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Abstract: In this work we discuss the topological transformation of quantum dynamics by 

showing the wave dynamics of a quantum particle on different types of topological structures 

in various dimensions from the fundamental polygons of the corresponding universal 

covering spaces. This is not the view from different perspectives of an observer who simply 

uses different coordinate systems to describe the same physical phenomenon but rather 

possible geometric and topological structures that quantum particles are endowed with when 

they are identified with differentiable manifolds that are embedded or immersed in Euclidean 

spaces of higher dimension. A rigorous approach would be a complete formulation of wave 

dynamics on two and three-dimensional geometries that are classified according to the 

uniformisation theorem of Riemannian surfaces and the Thurston geometrisation conjecture 

on three-dimensional differentiable manifolds. However, for the purpose of physical 

illustration, we will follow a modest approach in which we will present our discussions in the 

form of Bohr model in one, two and three dimensions using linear wave equations. In one 

dimension, the fundamental polygon is an interval and the universal covering space is the 

straight line and in this case the standing wave on a finite string is transformed into the 

standing wave on a circle which can be applied into the Bohr model of the hydrogen atom. 

The wave dynamics on a circle can also be described in terms of projective elliptic geometry. 

Since a circle is a 1-sphere which is also a 1-torus therefore the Bohr model of the hydrogen 

atom can also be viewed as a standing wave on a 1-torus. In two dimensions, the fundamental 

polygon is a square and the universal covering space is the plane and in this case the standing 

wave on the square is transformed into the standing wave on different surfaces that can be 

formed by gluing opposite sides of the square, which include a 2-sphere, a 2-torus, a Klein 

bottle and a projective plane. In particular, we show that when the wave dynamics on a 

projective plane is described in terms of projective elliptic geometry then it is identical to the 

wave dynamics on a 2-sphere.  In three dimensions, the fundamental polygon is a cube and 

the universal covering space is the three-dimensional Euclidean space. It is shown that a 3-

torus and the manifold      defined as the product of a Klein bottle and a circle can be 

constructed by gluing opposite faces of a cube therefore in three-dimensions the standing 

wave on a cube is transformed into the standing wave on a 3-torus or on the manifold     . 

We also discuss a transformation of a stationary wave on the fundamental cube into a 

stationary wave on a 3-sphere despite it still remains unknown whether a 3-sphere can be 

constructed directly from a cube by gluing its opposite faces. In spite of this uncertainty, 

however, we speculate that mathematical degeneracy in which an element of a class of 

objects degenerates into an element of a different but simpler class may play an important 

role in quantum dynamics. For example, a 2-sphere is a degenerate 2-torus when the axis of 
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revolution passes through the centre of the generating circle. Therefore, it seems reasonable 

to assume that if an n-torus degenerates into an n-sphere then wavefunctions on an n-torus 

may also be degenerated into wavefunctions on an n-sphere. Furthermore, since an n-sphere 

can degenerate itself into a single point, therefore the mathematical degeneracy may be 

related to the concept of wavefunction collapse in quantum mechanics where the classical 

observables such as position and momentum can only be obtained from the collapse of the 

associated wavefunctions for physical measurements. This consideration suggests that 

quantum particles associated with differentiable manifolds may possess the more stable 

mathematical structures of an n-torus rather than those of an n-sphere. 

 

1. Introductory summary 

In our previous works on spacetime structures of quantum particles we showed that quantum 

particles can be endowed with various geometric and topological structures of differentiable 

manifolds and classified according to the mathematical structures that are determined by the 

wavefunctions that are used to express the geometrical objects associated with the quantum 

particles, such as the Gaussian curvature and the Ricci scalar curvature. We also showed that 

many physical properties associated with quantum particles can be determined only by the 

topological structures rather than the geometric structures, such as angular momentum, 

electric charge and magnetic monopole [1,2]. These physical entities can be classified 

according to topological invariants of the corresponding homotopy groups therefore quantum 

dynamics is also related closely to the topological structures of a quantum particle [3]. By 

viewing quantum particles as differentiable manifolds we also discussed their motion by 

extending the isometric transformations in classical physics to the isometric embedding 

between smooth manifolds [4]. In mathematics and physics, the motion of physical objects in 

an ambient space can be described by geometric transformations under which the properties 

of the configuration of the objects remain unchanged, such as isometric transformations that 

preserve the distance from a configuration space onto itself. In classical dynamics, the motion 

of solid objects can be described by the Poincaré group, which is the non-abelian Lie group 

of Minkowski spacetime isometries [5,6]. If we consider quantum particles as differentiable 

manifolds then we will need to extend the description of the dynamics of quantum particles in 

classical physics as point-particles to the dynamics of particles as differentiable manifolds in 

an ambient space. Furthermore, being viewed as differentiable manifolds, quantum particles 

are assumed to possess internal geometrical and topological structures that in turns possess 

internal symmetries that give rise to intrinsic dynamics. If quantum particles are assumed to 

remain as stable structures then their intrinsic dynamics should be described by smooth 

isometric transformations, which are smooth isometric embeddings into the spatiotemporal 

manifold. The smooth isometric embeddings of differentiable manifolds can also be viewed 

as geometric solitons which are formed by a continuous process of materialising spacetime 

structures rather than the motion of a solid physical object through space with respect to time 

as described in classical physics. However, even though it seems reasonable to apply smooth 

isometric embeddings into quantum dynamics in which quantum particles are assumed to 

possess stable geometric structures, such approach will leave out the role played by the 



topological structures of the differentiable manifolds associated with quantum particles 

during a dynamical evolution. We may suggest that there should be some kind of internal 

mechanism that controls the dynamical evolution of the topological structures of a quantum 

particle responsible for its physical displacement as a differentiable manifold. Such control 

theories should be rigorously formulated in terms of conformal embeddings, conformal 

mappings and immersions in differential geometry and topology. In fact, recent developments 

have shown that unsmooth isometric embeddings can be performed topologically in the sense 

that these isometric embeddings can change the shape of a physical object without changing 

its scale. For example, as will be discussed in details in Section 2, the common 2-torus is 

normally defined as a doughnut-shaped surface embedded in three-dimensional Euclidean 

space   . The 2-torus can be constructed from the fundamental square by identifying 

opposite sides of the square, and the embedding requires the fundamental square to be 

stretched in the third spatial dimension therefore distorts distances. Even so, it is shown that 

isometric embeddings of the square torus into the ambient three-dimensional Euclidean space 

can also be performed by modifying the standard torus using    regularity of isometric 

embeddings to construct    fractal structures from an infinite sequence of waves of 

corrugations [7]. In spite of that, as illustrations, in this work we will only discuss the 

topological transformations of quantum dynamics by showing the wave dynamics of a 

quantum particle on different types of topological structures in various dimensions from the 

fundamental polygons of the corresponding universal covering spaces. We present and 

illustrate our discussions in the form of Bohr model in one, two and three dimensions. It 

should be emphasised that these should not be regarded as the view from the different 

perspectives of an observer who simply uses different coordinate systems to describe the 

same physical phenomenon but possible geometric and topological structures that quantum 

particles are endowed with. 

At the macroscopic scale where physical objects are observable, the shape of a physical 

object depends on the conditions of the environment to which the object belongs. In general, 

physical objects can change their shapes and other physical features to imitate their 

environments during the process of evolutionary adaptations. The evolutionary adaptations 

can be represented in terms of mathematics as processes of geometric and topological 

evolutions. If we adopt the concept of self-similarity from the fractal theory then at the 

microscopic scale within the domain of quantum particles we may assume that quantum 

particles may also have the ability to alter their endowed geometric and topological 

characteristics to adapt to the environments which are assumed to be composed of physical 

fields. These physical fields manifest themselves as forces to determine the mathematical 

structures of quantum particles. We will assume that the topological structures of their 

associated differentiable manifolds also play an important role in determining the physical 

structure of a quantum particle and its quantum dynamics. If quantum particles are formed 

from mass points by contact forces then they may have the ability to change their topological 

structures to adapt the topological structures of the physical system in which they are part of. 

For example, if an electron moves in a straight line with a constant speed then it will keep its 

shape as a particle whose particular geometric and topological structures are stable. However, 

if it is forced to move in a circle, like moving around the nucleus of a hydrogen atom, then it 



can turn into the shape of a closed string which vibrates as a standing wave. At each moment 

of time, the spatial shape of the vibrating string forms a one-dimensional differentiable 

manifold. Therefore, the geometric and topological processes of evolutionary adaption of 

quantum particles will determine whether the dynamics is a classical or quantum dynamics. 

This can be described mathematically as follows. In classical dynamics, the motion of a 

particle with constant speed in a straight line and the motion of an identical particle with 

constant speed in a circle are two different dynamical processes that are formulated 

differently using Newton’s second law of motion           . For the particle that moves 

in a straight line with constant speed   the acceleration is equal to zero therefore the external 

net force acting on it is equal to zero. In this case the position   along the straight line is 

described as        . On the other hand, for the particle which moves in a circle with 

constant speed   the acceleration   is nonzero and is related to the constant speed   of the 

motion as       . However, these two seemingly distinctive classical dynamics are in fact 

the same for the case of the electron moving around the nucleus of the Bohr model of a 

hydrogen atom. To the electron, moving in a circle is also an inertial motion as in the case of 

moving in a straight line as long as the speed is constant. This problem of dual character of 

classical and quantum dynamics is probably due to the fact that quantum particles may 

possess internal geometric and topological structures which may be identified with those of 

differentiable manifolds. It could be possible that physical laws obeyed by quantum particles 

are related more closely to the topological structures of a physical system. For example, as 

will discussed in details later on, even though geometrically the wave dynamics of a quantum 

particle in a circle is distinctively different from that in a straight line, but topologically they 

are equivalent because a circle is formed from the fundamental interval of the straight line, 

which is the universal covering space of the circle. However, in order to give a clearer picture 

of different geometrical and topological methods that are used to formulate physical laws in 

physics we now give examples that show how different identifications of physical entities to 

geometrical objects can lead to different formulations of physical descriptions of the 

dynamics of classical and quantum mechanics. In physics, classical dynamics describes the 

motion of physical objects at the macroscopic scale in which the state of motion of an object 

is determined by the equation of motion which can be derived from the principle of least 

action. For example, consider a particle moving in a plane under the influence of a force. The 

normal acceleration    of the particle can be found as         , where   is the speed of 

the particle and   is the radius of curvature. This result can also be obtained by using the 

variational principle     , where   is defined by                       , 

with   is the momentum of the particle [8]. This result not only reveals an intrinsic 

relationship between geometrical methods and the variational principle in classical mechanics 

but also reaffirms the belief that the principle of least action can also be used to formulate the 

physical laws in a deterministic manner. However, we showed that this is not the case when 

the principle of least action is extended into the domain of quantum mechanics. We showed 

that the identification of the momentum   of a quantum particle with the de Broglie 

wavelength  , which in turns is identified with the curvature   of the path of a particle, i.e. 

      , leads to an interesting feature; namely the action principle      is satisfied not 

only by the stationary path corresponding to the classical motion, but also by any path. In this 



case the Bohr quantum condition possesses a topological character in the sense that the 

principal quantum number   is identified with the winding number, which is used to 

represent the fundamental group of paths [9].  

The dual character of classical and quantum dynamics of quantum particles that possess 

internal geometric and topological structures of differentiable manifolds can also be extended 

to spaces of higher dimensions. In Section 4 we will discuss the topological transformation of 

the two-dimensional wave dynamics in which quantum particles are assumed to be endowed 

with the geometric and topological structures of differentiable manifolds of closed vibrating 

surfaces, such as a 2-sphere, a 2-torus, a Klein bottle, or a hemispherical projective plane. 

These surfaces can be formed from the fundamental squares of the universal covering plane 

by the process of gluing opposite sides of the square. As shown in our works on the principle 

of least action [2,3,9], we can generalise Feynman’s postulate of random path to formulate a 

quantum theory in which the transition amplitude between states of a quantum mechanical 

system is a sum over random surfaces, provided the functional   in the action integral 

       is taken to be proportional to the Gaussian curvature   of a surface. Consider 

classes of surfaces which are described by the higher dimensional homotopy groups. As in 

the case of the fundamental homotopy group of paths, if we choose from among the 

homotopy class a representative spherical surface, in which case we can write      

                          . Also as in Bohr model of the hydrogen atom, we 

may consider a quantum process in which a physical entity transits from one surface to 

another with some radiation-like quantum created in the process. Since this kind of physical 

process can be considered as a transition from one homotopy class to another, the radiation-

like quantum may be the result of a change of the topological structure of the physical 

system, and so it can be regarded as a topological effect. It is also noted that the action 

integral             is identical to Gauss’s law in electrodynamics therefore the constant 

   can be identified with the charge of a particle, which represents the topological structure 

of a physical system and the charge of a physical system must exist in multiples of   . Hence, 

the charge of a physical system may depend on the topological structure of the system and is 

classified by the homotopy group of closed surfaces. We want to mention here that in 

differential geometry the Gaussian curvature   is related to the Ricci scalar curvature   by 

the relation     , and it has been shown that the Ricci scalar curvature can be identified 

with the potential of a physical system, therefore our assumption of the existence of a 

relationship between the Gaussian curvature and the surface density of a physical quantity 

can be justified [1]. Furthermore, by extending Feynman’s method of sum over random 

surfaces to the temporal dynamics in which the magnetic monopole can also be considered as 

a topological structure of the temporal continuum then we can establish a relationship 

between the electric charge    and the magnetic monopole    associated with a quantum 

particle, similar to Dirac relation           [10]. Let    be a 3-dimensional physical 

entity which will be identified with the surface density of a magnetic substance, such as the 

magnetic charge of an elementary particle. We therefore assume that an elementary particle is 

assigned not only with an electric charge    but also a magnetic charge   . We further 

assume that the quantity    is proportional to the temporal Gaussian curvature   . Now, if 



we consider a surface action integral of the form                             

then the constant    can be identified with the magnetic charge of a particle. In particular, 

the magnetic charge    represents the topological structure of a physical system must exist in 

multiples of   . Hence, the magnetic charge of a physical system, such as an elementary 

particle, may depend on the topological structure of the system and is classified by the 

homotopy group of closed surfaces. We now show that it is possible to obtain Dirac 

relationship between the electric charge    and the magnetic charge    by considering a 

spatiotemporal curvature   which is defined as a product of the temporal Gaussian curvature 

   and the spatial Gaussian curvature    as        . The spatiotemporal submanifold 

that gives rise to this form of curvature is homeomorphic to      . If    and    are 

independent from each other then we can write                          

      . If we assume further that       , where   is an undetermined constant, then 

we obtain a general relationship between the electric charge    and the magnetic charge    

as            . In particular, if     ,      and     , or     ,      and 

    , then we recover the relationship obtained by Dirac,          . We can then 

extend our discussions into three dimensions even though we also showed that the entire 

geometric and topological structures of quantum particles are not observable to an observer in 

the three-dimensional Euclidean space    if they are formulated as three-dimensional 

differentiable manifolds embedded or immersed in the four-dimensional Euclidean space    

[11]. Nonetheless, it is shown that different three-dimensional manifolds, such as a 3-torus 

and the     , which is the product of a Klein bottle and a circle, can be formed by gluing 

the opposite faces of the fundamental polygon, which is a three-dimensional cube [12], 

therefore, in Section 5 we will discuss the topological transformation of a three-dimensional 

wave dynamics in which quantum particles are assumed to be endowed with the geometric 

and topological structures of differentiable manifolds of a 3-torus or the     . 

Probably, the most prominent feature that emerges from formulating quantum physics in 

terms of differential geometry and topology is the possibility to express geometric and 

topological structures of quantum particles by using quantum wavefunctions. We showed that 

in one dimension, the geometric structure of a 1D differentiable manifold that is represented 

by the curvature   can be expressed in terms of a wavefunction   as 

                           , and in two dimensions the Ricci scalar curvature   of 

a 2D differentiable manifold can be expressed in terms of a wavefunction   as   

            
        

    
    , where           and       

         . 

However, in three dimensions, despite no direct relationship between the Ricci scalar 

curvature and the wavefunction that describes a manifold has been established, we have 

shown that such relationship can be constructed through physical identifications rather than 

from purely geometrical formulations. For example, we showed that the Ricci scalar 

curvature that describes the geometrical structure of a quantum particle satisfies the three-

dimensional diffusion equation         . Solutions to the diffusion equation can be 

found as                     
 

      
            , which determines the probabilistic 

distribution of an amount of geometrical substance   which manifests as observable matter. 

As shown in appendix 1, if a pseudo-Euclidean metric is defined in the form     



                              , where   is constant, then the quantity  

           can be determined [1]. However, for quantum particles that are endowed with the 

geometric and topological structures of differentiable manifolds, it would be more suitable to 

consider Bianchi manifolds with a metric which has separate scale factors given by the line 

element                 
          

          
    . Spaces with this form of 

metric are homogeneous but not generally isotropic therefore quantum particles with this 

metric will change its volume and shape. The deformation is determined by the shear 

constructed from the scale factors       [13]. On the other hand, we have also shown that the 

Ricci scalar curvature that describes the geometrical structures of a quantum particle can also 

be constructed from Schrödinger wavefunctions in wave mechanics. As shown in appendix 2, 

the relationship between the Schrödinger wavefunction   and the Ricci scalar curvature   

can be established as                
                 

      
           .  

The purpose of this work is to discuss the topological transformation of quantum dynamics 

by showing the wave dynamics of a quantum particle on different types of topological 

structures in various dimensions from the fundamental polygons of the corresponding 

universal covering spaces. Therefore, the topological structures of differentiable manifolds 

that are associated with quantum particles will hold a dominant role in our discussions. This 

in fact is a common feature of natural existence not only at the microscopic scale of quantum 

particles that we assume in this work but also at any scale. A more complete formulation of 

the dynamics of quantum particles would be a wave dynamics on geometries whose 

mathematical structures can be classified according to the uniformisation theorem and 

Thurston geometrisation conjecture. In two dimensions, there are three geometries, which are 

Euclidean   , spherical    and hyperbolic   . In three dimensions, Thurston geometrisation 

conjecture states that every closed three-dimensional manifold can be decomposed into 

submanifolds which can be constructed from eight types of geometric structures, which are 

spherical geometry   , Euclidean geometry   , hyperbolic geometry   , the geometry of 

    , the geometry of     , the geometry of the universal cover of        , Nil 

geometry, and Solv geometry [14,15]. And a rigorous treatment of the wave dynamics on 

these geometries would be geometric wave equations on differentiable manifolds, in 

particular, linear wave equations on Lorentzian manifolds [16]. However, for the purpose of 

physical illustration, we will follow a modest approach in which we will present our 

discussions in the form of Bohr model in one, two and three dimensions using linear wave 

equations. In one dimension, the fundamental polygon is an interval and the universal 

covering space is the straight line and in this case the standing wave on a finite string is 

transformed into the standing wave on a circle which can be applied into the Bohr model of 

the hydrogen atom. The wave dynamics on a circle can also be described in terms of 

projective geometry. Since a circle is a 1-sphere which is also a 1-torus therefore the Bohr 

model of the hydrogen atom can also be viewed as a standing wave on a 1-torus. In two 

dimensions, the fundamental polygon is a square and the universal covering space is the 

plane and in this case the standing wave on the square is transformed into the standing wave 

on different surfaces that can be formed by gluing opposite sides of the square, which include 

a 2-sphere, a 2-torus, a Klein bottle and a projective plane. We will show when the wave 



dynamics on a projective plane is described in terms of projective geometry then it is 

identical to the wave dynamics on a 2-sphere.  In three dimensions, the fundamental polygon 

is a cube and the universal covering space is the three-dimensional Euclidean space. It is 

shown that a 3-torus and the manifold      defined as the product of a Klein bottle and a 

circle can be constructed by gluing opposite faces of a cube therefore in three-dimensions the 

standing wave on a cube is transformed into the standing wave on a 3-torus or on the 

manifold     . We also discuss a transformation of a stationary wave on the fundamental 

cube into a stationary wave on a 3-sphere despite it still remains unknown whether a 3-sphere 

can be constructed directly from a cube by gluing its opposite faces. In spite of this 

uncertainty, however, we speculate that mathematical degeneracy in which an element of a 

class of objects degenerates into an element of a different but simpler class may play an 

important role in quantum dynamics. For example, a 2-sphere is a degenerate 2-torus when 

the axis of revolution passes through the centre of the generating circle. Therefore, it seems 

reasonable to assume that if an n-torus degenerates into an n-sphere then wavefunctions on an 

n-torus may also be degenerated into wavefunctions on an n-sphere. Furthermore, since an n-

sphere can degenerate itself into a single point, therefore the mathematical degeneracy may 

be related to the concept of wavefunction collapse in quantum mechanics where the classical 

observables such as position and momentum can only be obtained from the collapse of the 

associated wavefunctions for physical measurements. This consideration suggests that 

quantum particles associated with differentiable manifolds may possess the more stable 

mathematical structures of an n-torus rather than those of an n-sphere, therefore, also as a 

brief investigation into different methods of embeddings of differentiable manifolds in 

Euclidean spaces, in the next section we will examine the geometric and topological 

structures of the familiar 2-torus and how it can be isometrically embedded in the ambient 

three-dimensional Euclidean space   . 

 

2. On the geometric and topological structures and the isometric embedding of a 2-torus 

In geometry, when a circle revolves about an axis which does not touch the circle in the 

three-dimensional Euclidean space    then it generates the surface of revolution of a 2-torus, 

as shown in the following figure 

 

On the other hand, in topology, a torus can also be defined as the Cartesian product of two 

circles      . The homeomorphism between a ring torus and the Cartesian product of two 

circles leads to an important feature about the embedding of the 2-torus into a higher 

dimensional Euclidean space. Normally, a 2-torus is simply viewed as a doughnut-shaped 

surface embedded in three-dimensional Euclidean space   . However, if a 2-torus is defined 

as the Cartesian product      , called Clifford torus, then since each circle is embedded in 



a two-dimensional Euclidean space    therefore the product space is a four-dimensional 

Euclidean space   . As a consequence, the embedding of the Clifford torus in four-

dimensional Euclidean space    is symmetric and isometric but the embedding of the 2-torus 

in three-dimensional Euclidean space    is asymmetric and non-isometric [17]. The 

difference can be specified by using the Gaussian curvature as follows [18]. In the three-

dimensional Euclidean space   , the parametric equations for a doughnut-shaped torus given 

in terms of the parameters       as                ,                ,        , 

where   is the radius of the tube and   is the radius from the centre of the torus to the centre 

of the tube, and           . The line element can then be found as        

                . From this line element the Gaussian curvature can be found as 

                 . The ring torus corresponds to     and in this case     for the 

outer region of the torus and     for the inner region. On the other hand, the Clifford torus 

is a flat square torus which is isometric to the fundamental square whose opposite sides are 

identified as shown below 

 

The isometric embedding of the Clifford torus in the four-dimensional Euclidean space    

shows that it is flat and obeys the Euclidean geometry. Then it had emerged the interesting 

question whether it is possible to isometrically embed the flat 2-torus in three-dimensional 

Euclidean space   . Remarkably, the Nash embedding theorem in topology states that such 

isometric embedding is possible [19,20,21]. It has also been shown that isometric 

embeddings of the square flat torus into the ambient three-dimensional Euclidean space    

can be performed by modifying the standard torus using    regularity of isometric 

embeddings to construct    fractal structures from an infinite sequence of waves of 

corrugations. By implementing the Convex Integration Theory, it is possible to visualise 

isometric embeddings of a flat torus into the ambient three-dimensional Euclidean space   . 

In general, in order to evaluate the curvature at every point of a surface it is required that the 

surface must be of class   . For the case of the flat 2-torus, since the curvature is vanished at 

every point of the surface therefore it cannot be isometrically embedded with    regularity. 

However, this does not prevent its isometric embeddings into the three-dimensional 

Euclidean space    if the embeddings belong to the class   , and there are infinitely many 

such isometric embeddings [7]. Another important development involving fractals that we 

want to mention here is the study of fractal solutions of linear and nonlinear dispersive partial 

differential equations on the torus, in particular, fractal solutions of linear and nonlinear 

Schrödinger wave equations [22]. Fractal images are visual representations of fractal spaces 

that can also be determined by a system of differential equations that exhibit chaotic 

dynamics [23,24]. However, the purpose of this work is to discuss the topological 

transformation of quantum dynamics of quantum particles therefore in the following we will 

focus only on linear wave equations on different topological structures that can be formed 



from the fundamental polygons of their corresponding universal covering spaces in one, two, 

and three dimensions. 

 

 3. Geometric and topological transformation of Bohr model of the hydrogen atom 

In order to successfully construct a model for the hydrogen atom which predicts correctly the 

spectrum of the energy radiated from the atom, Bohr proposed three postulates which state 

that the centripetal force required for the electron to orbit the nucleus in a stable circle is the 

Coulomb force             , the permissible orbits are those that satisfy the condition 

that the angular momentum of the electron equals   , that is       , and when the 

electron moves in one of the stable orbits it does not radiate, however, it will radiate when it 

makes a transition between the stable orbits [25]. On the other hand, in his work on the 

concept of matter wave, de Broglie proposed that an electron has both a wave and a particle 

nature by regarding the electron as a standing wave around the circumference of an orbit, as 

shown in the following figure [26] 

 

It is seen that de Broglie’s requirement leads to the wave condition       . This is 

equivalent to assuming that the standing wave around a circle, which is a 1-sphere, is similar 

to a standing wave on the fundamental interval of a straight line   which is the universal 

covering space of the circle   , where the translations taking the interval to the next images 

will generate the holonomy group [27]. In mathematics, the circle of radius   is normally 

considered as a 1-sphere defined by the relation                 . In fact, the circle is 

also classified as a 1-torus    which is a topological space equivalent to the quotient space 

   , therefore, when the fundamental polygon of the universal covering space   is 

transformed into a circle we actually also transformed it into a 1-torus   . Since there is no 

difference between the topological structures of the 1-sphere    and the 1-torus   , the 

transformation of quantum dynamics from the fundamental polygon into both of them is the 

same, but as expected, we will show in the next two sections that in higher dimensions this is 

not the case. Consider a standing wave on a string defined in the domain           

that satisfies the wave equation 

 

  
   

   
 
   

   
                                                                                                                                       

with the boundary conditions         ,          and initial conditions            , 

               . The general solution to the wave equation given in Equation (1) can be 

found as [28] 



              
    

 
      

    

 
    

   

 

 

   

                                                                          

where 

   
 

 
     

 

 

   
   

 
                    

 

   
     

 

 

   
   

 
                                                     

Now imagine we convert the finite string into a circle with a radius   where the end points 

    and     are joined so that      . In order to describe a standing wave on the 

circle we first consider a two-dimensional wave equation  

 

  
   

   
 
   

   
 
   

   
                                                                                                                          

 Using the relationship between the polar coordinates       and the Cartesian coordinates 

      defined by the relations         ,        , the two-dimensional wave equation 

given in Equation (4) is rewritten in the form 

 

  
   

   
 
   

   
 
 

 

  

  
 
 

  
   

   
                                                                                                      

Using the method of separation, solutions to the wave equation given in Equation (5) can be 

expressed in the form               , then we obtain 

 

  
 

 

   

   
 
 

 

   

   
 
 

 

 

 

  

  
 
 

  
   

   
                                                                                            

If we consider the wave motion only on the circle of constant radius     then the wave 

equation given in Equation (6) reduces to two separate ordinary differential equations 

   

   
                           

   

   
                                                                                        

Solutions to the equations given in Equation (7) can be found as 

                                                                                                      

Using the conditions        and        , we obtain     and       . Therefore, 

                and the general solutions are given as 

              
   

  
      

   

  
 

 

   

   
  

 
                                                                                  

In fact, the resulting wavefunction        in Equation (9) can be obtained directly from 

Equation (2) by replacing      with the condition      . It is also interesting to note 

that the wavefunction        given in Equation (9) can also be considered as a wavefunction 



on a projective elliptic geometry in which the points of an n-dimensional projective space are 

identified with the lines that go through the origin of the (n+1)-dimensional space and are 

represented by vectors in the (n+1)-dimensional Euclidean space     . The distance between 

two points in a projective space can be defined using the metric that specifies the angle 

between two vectors   and   as                            [29].  

It is also worth mentioning here that if we apply de Broglie wavelength   defined in terms of 

the momentum of a quantum particle      as       , then using the wavelength also 

given by         we obtain           , that leads to the Bohr’s postulate of the 

quantisation of angular momentum       . Then the energy spectrum    can be 

calculated from Coulomb’s law              as  

       
   

 
 
   

 
  

     

     
                                                                                             

where   now is the radius of the nth stationary orbit.  

 

4. Geometric and topological transformation of a two-dimensional wave dynamics 

In this section we will extend the discussion in Section 3 by considering the transformation of 

a standing wave on a fundamental square of the universal covering plane    into a standing 

wave on a 2-dimensional surface which is formed by identifying and gluing the opposite 

edges of the square. This may be seen as an extension of the Bohr model of the hydrogen 

atom from one-dimensional manifolds of the 1-sphere and 1-torus embedded in the ambient 

two-dimensional Euclidean space    into two-dimensional manifolds embedded or immersed 

in the ambient three-dimensional Euclidean space   . As shown in the figure below, different 

types of two-dimensional manifolds can be formed by the process of identifying and gluing 

the opposite pair of the edges a square, including the surfaces of a 2-sphere   , a 2-torus   , 

a Klein bottle   , and a projective plane    [17] 

                                    

                        

                                       

 



Each of the four manifolds has a particular fundamental polygon depending on how the edges 

are identified. However, the universal covering space for all of them is the two-dimensional 

Euclidean space    where the translations taking the square to the next images will also 

generate the holonomy group [27]. As in the case of the Bohr model of the hydrogen atom in 

which the electron is assumed to move in stationary circular orbits, an extended Bohr model 

on surfaces such as a 2-sphere is similar to Schrödinger wave mechanics in spherical 

coordinates therefore a moving electron on the surface of a 2-sphere also does not radiate and 

is described as a standing wave. Therefore we may assume that a standing wave in the 

universal covering space    can also be transformed into a standing wave on one of the four 

curved surfaces that can be formed from the fundamental squares as shown above. Consider 

the standing wave on a square in the domain                 that satisfies the 

two-dimensional wave equation given in Equation (4) with the boundary conditions 

          ,           ,           ,            and initial conditions 

               ,                    . Then the general solution can be found as 

                                  

 

   

 

   

   
   

 
   

   

 
                                        

where                 , and the coefficients     and     are given as 

    
 

  
        

 

 

 

 

   
   

 
   

   

 
                                                                                         

    
 

     
        

 

 

 

 

   
   

 
   

   

 
                                                                            

The standing wave described by the function          given in Equation (11) is restricted to 

the fundamental polygon of the universal covering space   . Following the Bohr model of 

the hydrogen atom in which standing waves on circular orbits are topologically equivalent to 

standing waves on the fundamental interval of the universal covering line, now we consider 

the transformation of a standing wave on the fundamental squares into a standing wave on the 

four corresponding surfaces of a 2-sphere   , a 2-torus   , a Klein bottle    and a projective 

plane   . In order to describe a standing wave on the transformed surfaces from the 

fundamental squares, we consider a three-dimensional wave equation given in Cartesian 

coordinates         of the form 

 

  
   

   
 
   

   
 
   

   
 
   

   
                                                                                                           

First, consider a standing wave on the surface of a 2-torus. In differential geometry, the 

relationship between the Cartesian coordinates         and the toroidal coordinates         

is given as follows [30,31] 

  
          

          
                 

          

          
                   

     

          
                               



where the domains of the toroidal coordinates are given as       ,      , and 

      . From the relations given in Equation (14), it can be shown that surfaces of 

constant      correspond to 2-spheres given by the equation                 
  

         , and surfaces of constant      correspond to 2-tori given by the equation 

                   
 
           . Then in terms of the toroidal coordinates 

       , the three-dimensional wave equation given in Equation (13) can be rewritten as 

 

  
   

   
 
             

       
 
 

  
 

     

          

  

  
  

 

  
 

     

          

  

  
 

 
 

  
 

 

                 

  

  
                                                                      

where       and       are hyperbolic functions. Solutions to Equation (15) can be found by 

separating the variables of the form                                        and 

then dividing the result by                                       . In this case 

Equation (15) reduces to the form 

      

               
   

   
 
 

 
                 

 

 

  

  
       

 

 

   

   
       

 

 

   

   

 
 

 

   

   
                                                                                                                    

If we consider standing waves only on the surfaces of the toroids which are defined by setting 

the variable   equal to a constant,     , then Equation (16) becomes 

      

                
 

 

   

   
 
 

 
                 

 

 

  

  
       

 

 

   

   
 
 

 

   

   

                                                                                                                                      

By separating the functions in Equation (17), we obtain the following system of ordinary 

differential equations 

   

     
                                                                                                                                            

   

   
                                                                                                                                             

   

   
      

  

  
  

  

      
 

  

              
 
 

 
                                                         

It is seen from Equations (18-20) that time-independent geometric structures of the extended 

Bohr model of the hydrogen atom on the surface of a 2-torus can be described by toroidal 

functions. It is also seen from Equation (18) that if the time dependence of the wave equation 

is given of the form          , where     , then the wave equation reduces to the 



Helmholtz equation        . It has been shown that solutions to the Helmholtz equation 

in the toroidal coordinates can be obtained in terms of series representation of the associated 

Legendre function [32,33]. It is also noted that a standing wave on the surface of a 2-sphere 

given by the equation                 
            can also be obtained from 

Equation (16) by setting the variable   equal to a constant,     . However, it is more 

convenient if we follow the common practice using spherical coordinates          which are 

related to the Cartesian coordinates         as            ,            ,        . 

In spherical coordinates          the wave equation given in Equation (13) takes the form 

 

  
   

   
 
   

   
 
 

 

  

  
 

 

      

 

  
     

  

  
  

 

       

   

   
                                             

Solutions to Equation (21) can be found by separating the variables of the form 

                           . However, if we consider the wave dynamics only on the 

surface of constant radius     then the wavefunction can be written in the form 

                      and the wave equation given in Equation (21) reduces to the 

following system of ordinary differential equations 

 

  
   

   
                                                                                                                                          

   

   
                                                                                                                                             

 

    

 

  
     

  

  
        

  

     
                                                                                       

It should be mentioned here that the 2-sphere    with the constant radius     is a spherical 

membrane which is assumed to vibrate therefore the wavefunction            actually 

represents the height of the mass points that form the spherical membrane by contact forces. 

If we let             and      then general solutions can be found as 

                                
 

 

    

          
 

   

                                                   

The combination   
            becomes the spherical harmonics   

       when it is 

normalised. We have shown that a standing wave on the fundamental squares in the universal 

covering space    can be transformed into a standing wave on a 2-torus or a 2-sphere, 

respectively. Now, since the 2-dimensional Euclidean space    is also the universal covering 

space of the Klein bottle    and the projective plane    therefore we can also discuss the 

possibility to transform a standing wave on their fundamental squares into a standing wave on 

either of these surfaces. A transformed wave dynamics can be achieved if parametric 

equations for these two surfaces can be established. For example, the immersion of the Klein 

bottle in the three-dimensional Euclidean space    is given by the implicit equation     



                                                      

 , and the parametric equations for the immersion of the Klein bottle are given as  

        
 

 
        

 

 
                                                                                                    

        
 

 
        

 

 
                                                                                                    

     
 

 
        

 

 
                                                                                                                      

where             and    . The parameter   is the radius of the self-intersecting circle 

in the      -plane, the parameter   gives the angle in the      -plane, and the parameter   

specifies the position of the cross section [34,35]. Using the parametric equations of the Klein 

bottle given in Equations (26-28), the wave equation on the fundamental square can be 

transformed into the wave equation on the surface of the Klein bottle. In general, it is shown 

in differential geometry that if a metric of the form          
     can be established on 

any surface then the Laplacian     of a scalar function   can be written in the form     

                         [36]. Despite the fact that the spherical metric with 

spherical coordinates          is obtained from the line element               

          , and the toroidal metric with toroidal coordinates         is obtained from the 

line element                                          , however, metrics on 

the Klein bottle and the projective plane are problems that are being investigated. For 

example, a metric of revolution    for the first eigenvalue on a Klein bottle can be 

constructed as [37] 

   
             

        
     

   

        
                                                                                

A more complicated metric on a Klein bottle can also be constructed, for example, in the 

work from the reference [38]. Even though there is no particular metric that has been 

established for the surface of the projective plane, we know that it can be represented as the 

set of all straight lines that pass through the origin and has the structure of a compact surface, 

as shown in the following figure [39] 

 

Therefore, if the distance between two points in the projective space that immerses in the 

three-dimensional Euclidean space    can be defined using the metric that specifies the angle 



between two vectors   and   as                            then even though they have 

different geometric natures standing waves on the projective plane can also be described by 

the solutions given in Equation (25) for standing waves on the surface of a 2-sphere. 

 

5. Geometric and topological transformation of a three-dimensional wave dynamics 

In this section we extend further the discussions on the transformations of wave dynamics 

from a standing wave on fundamental cubes to a standing wave on three-dimensional 

manifolds that can be formed from the fundamental cubes by the process of gluing opposite 

surfaces of the cube. This can also be seen as an extension of the Bohr model of the hydrogen 

atom from a one-dimensional manifold embedded in the ambient two-dimensional Euclidean 

space    into three-dimensional manifolds embedded or immersed in four-dimensional 

Euclidean space   . As shown in the figure below, a 3-torus can be constructed by 

identifying the opposite faces of the first cube and the manifold     , which is the product 

of a Klein bottle and a circle, can be constructed according to the second cube [12]. 

 

Now, consider a standing wave in a cube in a region of three-dimensional Euclidean space 

defined by the domain                      . The standing wave is 

assumed to satisfy a three-dimensional wave equation written in the Cartesian coordinates 

        of the form given in Equation (13), with the boundary conditions              on 

the boundary of   and the initial conditions                     ,                

        . Then the general solution can be found as 

                                       

 

   

 

   

   
   

 
   

   

 
   

   

 

 

   

           

where                    , and the coefficients      and      can be found in 

terms of the functions          and          using the orthogonal conditions. However, the 

main problem that we are interested in now is how to transform the standing wave in the 

fundamental cubes into a standing wave on a 3-torus or the manifold     . In order to 

describe the wave dynamics on a hypersurface embedded or immersed in four-dimensional 

Euclidean space    we need a four-dimensional wave equation written in the Cartesian 

coordinates           of the form 

 

  
   

   
 
   

   
 
   

   
 
   

   
 
   

   
                                                                                             



As in the case of two-dimensional surfaces discussed in Section 4, in order to use the wave 

equation given in Equation (31) to describe a wave dynamics on the surface of a 3-torus we 

first need to construct a line element          
     for the 3-torus and then apply the 

Laplacian                             . The parametric equations for a 3-torus 

are given as [40]  

                                                                              

From the parametric equations given in Equation (32), the line element for the 3-torus 

embedded in the ambient four-dimensional Euclidean space    can be found and given as 

                 
 

 
 
 

                                                                                       

From the line element given in Equation (33), in terms of the orthogonal coordinates 

       , the wave equation on the surface of a 3-torus takes the form 

 

  
   

   
 
 

  
 
   

   
   

    

     
 
 

 
    

    
 
  

  
 

 

      
 
  

 

   

   
 

 

     

   

   
 

                                                                                                                                      

It is shown that solutions to the wave equation on 3-torus given in Equation (34) exist and, in 

particular, they can be written as a Fourier decomposition [41]. For the wave dynamics on 

surface of the manifold     , which is the product of a Klein bottle and a circle, we may 

consider a mixed metric which is a combination of a metric on a circle and a metric on a 

Klein bottle. A metric on a circle is found using the line element in polar coordiantes 

              in which the radius is constant,    , therefore, we have          . 

Together with the metric of revolution    for the first eigenvalue on a Klein bottle given in 

Equation (29), we obtain 

       
        

             

        
     

   

        
                                              

where    and    are undetermined constants. 

As a further discussion, we now discuss the transformation of a stationary wave on a cube 

into a stationary wave on a 3-sphere despite it still remains unknown whether a 3-sphere can 

be constructed directly from a cube by gluing its opposite faces. Despite this uncertainty, 

however, as mentioned before, we speculate that mathematical degeneracy in which an 

element of a class of objects degenerates into an element of a different but simpler class may 

play an important role in quantum dynamics therefore if an n-torus degenerates into an n-

sphere then wavefunctions on an n-torus may also be degenerated into wavefunctions on an 

n-sphere. Consider a d-dimensional hypersphere   
  of radius   embedded in the ambient 

     -dimensional Euclidean space     . If spherical coordinates                    



are defined in terms of the Cartesian coordinates                as         ,    

          ,...,                        then the Laplacian  
  
  on the hypersphere   

  is 

given as follows [42] 

 
  
   

 

  
 
   

   
          

  

  
 

 

     
 
    
                                                                     

For the case of a 3-sphere    embedded in four-dimensional Euclidean space   , the wave 

equation given in Equation (36) takes the form 

 

  
   

   
 
 

  
 
   

   
      

  

  
 

 

     
   
                                                                             

where    
  is Laplacian operator on a 2-sphere   . Solutions to Equation (37) can be 

established by separating the variables of the form                                  . 

However, if we only consider the wave on the surface of constant radius     then the wave 

equation given in Equation (37) reduces to the following system of ordinary differential 

equations 

 

  
   

   
                                                                                                                                          

   

   
      

  

  
 

 

     
   
                                                                                            

In particular, for stable quantum particles in which   is time-independent therefore we can 

set    , and in this case the eigenfunctions of    
  are the hyperspherical harmonics 

   
           which are solutions of the equation 

   
    

                     
                                                                                               

It can be shown that    
           are given as [43] 

   
            

      
             

         
               

           
                      

where     
    are the Gegenbauer polynomials and   

  are the 3D spherical harmonics in which 

          ,      , and       . The number of hyperspherical harmonics for a 

given value of   is       .  

 

Appendix 1 

In this appendix, we show in detail the derivation of the equations to determine the metric 

tensor of the line element given as                                   . In 



differential geometry, the Riemann curvature tensor       is defined in terms of the affine 

connection    
 

 as 

      
    

 

   
 
    

 

   
    

    
     

    
                                                                                             

The contraction of the Riemann curvature tensor given in Equation (1) with respect to the 

indices   and   gives the Ricci tensor 

    
    

 

   
 
    

 

   
    

    
     

    
                                                                                                   

In order to formulate the field equations for the gravitational field it is necessary to introduce 

a symmetric metric tensor     in terms of which the affine connection    
 

 is defined as 

   
  

 

 
    

    
   

 
    

   
 
    

   
                                                                                                    

With the line element                                   , we obtain the 

following non-zero components of the affine connection 

   
     

  
 

   

  

  
               

     
  

 

   

  

  
    

     
   

 

   

  

  
                                   

   
  

 

   

  

  
    

  
 

  

  

  
          

   
 

  

  

  
               

   
 

  

  

  
                                    

   
     

  
 

  

  

  
          

     
  

 

  

  

  
         

     
  

 

  

  

  
         

     
  

 

  

  

  
          

   
  

 

   

  

  
             

  
 

  

  

  
           

  
 

  

  

  
              

   
 

  

  

  
                                        

   
  

 

   

  

  
            

   
 

  

  

  
           

   
 

  

  

  
           

  
 

  

  

  
                                        

   
     

  
 

  

  

  
            

     
  

 

  

  

  
                                                                                       

From the components of the affine connection given in Equation (5), we obtain 

    
 

    

   

   
 
 

 

   

   
 
 

  

   

   
 
 

  

   

   
 

 

     
 
  

  
 
 

 
 

  
 
  

  
 
 

 
 

   
 
  

  
 
 

   

 
 

   
 
  

  
 
 

 



    
 

    

   

   
 
 

  

   

   
 
 

 

   

   
 
 

  

   

   
 

 

     
 
  

  
 
 

 
 

   
 
  

  
 
 

 
 

  
 
  

  
 
 

   

 
 

   
 
  

  
 
 

 

    
 

    

   

   
 
 

  

   

   
 
 

  

   

   
 
 

 

   

   
 

 

     
 
  

  
 
 

 
 

   
 
  

  
 
 

 
 

   
 
  

  
 
 

 

 
 

  
 
  

  
 
 

 

     
 

    

   

   
 

 

     
 
  

  
 
 

                                                                                                     

Using the relation           
       

       
      we obtain 

   
 

    

   

   
 
 

  
    

 

   
                                                                                                 

Using the relation                     
 

      
            then we arrive at 

 
 

    

   

   
 
 

  
    

 

   
      

 

       
  

 
        

                                                          

 

Appendix 2 

In this appendix, we show that Schrödinger wavefunctions can be used for the construction of 

spacetime structures of the quantum states of a quantum system. Schrödinger’s original 

works were on the time-independent quantum states of the hydrogen atom, commencing with 

the Hamilton-Jacobi equation, written in terms of the Cartesian coordinates         as  

 
  

  
 
 

  
  

  
 
 

  
  

  
 
 

      
   

 
                                                                                   

However, in order to obtain a partial differential equation that would give rise to the required 

results, Schrödinger introduced a new function  , which is real, single-valued and twice 

differentiable, through the relation        , where the action   is defined by        

and   is the Lagrangian defined by      , with   is the kinetic energy and   is the 

potential energy. In terms of the new function  , Equation (1) takes the form 

 
  

  
 
 

  
  

  
 
 

  
  

  
 
 

 
  

  
   

   

 
                                                                             

Then by applying the principle of least action        , Schrödinger arrived at the 

required equation 



    
  

  
   

   

 
                                                                                                                      

Now we show that Schrödinger wavefunction   can be used to construct the spacetime 

structures of the quantum states of the hydrogen atom. By using the relations        , 
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    and      , we obtain 

             
 

   

            
     

 

   

                                                                             

In terms of the Schrödinger wavefunction  , Equation (4) can be rewritten as 

              
 

   

  
           

      
   

 
                                                                    

From Poisson equation we can assume the relation       then the following relation 

between the Schrödinger wavefunction   and the Ricci scalar   can be established 
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