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Abstract

We look at some of the details of Cantor’s Diagonal Method and
argue that the swap function given does not have to exclude 9 and

0, base 10. We then give a application of Cantor’s Diagonal Method
that shows ζ(2) is irrational.

Introduction

Cantor’s diagonal method is typically used to show the real numbers

are uncountable [1, 2]. Here is the reasoning.
If the reals are countable they can be listed. List their base ten

decimal representations and starting with the upper left hand corner
digit, construct, going down the upper left to lower right diagonal, a

decimal not in the list. Use the following guide: if the decimal is 7
make your decimal 5 and if it is anything other than 7 make it 5. The
number you construct is not in the list and therefore the real numbers

are uncountable.
There are some points (fine print) to this argument. You can’t

use 0 and 9 in the argument. We show here that this is not really
true. This is not to say that there is anything wrong with Cantor’s

Diagonal Method. If one does use 0 and 9 the argument is lengthened.
You might call it less – or more – elegant.

It seems curious that mathematical proofs typically take fast de-
tours around sticking points. Why bother with convoluted reasoning,

if you don’t have to. Reductio ad absurdum proofs seem to be like
this. But in this particular case of Cantor’s Diagonal Method, going
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into the weeds does produce a pertinent generalization. We can show
ζ(n), n a natural number greater than 1, is irrational.

Why not 0 and 9

Note that if one used the guide if 0 change it to 9 and if 9 change it
to 0, one could construct 0. For example,

.3

.04

.005

.0006

.0000x
...

then, as long as x is not 0, we get .0 = 0. If we constructed, using

another list, .0009, this would also be .001, a number in the list – it’s
a real number.

By making the swap with numbers like 5 and 4 or 3 and 7 or any
two that are not 9 and 0, we don’t run into this problem. But, for

the sake of argument are we really assured that these patterns can be
maintained? No that can’t be. A little observation yields that any
list will only be able to maintain some property of decimal position

for a finite number. Any repeated pattern with 9 at position 1, for
example can only work 1/10th of time in the list. Given an nth position

eventually it will have to vary. The infinite number possible can’t be
only at the head of the list.

What about convergence

Cantor’s diagonal method does not address the convergence of the
decimal representation of a real number generated. Could it be all
5’s (.5) and hence converging to a rational number – a number in the

list. A combination of 4’s and 5’s that represent a infinitely repeating
decimal? These observations are of no concern because the argument

is that the number’s representation is not in the list. Statements
beyond this seem irrelevant.

Of course if we suppose that ambiguity of representation is not
allowed: only finite decimal representations are given of numbers like

.5 and .49, then the infinite decimal we construct might be an excluded
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infinite decimal version of a number included in the list. This is when
the use of not 9 and not 0 fix the situation fast. One could do a

reductio ad absurdum argument. Suppose the constructed number
converges to a number in the list, but the number in the list differs by

at least one decimal point. So how close can .5554445454 . . . get to say
.555444454 . . . – they differ at the 7th place. The numbers must differ

by at least .0000001. Another argument: decimal representations are
unique, excluding representations like .59 = .6, but such a situation is

impossible when 9 is not used in the swap function.

Proving ζ(2) is irrational

In Table 1 is a modified Cantor’s Diagonal Table. The symbols Dn2

give single decimal points in base n2. So, for example D4 = {.1, .2, .3}

in base 4. How to read the table: All previous columns (left to right)
pertain to the new, right most partial. For example 1/4 + 1/9 + 1/16
is not in D4, D9, or D16. So, like Cantor’s diagonal method as applied

to a list of base ten decimals, we build, not with a swap function, but
with an addition, a number not in any decimal base given by a single

decimal base n2.

+1/4
+1/9 +1/4 +1/4 +1/4 +1/4 . . . +1/4
/∈ D4 +1/9 +1/9 +1/9 +1/9 . . . +1/9

/∈ D9 +1/16 +1/16 +1/16
...

/∈ D16 +1/25 +1/25
...

/∈ D25 +1/36
...

/∈ D36

+1/(k − 1)2

+1/k2

/∈ Dk2

. . .

Table 1: A list of all rational numbers between 0 and 1 modified to exclude
them all via partial sums of ζ(2) − 1.

If this is true, can we conclude that z2 = ζ(2)−1 must be irrational?
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Note: for any rational 0 < p/q < 1, (pq)/q2 ∈ Dq2. Thus all partials
with a last term of 1/q2 can’t be given with any single decimal base

m2 with m < q. Are we building a infinite series, like the infinite
decimal of Cantor’s original argument, that must be excluded from

the list of all rationals (here-to-for all reals) and thus be irrational?
Does the elimination element of Cantor’s Diagonal Method force an

irrational sum? Like CDM can we ignore the convergence point of the
built infinite series?

Well, to play it safe, can we prove the convergence point is not in
our list? Consider the following use of the triangle inequality: let Cx

be a single decimal rational in some Dm2, the best, meaning closest
to zn in Dm2, then for all n large enough, either

∣

∣

∣

∣

∣

Cx −

n
∑

k=2

1

k2

∣

∣

∣

∣

∣

= 0

or

0 <

∣

∣

∣

∣

∣

Cx −
n

∑

k=2

1

k2

∣

∣

∣

∣

∣

< ε/2.

and

0 <

∣

∣

∣

∣

∣

n
∑

k=2

1

k2
− z2

∣

∣

∣

∣

∣

< ε/2.

So, in all cases,
0 < |Cx − z2| < ε.

But this says z2 is not rational.
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Same technique base 4

In Table 2, the same technique as given for z2 is used to show 1 base

4 is not a finite decimal base 4. We know this, apart from Table 2,
because the geometric series associated with this infinite, repeating

decimal is
∞
∑

k=1

1

4k
=

1

3
.

+1/4 +1/4 +1/4 +1/4 +1/4 . . . +1/4
+1/42 +1/42 +1/42 +1/42 +1/42 . . . +1/42

/∈ D4 +1/43 +1/43 +1/43 +1/43 . . . +1/43

/∈ D42 +1/44 +1/44 +1/44 ...

/∈ D43 +1/45 +1/45 ...

/∈ D44 +1/46 ...
/∈ D45

+1/4(k−1)2

+1/4k2

/∈ D4(k−1)2

. . .

Table 2: A list of all finite decimals base 4. The decimal number .1, base 4
is generated by the sums.

Looking again at Table 1, one can see why the technique shows
that z2 is irrational. In order for the partials to be converging to

a rational, for every ε, there would have to be a rational that all
partials with a given upper limit greater than n gets close to. But

the partials always exceed, with their denominator, all {2, 4, . . . , n2}
denominators. There are denominators further out from any given,

fixed denominator that get consistently closer to such partials. Limits
are unique, so the limit point can’t be both approaching a previous
finite decimal excluded earlier and some other later decimal.
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Evens and Bertrand’s postulate

It remains to show that partials escape the denominators of their

terms: the columns of Table 1. This is the juncture of the argument
where the fact that all numbers (greater than 1, to a power of 2) are

included in the sum of z2. Every other number is even so the power
of 2 in the denominator is always greater than 2 and so the reduced

denominator always has at least 2 in it. For example,

1

4
+

1

9
+

1

16
=

61

144

and
61

144
+

1

25
=

25 × 61 + 1 × 144

144× 25

shows how the pattern continues.
Using Bertrand’s postulate, we know there exists a prime p between

n2/2 and n2.
Putting these two results together,

n
∑

k=2

1

k2
=

a

b
,

where a/b is a reduced fraction with b > n2. This established the set

exclusions in the columns of Table 1 are correct. For details, see [3].

Conclusion

Cantor’s diagonal method applied to show the existence of an irra-

tional number and the proof given here for the irrationality of ζ(2)
can be viewed as the same. The negations of set inclusions in Table

1 show that somewhere the decimal associated with the partial is not
the same as those in each Dk2 set. As the union of all such sets give
all the rationals the irrationality of ζ(2) follows. All decimal bases n2

are replicated, including base 10 – just like Cantor’s original idea.
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