = p/ħ becomes k = p/ħ. However, the energy remains what it is and, hence, nothing happens to 
the ·t = (E/ħ)·t term. Hence, our wavefunction becomes exp[i(k·x·t)], and we can calculate the 
wave velocity as negative: v = /|k| = /k. The wave effectively travels in the opposite direction (i.e. 
the negative x-direction in one-dimensional space). Hence, we can think of opposite directions in space, 
but we can’t reverse time. Why not? 

We don’t need to think of entropy here. Time has one direction only because – if it wouldn’t – we would 
not be able to describe trajectories in spacetime by a well-behaved function. The diagrams below 
illustrate the point. The spacetime trajectory in the diagram on the right is not kosher, because our 
                                                           
14 I should use the hat because the symbol without the hat is reserved for the matrix that does the operation and, 
therefore, A already assumes a representation, i.e. some chosen set of base states. However, let’s skip the niceties 
here.  
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object travels back in time in not less than three sections of the graph. Spacetime trajectories need to be 
described by well-defined function: for every value of t, we should have one, and only one, value of x. 
The reverse is not true, of course: a particle can travel back to where it was. Hence, it is easy to see that 
our concept of time going in one direction, and in one direction only, implies that we should only allow 
well-behaved functions. 

Figure 3: A well- and a not-well behaved trajectory in spacetime 

 

It may be a self-evident point to make but it is an important one. Note that, once again, we have two 
mathematical possibilities to describe a theoretical spin-zero particle that would travel in the negative x-
direction15:  = exp[i(kxt)] or  = exp[i(kx+t)]. 

Again, if we would not agree with the mainstream view that “the choice is a matter of convention” and 
that “happily, most physicists use the same convention”16 but, instead, dare to suggest that the two 
mathematical possibilities represent identical particles with opposite spin (i.e. real spin-1/2 particles as 
opposed to non-existing spin-zero particles), then we get the following table. 

Figure 4: Occam’s Razor: mathematical possibilities versus physical realities 

Spin and direction of travel Spin up (J = +ħ/2) Spin down (J = ħ/2) 

Positive x-direction  = exp[i(kxt)] * = exp[i(kxt)] = exp[i(tkx)] 

Negative x-direction χ = exp[i(kx+t)] = exp[i(tkx)] χ* = exp[i(kx+t)]  

 

Of course, the above formulas only give us the elementary wavefunction. The wave packet will be a 
Fourier sum of such functions. Before we proceed, we should ask ourselves one more question: what is 
the physical meaning of exp(i)? 

Here we do need to think more carefully about the orientation of the plane of the oscillation. The 
illustrations of RHC and LHC waves above assume that plane is perpendicular to the direction of 
propagation, but there are other possibilities. In fact, a physical interpretation of the magnetic moment 
that we associate with the angular momentum or spin would require that plane to contain the direction 
of propagation, as illustrated below. 

                                                           
15 We are not just switching back and forth between one- and three-dimensional wavefunctions here: think of 
choosing the reference frame such that the x-axis coincides with the direction of propagation of the wave.  
16 See, for example, the MIT’s edX Course 8.04.1x, Lecture Notes, Chapter 4, Section 3.  
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Figure 5: Is this the Zitterbewegung in a Stern-Gerlach apparatus? 

 

If this sounds outlandish to the reader, then he or she may want to think of the remarkably simple result 
we get when calculating the angular momentum using the Compton wavelength for the radius a17: 

L = I ∙ ω =
𝑚 ∙ 𝑎ଶ

2

𝑐

𝑎
=
𝑚𝑐

2

ℏ

𝑚𝑐
=
ℏ

2
 

A minus sign in front of our exp(i) function reverses the direction of the oscillation. However, here we 
can use the cos = cos() and sin = sin() formulas to relate exp(i) to the complex conjugate. We 
write: 

 = exp(i) = (cos + i·sin) = cos() + i·sin() = exp(i) = * 

This is a peculiar property that we will exploit in the next development. We should make one final note 
before we get into the meat of the matter. Where would this minus sign come from? We know we can 
always add an arbitrary phase change doesn’t change the physical state: it is just like changing our zero 
point in time. Hence, exp(i) and exp(iα)·exp(i) = exp[i( + α)] should represent the same state. Our 
physical interpretation of the wavefunction does not challenge this at all. However, we should note the 
case of α = ±π, for which we can write: 

exp(±iπ)·exp(i) = exp[i( ± π)] = exp(i) 

We will need this identity soon. 

  

                                                           
17 The ω = c/a formula follows naturally from the same model (see: In Search of Schrödinger’s electron – and 
Einstein’s atom, http://vixra.org/abs/1809.0350, accessed on 21 October 2018). It is equally simple and intuitive as 
all the rest above, but we don’t want to repeat ourselves repeatedly.  
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360° and 720° symmetries: what is real? 
We are all familiar with the topic on hand: the angular dependence of amplitudes. To put it simply, it is 
about rotation matrices. The matter is best illustrated by sticking closely to Feynman’s argument and so 
let us start with the two illustrations presenting the basic geometry of the situation on hand.  

The first illustration shows the rather special Feynman-Stern-Gerlach apparatus (or the modified or 
improved Stern-Gerlach apparatus, as Feynman calls it): the apparatus splits a beam of electrons or 
whatever spin-1/2 particles into two and then brings them together again. We can also block one of the 
two channels to select spin-up or spin-down particles. The y-direction is the direction of propagation and 
the z-direction is the direction along which we are measuring the magnetic momentum (or, what 
amounts to the same, the particle’s angular momentum or spin). The field gradient is, obviously, the 
direction of the inhomogeneous magnetic field that causes our spin-1/2 particles to separate according 
to their magnetic moment (or spin), which is either up or down. Nothing in-between.  

Figure 6: Feynman’s modified (or improved) Stern-Gerlach apparatus 

 

The objective is to find rotation matrices: we want to know how the wavefunction changes if we rotate 
it along the z-axis (the analysis for rotations along the other axes comes later). So that is what’s shown 
below. On the left-hand side, our particles go through two apparatuses who are perfectly aligned (the 
rotation angle is zero). In the right-hand side, we have a rotation angle of 90 degrees (π/2).  

Figure 7: Successive modified Stern-Gerlach apparatuses 
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The amplitudes for the up and down state – as our particle enters the second apparatus – may or may 
not be the same. We know we can no longer define them in terms of the base states that came with the 
first apparatus (S): being up or down with respect to S is not the same thing as being up or down with 
respect to T. We can write, more generally, something like this: 

𝐶′ =𝑅
்ௌ𝐶



 

Of course, we know the probabilities to be up or down are going to be the same, so we should probably 
not write something like C’up = Cup and C’down = Cdown but writing something like |C’up|=|Cup| and 
|C’down|=| Cdown| is plausible. So, the amplitudes differ by a phase factor only. Feynman writes: 

C’up = eiλCup and C’down = eiμCdown 

Again, using the rule that we can always shift the phase of the amplitudes with some arbitrary number, 
we find that μ must be equal to λ, so the equations become: 

C’up = eiλCup and C’down = eiλCdown 

In the special case where the rotation angle is zero (so that’s the left-hand diagram), we have that λ = 0. 
Same representation, same amplitudes. Simple. But, of course, we want to see what λ and  λ are going 
to be when the rotation angle – which we’ll denote by  - is not equal to zero. Feynman starts by making 
a reasonable assumption: λ and  are probably proportional, so let’s try to see where we get by writing: 

λ = m 

Of course, when we rotate the thing by 360 degrees ( = 2π), we are back where we were, so we write:  

C’up = eiλCup = eimCup = eim2πCup = Cup 

C’down = eiλCdown = eimCdown = eim2πCdown  = Cdown 

For these two equalities to hold, m must be 1, right? So, we do have a 360-degree symmetry rather than 
this weird 720-degree symmetry, right? 

Well… No. Not according to Feynman. He constructs a terribly complicated – and, in my view, potentially 
flawed – argument designed to sort of prove that the symmetry must be a 720-degree symmetry or, 
what amounts to the same, to prove that m = ½. The argument is based on a thought experiment that 
imagines a third apparatus U, as shown below. 
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Figure 8: Feynman’s series of apparatus 

 

The argument goes as follows: we have some filter in front of the S apparatus that produces a pure +x 
state. In other words, our particle (think of an electron) is up but, importantly, it’s up along the x-
direction. This orientation has nothing to do with the S and T representations, because these 
apparatuses measure spin along the z-direction. However, the U apparatus does measure spin along the 
x-direction and, hence, Feynman expects the particle to sail through but use one channel only, as 
depicted above. The result is that we still have a particle coming out with its spin up in the x-direction 
(+x). 

What happens in the second set-up? We have the same electrons – with up spin along the x-direction – 
going through and coming out of apparatus S, but then they take a turn, so its wavefunction (that’s what 
an amplitude is) must change. And then the particle goes through T and U, which analyze spin along the 
y-direction with respect to S. So far, so good. So, what can we say about the state of our electron when 
it comes out of U in the set-up on the right-hand side. 

Well… Let us assume that the argument above is correct and that m is equal to 1. Let us now also 
consider a set-up for which the T and U apparatuses are rotated over a 180-degree angle (π). Hence, we 
sort of fold T onto S, so to speak. So, our rotation makes the particle go back in the direction where it 
came from – through the T and U apparatus. Now, if m = 1, then we get: 

C’up = eiλCup = eiπCup = Cup 

C’down = eiλCdown = eiπCdown = Cdown 

According to Feynman, this result cannot be possible. Let us quote him here: 

“This result (C’up = Cup and C’down = Cdown) is just the original state all over again. Both 
amplitudes are just multiplied by −1 which gives back the original physical system. (It is again a 
case of a common phase change.) This means that if the angle between T and S in (b) is 
increased to 180°, the system (with respect to T) would be indistinguishable from the zero-
degree situation, and the particles would again go through the (+) state of the U apparatus. At 
180°, though, the (+) state of the U apparatus is the (−x) state of the original S apparatus. So a 
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(+x) state would become a (−x) state. But we have done nothing to change the original state; the 
answer is wrong. We cannot have m = 1.”18 

This is where our physical interpretation – which, rather than making an arbitrary choice, maps all 
mathematical possibilities to all possible physical situations – differs from the mainstream 
interpretation. The C’up = Cup and C’down = Cdown do represent two different realities – two different 
physical states, that is. Putting a minus sign in front of the wavefunction amounts to taking its complex 
conjugate. Hence, it effectively does reverse the spin direction.  

Of course, the attentive reader will immediately cry wolf. We do have a common phase change here, 
don’t we? Therefore, Feynman must be right and the C’up = Cup and C’down = Cdown  amplitudes must 
represent the same states. The answer is: no. There is no common phase change here. The phase 
change is +π for the up state and π for the down state.  

Q.E.D. Quantum electrodynamics. Quod eram demonstrandum. 

 

Jean Louis Van Belle, 22 October 2018 
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