SEMISTABLE HOLOMORPHIC BUNDLES OVER COMPACT BI-HERMITIAN MANIFOLDS

PAN ZHANG

ABSTRACT. In this paper, by using Uhlenbeck-Yau's continuity method, we prove that the existence of approximation α -Hermitian-Einstein structure and the α -semi-stability on I_{\pm} -holomorphic bundles over compact bi-Hermitian manifolds are equivalent.

1. INTRODUCTION

A bi-Hermitian structure on a 2n-dimensional manifold M consists of a triple (g, I_+, I_-) , where g is a Riemannian metric on M and I_{\pm} are integrable complex structures on M that are both orthogonal with respect to g. Let (M, g, I_+, I_-) be a bi-Hermitian manifold. Let E be a holomorphic vector bundle on M endowed with two holomorphic structures $\bar{\partial}_+$ and $\bar{\partial}_-$ with respect to the complex structures I_+ and I_- , respectively. Suppose H is a Hermitian metric on E. Let F_{\pm}^H be the curvatures of the Chern connections ∇_{\pm}^H on E associated to the Hermitian metric H and the holomorphic structures $\bar{\partial}_{\pm}$. Motivated by Hitchin [16], Hu *et al.* [18] introduced the following α -Hermitian-Einstein equation, where $\alpha \in (0, 1)$ and $\lambda \in \mathbb{R}$:

(1.1)
$$\sqrt{-1}(\alpha F_{+}^{H} \wedge \omega_{+}^{n-1} + (1-\alpha)F_{-}^{H} \wedge \omega_{-}^{n-1}) = (n-1)!\lambda \cdot \mathrm{Id}_{E} \cdot \mathrm{dvol}_{g},$$

where $\omega_{\pm}(\cdot, \cdot) = g(I_{\pm}, \cdot)$ are the fundamental 2-forms of g. Once $I_{+} = I_{-}$, (1.1) reduces to the Hermitian-Einstein equation. A Hermitian metric H on E is called α -Hermitian-Einstein if it satisfies (1.1).

Recently, the existence of Hermitian-Einstein metrics on holomorphic vector bundles has attracted a lot of attention. The celebrated Donaldson-Uhlernbeck-Yau theorem states that holomorphic vector bundles over compact Kähler manifolds admit Hermitian-Einstein metrics if they are polystable. It was proved by Narasimhan and Seshadri [32] for compact Riemann surface, by Donaldson [10] for algebraic manifolds and by Uhlenbeck and Yau [40] for general compact Kähler manifolds. The inverse problem is that a holomorphic bundle admitting such a metric must be polystable (that is a direct sum of stable bundles with the same slope). And the problem was solved by Kobayashi [21] and Lübke [28] independently. This is the so-called Hitchin-Kobayashi correspondence for holomorphic vector bundles over compact Kähler manifolds. There are many interesting generalized Hitchin-Kobayashi correspondences (see the References [1, 2, 3, 4, 6, 15, 17, 18, 20, 23, 24, 25, 26, 31, 33, 42], etc.).

²⁰¹⁰ Mathematics Subject Classification. 53C07; 58E15.

Key words and phrases. I_{\pm} -holomorphic bundle; bi-Hermitian manifold; α -semistability; α -Hermitian-Einstein structure.

PAN ZHANG

An I_{\pm} -holomorphic bundle $(E, \bar{\partial}_+, \bar{\partial}_-)$ over a compact bi-Hermitian manifold (M, g, I_+, I_-) is said to be admitting an approximate α -Hermitian-Einstein structure, if for every $\varepsilon > 0$, there exists a Hermitian metric H_{ε} on E such that

(1.2)
$$\max_{M} |\sqrt{-1}(\alpha F_{+}^{H_{\varepsilon}} \wedge \omega_{+}^{n-1} + (1-\alpha)F_{-}^{H_{\varepsilon}} \wedge \omega_{-}^{n-1}) - (n-1)!\lambda \cdot \mathrm{Id}_{E} \cdot \mathrm{dvol}_{g}|_{H_{\varepsilon}} < \varepsilon.$$

Kobayashi [22] introduced this notion for holomorphic vector bundles (that is, $I_+ = I_-$). He proved that over a compact Kähler manifold, a holomorphic vector bundle admitting such a structure must be semi-stable. Bruzzo and Graña Otero [5] generalized the above result to Higgs bundles. When X is projective, Kobayashi [22] solved the inverse part that a semi-stable holomorphic vector bundle must admit an approximate Hermitian-Einstein structure and conjectured that this should be true for general Kähler manifolds. This was confirmed in [9, 19, 24]. Later, Nie and Zhang [33] proved that the existence of approximation Hermitian-Einstein structure and the semi-stability on Higgs bundles over compact Gauduchon manifolds are equivalent. Just very recently, in [42] Zhang *et al.* showed this is also true for a class of non-compact Gauduchon manifolds.

In this paper, we are interested in the existence of approximate α -Hermitian-Einstein structures on I_{\pm} -holomorphic bundles over compact bi-Hermitian manifolds. In fact, we prove that:

Theorem 1.1. Let (M, g, I_+, I_-) be a compact bi-Hermitian manifold such that g is Gauduchon with respect to both I_+ and I_- , and $dvol_g = \frac{\omega_{\pm}^n}{n!}$. Suppose $(E, \bar{\partial}_+, \bar{\partial}_-)$ is an I_{\pm} -holomorphic bundle on M. Then $(E, \bar{\partial}_+, \bar{\partial}_-)$ is α -semi-stable if and only if it admits an approximate α -Hermitian-Einstein structure.

Remark 1.2. Hu et al. [18] introduced the α -stability on I_{\pm} -holomorphic vector bundles and proved that the I_{\pm} -holomorphic vector bundles admit α -Hermitian-Einstein metrics iff they are α -polystable. We will use Uhlenbeck-Yau's continuity method [40, 29] to prove Theorem 1.1. We can not use the techniques in [18] directly, since the stability condition is not strictly inequality. To fix this, we will adapt Li-Zhang's arguments [24] and Nie-Zhang's arguments [33] to our settings.

Our motivation for studying such bundles also comes from generalized complex geometry. In [13], Gualtieri introduced generalized holomorphic bundles, which are analogues of holomorphic vector bundles on complex manifolds. For instance, on a complex manifold M, a generalized holomorphic bundle corresponds to a co-Higgs bundle, which is a holomorphic vector bundle E on M together with a holomorphic map $\phi : E \to E \otimes T_M$ for which $\phi \wedge \phi = 0$. Some of the general properties of co-Higgs bundles were studied by Hitchin in [16] and moduli spaces of stable co-Higgs bundles were studied in [34, 35, 36, 41], etc. Given the relationship between the generalized complex geometry and the bi-Hermitian geometry, one can study generalized holomorphic bundles in terms of I_{\pm} -holomorphic bundles. Recall that any \mathbb{J} -holomorphic bundle over generalized Kähler manifold $(M, \mathbb{J}, \mathbb{J}')$ induces an I_{\pm} -holomorphic bundle on (M, g, I_{+}, I_{-}) (see [18, Proposition 2.11]). We will not list the definitions on generalized complex geometry (see [13, 18] for more details). Therefore, combining Theorem 1.1, we have the following result.

Corollary 1.3. Let $(M, \mathbb{J}, \mathbb{J}')$ be a compact generalized Kähler manifold with nonempty boundary ∂M whose associated bi-Hermitian structure (g, I_+, I_-) is such that g is Gauduchon with respect to both I_+ and I_- , and $dvol_g = \frac{\omega_{\pm}^n}{n!}$. Moreover, suppose $(E, \bar{\partial}_+, \bar{\partial}_-)$ is a \mathbb{J} -holomorphic bundle on M. Then $(E, \bar{\partial}_+, \bar{\partial}_-)$ is α -semistable if and only if it admits an approximate α -Hermitian-Einstein structure.

Remark 1.4. If M is real 4k-dimensional and the generalized Kähler structure $(\mathbb{J}, \mathbb{J}')$ is even, then its associated bi-Hermitian structure (g, I_+, I_-) is such that $dvol_g = \frac{\omega_{\pm}^n}{n!}$ (see Remark 6.14 in [12]). In this case, one can rewrite (1.2) as

$$\max_{M} |\alpha \sqrt{-1} \Lambda_{+} F_{+}^{H_{\varepsilon}} + (1-\alpha) \sqrt{-1} \Lambda_{-} F_{-}^{H_{\varepsilon}} - \lambda \cdot \mathrm{Id}_{E}|_{H_{\varepsilon}} < \varepsilon,$$

where Λ_{\pm} are the contraction operators associated to ω_{\pm} , respectively.

2. Preliminary

Suppose $(E, \bar{\partial}_+, \bar{\partial}_-)$ is an I_{\pm} -holomorphic bundle on a bi-Hermitian manifold (M, g, I_+, I_-) . Let us fix the I_{\pm} -holomorphic structures $\bar{\partial}_{\pm}$ and a Hermitian metric H_0 on $(E, \bar{\partial}_+, \bar{\partial}_-)$. For any positive-definite Hermitian endomorphism $h \in$ Herm⁺ (E, H_0) , let $H := H_0 h$ be the Hermitian metric defined by

$$\langle s,t\rangle_H := \langle hs,t\rangle_{H_0}$$

for $s, t \in C^{\infty}(E)$. Let $\nabla^{H}_{\pm} = \bar{\partial}_{\pm} + \partial^{H}_{\pm}$ be the corresponding Chern connections. The relation between ∂^{H}_{\pm} and $\partial^{H_{0}}_{\pm}$ is given by

(2.1)
$$\partial_{\pm}^{H} = \partial_{\pm}^{H_0} + h^{-1} \partial_{\pm}^{H_0} h.$$

Then the curvatures with respect to ∇^H_{\pm} and $\nabla^{H_0}_{\pm}$ satisfy

(2.2)
$$F_{\pm}^{H} = F_{\pm}^{H_{0}} + \bar{\partial}_{\pm}(h^{-1}\partial_{\pm}^{H_{0}}h).$$

We assumed that the Riemannian metric g to be Gauduchon with respect to both I_+ and I_- , i.e. $dd_{\pm}^c \omega_{\pm}^{n-1} = 0$, where $d_{\pm}^c = I_{\pm} \circ d \circ I_{\pm}$ are the twisted differentials with respect to I_{\pm} . Then we can associate to E two degrees $\deg_{\pm}(E)$ and two slopes $\mu_{\pm}(E)$ in the standard way [29, Definition 1.4.1]:

$$\deg_{\pm}(E) = \frac{\sqrt{-1}}{2\pi} \int_M \operatorname{tr}(F_{\pm}^H) \wedge \frac{\omega_{\pm}^{n-1}}{(n-1)!}$$

and

$$\mu_{\pm}(E) = \frac{\deg_{\pm}(E)}{\operatorname{rank}(E)}.$$

Note that $\deg_{\pm}(E)$ are independent of the choice of H on E because the curvatures of Chern connections corresponding to different Hermitian metrics on E differ by $\partial_{\pm}\bar{\partial}_{\pm}$ -exact forms. Given these degrees and slopes, we now define the α -degree $\deg_{\alpha}(E)$ and α -slope $\mu_{\alpha}(E)$ as [18, Definition 3.3]:

$$\deg_{\alpha}(E) = \alpha \deg_{+}(E) + (1 - \alpha) \deg_{-}(E)$$

and

$$\mu_{\alpha}(E) = \alpha \mu_{+}(E) + (1 - \alpha) \mu_{-}(E),$$

respectively.

Furthermore, we define coherent subsheaves of $(E, \bar{\partial}_+, \bar{\partial}_-)$ as follows:

Definition 2.1. [18, Definition 3.4] Let \mathcal{F}_{\pm} be coherent subsheaves of $(E, \bar{\partial}_{\pm})$, respectively. The pair $\mathcal{F} := (\mathcal{F}_+, \mathcal{F}_-)$ is said to be a coherent subsheaf of $(E, \bar{\partial}_+, \bar{\partial}_-)$ if there exist analytic subsets S_+ and S_- of (M, I_+) and (M, I_-) , respectively, such that

 $(1)S := S_+ \cup S_-$ has codimension at least 2;

 $(2)\mathcal{F}_{\pm}|_{M\setminus S_{\pm}}$ are locally free and $\mathcal{F}_{+}|_{M\setminus S} = F_{-}|_{M\setminus S}$.

The α -slope of \mathcal{F} is given by

$$\mu_{\alpha}(\mathcal{F}) := \alpha \frac{\deg_{+}(\mathcal{F}_{+})}{\operatorname{rank}(\mathcal{F})} + (1 - \alpha) \frac{\deg_{-}(\mathcal{F}_{-})}{\operatorname{rank}(\mathcal{F})}.$$

Let us now recall the α -stability for $(E, \bar{\partial}_+, \bar{\partial}_-)$.

Definition 2.2. [18, Definition 3.5] An I_{\pm} -holomorphic structure $(\bar{\partial}_+, \bar{\partial}_-)$ on E is called α -stable (resp., α -semistable), if, for any proper coherent subsheaf \mathcal{F} of $(E, \bar{\partial}_+, \bar{\partial}_+)$, we have

$$\mu_{\alpha}(\mathcal{F}) < \mu_{\alpha}(E)(\text{resp.}, \mu_{\alpha}(\mathcal{F}) \le \mu_{\alpha}(E)).$$

By using Uhlenbeck-Yau's continuity method [40], we will show that the α -semistability implies approximation α -Hermitian-Einstein structure. Set

$$\operatorname{Herm}(E,H) = \{\eta \in \operatorname{End}(E) | \eta^{*H} = \eta\}$$

and

$$\operatorname{Herm}^+(E,H) = \{\rho \in \operatorname{Herm}(E,H) | \rho \text{ is positive definite} \}$$

Fixing a proper background Hermitian metric H_0 on E, we consider the following perturbed equation

(2.3)
$$L_{\varepsilon}(h_{\varepsilon}) := \Phi(H_{\varepsilon}) + \varepsilon \log h_{\varepsilon} = 0, \quad \varepsilon \in (0, 1],$$

where

$$\Phi(H_{\varepsilon}) = \alpha \sqrt{-1}\Lambda_{+}F_{+}^{H_{\varepsilon}} + (1-\alpha)\sqrt{-1}\Lambda_{-}F_{-}^{H_{\varepsilon}} - \lambda \cdot \mathrm{Id}_{E}$$

and $h_{\varepsilon} = H_0^{-1} H_{\varepsilon} \in \text{Herm}^+(E, H_0)$. It is obvious that h_{ε} and $\log h_{\varepsilon}$ are self adjoint with respect to H_0 and H_{ε} . By the results in [18], (2.3) is solvable for all $\varepsilon \in (0, 1]$. Using the assumption of α -semi-stability, we can show that

(2.4)
$$\lim_{\varepsilon \to 0} \varepsilon \max_{M} |\log h_{\varepsilon}|_{H_0} = 0.$$

This implies that $\max_{M} |\Phi(H_{\varepsilon})|_{H_{\varepsilon}}$ converges to zero as $\varepsilon \to 0$.

By an appropriate conformal change, we can assume that H_0 satisfies

$$\operatorname{tr}(\Phi(H_0)) = 0.$$

In fact, let $H_0 = e^{\varphi} H_0'$, where H_0' is an arbitrary metric and φ is a smooth function satisfying

(2.5)
$$\Delta_{\bar{\partial},\alpha}\varphi = -\frac{1}{\operatorname{rank}(E)}\operatorname{tr}(\Phi(H'_0)),$$

where

$$\Delta_{\bar{\partial},\alpha} := \alpha \Delta_{\bar{\partial}_+} + (1-\alpha) \Delta_{\bar{\partial}_-},$$

and

$$\Delta_{\bar{\partial}_{\pm}} := \sqrt{-1}\Lambda_{\pm}\bar{\partial}_{\pm}\partial_{\pm}$$

Since $\int_M \operatorname{tr}(\Phi(H'_0))\omega^n = 0$, equation (2.5) is solvable by [29, Corollary 1.2.9].

Fix a background Hermitian metric H_0 satisfying $tr(\Phi(H_0)) = 0$. From (2.3), we have

$$\begin{split} 0 =& \operatorname{tr} L_{\varepsilon}(h_{\varepsilon}) \\ =& \operatorname{tr} \Phi(H_0) + \operatorname{tr} \left(\alpha \sqrt{-1} \Lambda_+ \overline{\partial}_+ (h_{\varepsilon}^{-1} \partial_+^{H_0} h_{\varepsilon}) \right) \\ &+ \operatorname{tr} \left((1-\alpha) \sqrt{-1} \Lambda_- \overline{\partial}_- (h_{\varepsilon}^{-1} \partial_-^{H_0} h_{\varepsilon}) \right) + \varepsilon \operatorname{tr}(\log h_{\varepsilon}) \\ =& \Delta_{\bar{\partial}, \alpha}(\operatorname{tr} \log h_{\varepsilon}) + \varepsilon \operatorname{tr}(\log h_{\varepsilon}). \end{split}$$

Using the maximum principle, we have

$$\det h_{\varepsilon} = 1.$$

The following lemma was proved in [18].

Lemma 2.3. If $h_{\varepsilon} \in \text{Herm}^+(E, H_0)$ satisfies $L_{\varepsilon}(h_{\varepsilon}) = 0$ for some $\varepsilon > 0$, then it holds that

- $\begin{array}{ll} \text{(i)} & \frac{1}{2}\Delta_{\bar{\partial},\alpha}\left(|\log h_{\varepsilon}|^{2}_{H_{0}}\right) + \varepsilon |\log h_{\varepsilon}|^{2}_{H_{0}} \leq |\Phi(H_{0})|_{H_{0}}|\log h_{\varepsilon}|_{H_{0}};\\ \text{(ii)} & m = \max_{M}|\log h_{\varepsilon}|_{H_{0}} \leq \frac{1}{\varepsilon} \cdot \max_{M} |\Phi(H_{0})|_{H_{0}};\\ \text{(iii)} & m \leq C \cdot (||\log h_{\varepsilon}||_{L^{2}} + \max_{M} |\Phi(H_{0})|_{H_{0}}), \text{ where } C \text{ only depends on } g \text{ and } \\ \end{array}$ H_0 .

3. Proof of Theorem 1.1

Before giving the detailed proof, we first recall some notations. Fixing $\eta \in$ Herm (E, H), from [29, p. 237], we can choose an open dense subset $W \subseteq X$ satis fying at each $x \in W$ there exist an open neighbourhood U of x, a local unitary basis $\{e_a\}_{a=1}^r$ with respect to H and functions $\{\lambda_a \in C^{\infty}(U, \mathbb{R})\}_{a=1}^r$ such that

$$\eta(y) = \sum_{a=1}^{r} \lambda_a(y) \cdot e_a(y) \otimes e^a(y)$$

for all $y \in U$, where $\{e^a\}_{a=1}^r$ denotes the dual basis of E^* . Let $\varphi \in C^{\infty}(\mathbb{R}, \mathbb{R})$, $\Psi \in C^{\infty}(\mathbb{R} \times \mathbb{R}, \mathbb{R})$ and $A = \sum_{a,b=1}^r A_b^a e_a \otimes e^b \in \operatorname{End}(E)$, here we also assume $\operatorname{rank}(E) = r$. We denote $\varphi(\eta)$ and $\Psi(\eta)(A)$ by

$$\varphi(\eta)(y) = \sum_{a=1}^{r} \varphi(\lambda_a) e_a \otimes e^a$$

and

(3.1)
$$\Psi(\eta)(A)(y) = \Psi(\lambda_a, \lambda_b) A_b^a e_a \otimes e^b.$$

Proposition 3.1. If $h_{\varepsilon} \in \text{Herm}^+(E, H_0)$ solves (2.3) for some $\varepsilon > 0$, then it holds

(3.2)
$$\int_{M} \operatorname{tr}(\Phi(H_{0})s_{\varepsilon})\frac{\omega_{\pm}^{n}}{n!} + \alpha \int_{M} \langle \Psi(s_{\varepsilon})(\bar{\partial}_{+}s_{\varepsilon}), \bar{\partial}_{+}s_{\varepsilon} \rangle_{H_{0}} \frac{\omega_{\pm}^{n}}{n!} + (1-\alpha) \int_{M} \langle \Psi(s)(\bar{\partial}_{-}s_{\varepsilon}), \bar{\partial}_{-}s_{\varepsilon} \rangle_{H_{0}} \frac{\omega_{\pm}^{n}}{n!} = -\varepsilon \|s_{\varepsilon}\|_{L^{2}}^{2},$$

where $s_{\varepsilon} = \log h_{\varepsilon}$ and

$$\Psi(x,y) = \begin{cases} \frac{e^{y-x}-1}{y-x}, & x \neq y;\\ 1, & x = y. \end{cases}$$

Proof. By simple calculations,

$$(3.3) \int_{M} \left(\operatorname{tr}(\Phi(H_{\varepsilon})s_{\varepsilon}) - \operatorname{tr}(\Phi(H_{0})s_{\varepsilon}) \right) \\ = \int_{M} \left(\alpha \langle \sqrt{-1}\Lambda_{+}\bar{\partial}_{+}(h_{\varepsilon}^{-1}\partial_{+}^{H_{0}}h_{\varepsilon}), s_{\varepsilon} \rangle_{H_{0}} + (1-\alpha) \langle \sqrt{-1}\Lambda_{-}\bar{\partial}_{-}(h_{\varepsilon}^{-1}\partial_{-}^{H_{0}}h_{\varepsilon}), s_{\varepsilon} \rangle_{H_{0}} \right).$$

According to [33, Proposition 3.1], we have

(3.4)
$$\int_{M} \langle \sqrt{-1}\Lambda_{\pm}\bar{\partial}_{\pm}(h_{\varepsilon}^{-1}\partial_{\pm}^{H_{0}}h_{\varepsilon}), s_{\varepsilon} \rangle_{H_{0}} = \int_{M} \langle \Psi(s_{\varepsilon})(\bar{\partial}_{\pm}s_{\varepsilon}), \bar{\partial}_{\pm}s_{\varepsilon} \rangle_{H_{0}}.$$

Combining (3.3) and (3.4), we complete the proof.

We first prove the following.

Theorem 3.2. If $(E, \overline{\partial}_+, \overline{\partial}_-)$ is α -semi-stable, then it admits an approximate α -Hermitian-Einstein structure.

Proof. Let $\{h_{\varepsilon}\}_{0 < \varepsilon \le 1}$ be the solutions of equation (2.3) with the background metric H_0 . Then

$$\|\log h_{\varepsilon}\|_{L^{2}}^{2} = -\frac{1}{\varepsilon} \int_{M} \langle \Phi(H_{\varepsilon}), \log h_{\varepsilon} \rangle_{H_{\varepsilon}} \frac{\omega_{\pm}^{n}}{n!}.$$

Case 1, There exists a constant $C_1 > 0$ such that $\|\log h_{\varepsilon}\|_{L^2} < C_1 < +\infty$. From Lemma 2.3, we have

$$\max_{M} |\Phi(H_{\varepsilon})|_{H_{\varepsilon}} = \varepsilon \cdot \max_{M} |\log h_{\varepsilon}|_{H_{\varepsilon}} < \varepsilon C \cdot (C_{1} + \max_{M} |\Phi(H_{0})|_{H_{0}})$$

Then it follows that $\max_{M} |\Phi(H_{\varepsilon})|_{H_{\varepsilon}} \to 0$ as $\varepsilon \to 0$.

Case 2, $\overline{\lim_{\epsilon \to 0}} \|\log h_{\epsilon}\|_{L^2} \to \infty.$

Claim If $(E, \overline{\partial}_+, \overline{\partial}_-)$ is α -semi-stable, then it holds

(3.5)
$$\lim_{\varepsilon \to 0} \max_{M} |\Phi(H_{\varepsilon})|_{H_{\varepsilon}} = \lim_{\varepsilon \to 0} \varepsilon \max_{M} |\log h_{\varepsilon}|_{H_{\varepsilon}} = 0.$$

We will follow Simpson's argument ([37, Proposition 5.3]) to show that if the claim does not hold, there exists a subsheaf contradicting the α -semi-stability.

If the claim does not hold, then there exist $\delta > 0$ and a subsequence $\varepsilon_i \to 0, i \to +\infty$, such that

$$\|\log h_{\varepsilon_i}\|_{L^2} \to +\infty$$

and

(3.6)
$$\max_{M} |\Phi(H_{\varepsilon_i})|_{H_{\varepsilon_i}} = \varepsilon_i \max_{M} |\log h_{\varepsilon_i}|_{H_{\varepsilon_i}} \ge \delta.$$

Setting $s_{\varepsilon_i} = \log h_{\varepsilon_i}$, $l_i = \|s_{\varepsilon_i}\|_{L^2}$ and $u_{\varepsilon_i} = s_{\varepsilon_i}/l_i$, it follows that $\operatorname{tr}(u_{\varepsilon_i}) = 0$ and $\|u_{\varepsilon_i}\|_{L^2} = 1$. Then combining (3.6) with Lemma 2.3, we have

(3.7)
$$l_i \ge \frac{\delta}{C\varepsilon_i} - \max_M |\Phi(H_0)|_{H_0}$$

and

(3.8)
$$\max_{M} |u_{\varepsilon_i}| \le \frac{C}{l_i} (l_i + \max_{M} |\Phi(H_0)|_{H_0}) < C_2 < +\infty$$

Step 1 We will show that $||u_{\varepsilon_i}||_{L_1^2}$ are uniformly bounded. Since $||u_{\varepsilon_i}||_{L^2} = 1$, we only need to prove $||du_{\varepsilon_i}||_{L^2}$ are uniformly bounded.

By Proposition 3.1, for each h_{ε_i} , it holds

(3.9)
$$\int_{M} \operatorname{tr} \{ \Phi(H_{0}) u_{\varepsilon_{i}} \} \frac{\omega_{\pm}^{n}}{n!} + \alpha l_{i} \int_{M} \langle \Psi(l_{i} u_{\varepsilon_{i}}) (\bar{\partial}_{+} u_{\varepsilon_{i}}), \bar{\partial}_{+} u_{\varepsilon_{i}} \rangle_{H_{0}} \frac{\omega_{\pm}^{n}}{n!}$$
$$+ (1 - \alpha) l_{i} \int_{M} \langle \Psi(l_{i} u_{\varepsilon_{i}}) (\bar{\partial}_{-} u_{\varepsilon_{i}}), \bar{\partial}_{-} u_{\varepsilon_{i}} \rangle_{H_{0}} \frac{\omega_{\pm}^{n}}{n!} = -\varepsilon_{i} l_{i}$$

Substituting (3.7) into (3.9), we have

$$(3.10) \qquad \frac{\delta}{C} + \int_{M} \operatorname{tr} \{ \Phi(H_{0}) u_{\varepsilon_{i}} \} \frac{\omega_{\pm}^{n}}{n!} + \alpha l_{i} \int_{M} \langle \Psi(l_{i} u_{\varepsilon_{i}}) (\bar{\partial}_{+} u_{\varepsilon_{i}}), \bar{\partial}_{+} u_{\varepsilon_{i}} \rangle_{H_{0}} \frac{\omega_{\pm}^{n}}{n!} \\ + (1 - \alpha) l_{i} \int_{M} \langle \Psi(l_{i} u_{\varepsilon_{i}}) (\bar{\partial}_{-} u_{\varepsilon_{i}}), \bar{\partial}_{-} u_{\varepsilon_{i}} \rangle_{H_{0}} \frac{\omega_{\pm}^{n}}{n!} \leq \varepsilon_{i} \max_{M} |\Phi(H_{0})|_{H_{0}},$$

Consider the function

$$d\Psi(lx, ly) = \begin{cases} l, & x = y; \\ \frac{e^{l(y-x)} - 1}{y-x}, & x \neq y. \end{cases}$$

From (3.8), we may assume that $(x, y) \in [-C_2, C_2] \times [-C_2, C_2]$. It is easy to check that

(3.11)
$$l\Psi(lx,ly) \longrightarrow \begin{cases} (x-y)^{-1}, & x > y; \\ +\infty, & x \le y, \end{cases}$$

increases monotonically as $l \to +\infty$. Let $\zeta \in C^{\infty}(\mathbb{R} \times \mathbb{R}, \mathbb{R}^+)$ satisfying $\zeta(x, y) < (x - y)^{-1}$ whenever x > y. From (3.10), (3.11) and the arguments in [37, Lemma 5.4], we have

(3.12)
$$\frac{\delta}{C} + \int_{M} \operatorname{tr}\{\Phi(H_{0})u_{\varepsilon_{i}}\}\frac{\omega_{\pm}^{n}}{n!} + \alpha \int_{M} \langle \zeta(u_{\varepsilon_{i}})(\bar{\partial}_{+}u_{\varepsilon_{i}}), \bar{\partial}_{+}u_{\varepsilon_{i}} \rangle_{H_{0}}\frac{\omega_{\pm}^{n}}{n!} + (1-\alpha) \int_{M} \langle \zeta(u_{\varepsilon_{i}})(\bar{\partial}_{-}u_{\varepsilon_{i}}), \bar{\partial}_{-}u_{\varepsilon_{i}} \rangle_{H_{0}}\frac{\omega_{\pm}^{n}}{n!} \leq \varepsilon_{i} \max_{M} |\Phi(H_{0})|_{H_{0}}$$

for $i \gg 0$. In particular, we take $\zeta(x, y) = \frac{1}{3C_2}$. It is obvious that when $(x, y) \in [-C_2, C_2] \times [-C_2, C_2]$ and x > y, $\frac{1}{3C_2} < \frac{1}{x-y}$. This implies that

$$(3.13) \quad \frac{\delta}{C} + \int_{M} \operatorname{tr}\{\Phi(H_{0})u_{\varepsilon_{i}}\}\frac{\omega_{\pm}^{n}}{n!} + \int_{M} \frac{1}{3C_{2}}(\alpha|\bar{\partial}_{+}u_{\varepsilon_{i}}|_{H_{0}}^{2} + (1-\alpha)|\bar{\partial}_{-}u_{\varepsilon_{i}}|_{H_{0}}^{2})\frac{\omega_{\pm}^{n}}{n!} \\ \leq \varepsilon_{i} \max_{M} |\Phi(H_{0})|_{H_{0}}$$

for $i \gg 0$. Then we have

$$\int_{M} (\alpha |\bar{\partial}_{+} u_{\varepsilon_{i}}|_{H_{0}}^{2} + (1-\alpha) |\bar{\partial}_{-} u_{\varepsilon_{i}}|_{H_{0}}^{2}) \frac{\omega_{\pm}^{n}}{n!} \leq 3C_{2}^{2} \max_{M} |\Phi(H_{0})|_{H_{0}} \operatorname{Vol}(M,g).$$

Thus, u_{ε_i} are bounded in L_1^2 . Then we can choose a subsequence $\{u_{\varepsilon_{i_j}}\}$ such that $u_{\varepsilon_{i_j}} \rightharpoonup u_{\infty}$ weakly in L_1^2 , still denoted by $\{u_{\varepsilon_i}\}$ for simplicity. Noting that $L_1^2 \hookrightarrow L^2$, we have

$$1 = \int_M |u_{\varepsilon_i}|_{H_0}^2 \to \int_M |u_\infty|_{H_0}^2.$$

This indicates that $||u_{\infty}||_{L^2} = 1$ and u_{∞} is non-trivial.

Using (3.12) and following a similar discussion as in [37, Lemma 5.4], it holds

(3.14)
$$\frac{\delta}{C} + \int_{M} \operatorname{tr} \{ \Phi(H_{0})u_{\infty} \} \frac{\omega_{\pm}^{n}}{n!} + \alpha \int_{M} \langle \zeta(u_{\infty})(\bar{\partial}_{+}u_{\infty}), \bar{\partial}_{+}u_{\infty} \rangle_{H_{0}} \frac{\omega_{\pm}^{n}}{n!} + (1-\alpha) \int_{M} \langle \zeta(u_{\infty})(\bar{\partial}_{-}u_{\infty}), \bar{\partial}_{-}u_{\infty} \rangle_{H_{0}} \frac{\omega_{\pm}^{n}}{n!} \leq 0.$$

Step 2 Using Uhlenbeck and Yau's trick from [40], we construct a subsheaf which contradicts the α -semi-stability of E.

From (3.14) and the technique in [37, Lemma 5.5], we conclude that the eigenvalues of u_{∞} are constant almost everywhere. Let $\mu_1 < \mu_2 < \cdots < \mu_l$ be the distinct eigenvalues of u_{∞} . The facts that $\operatorname{tr}(u_{\infty}) = \operatorname{tr}(u_{\varepsilon_i}) = 0$ and $||u_{\infty}||_{L^2} = 1$ force $2 \leq l \leq r$. For each μ_j $(1 \leq j \leq l-1)$, we construct a function

$$P_i:\mathbb{R}\longrightarrow\mathbb{R}$$

such that

$$P_j = \begin{cases} 1, & x \le \mu_j, \\ 0, & x \ge \mu_{j+1}. \end{cases}$$

Setting $\pi_j = P_j(u_\infty)$, from [18], we have

(i) $\pi_j \in L_1^2$; (ii) $\pi_j^2 = \pi_j = \pi_j^{*H_0}$; (iii) $(\text{Id}_E - \pi_j)\overline{\partial}_{\pm}\pi_j = 0$.

By Uhlenbeck and Yau's regularity statement of L_1^2 -subbundle [40], $\{\pi_j\}_{j=1}^{l-1}$ determine l-1 subsheaves of E. Set $E_j = \pi_j(E)$. Since $\operatorname{tr}(u_\infty) = 0$ and $u_\infty = \mu_l \cdot \operatorname{Id}_E - \sum_{j=1}^{l-1} (\mu_{j+1} - \mu_j) \pi_j$, it holds

(3.15)
$$\mu_l \operatorname{rank}(E) = \sum_{j=1}^{l-1} (\mu_{j+1} - \mu_j) \operatorname{rank}(E_j).$$

Construct

$$\nu = \mu_l \deg_{\alpha}(E) - \sum_{j=1}^{l-1} (\mu_{j+1} - \mu_j) \deg_{\alpha}(E_j).$$

On one hand, substituting (3.15) into ν ,

(3.16)
$$\nu = \sum_{\alpha=1}^{l-1} (\mu_{j+1} - \mu_j) \operatorname{rank}(E_j) \left(\frac{\deg_{\alpha}(E)}{\operatorname{rank}(E)} - \frac{\deg_{\alpha}(E_j)}{\operatorname{rank}(E_j)} \right).$$

On the other hand, from [18], we have the following Chern-Weil formula

(3.17)
$$\deg_{\alpha}(E_j) = \frac{1}{2\pi} \int_M \left(\operatorname{tr}(\pi_j \mathcal{K}(H_0)) - \alpha |\bar{\partial}_+ \pi_j|_{H_0}^2 - (1-\alpha) |\bar{\partial}_+ \pi_j|_{H_0}^2 \right) \frac{\omega^n}{n!},$$

where
$$\mathcal{K}(H_0) = \alpha \sqrt{-1} \Lambda_+ F_+^{H_0} + (1-\alpha) \sqrt{-1} \Lambda_- F_-^{H_0}$$
. Substituting (3.17) into ν
 $2\pi\nu = \mu_l \int_M \operatorname{tr}(\mathcal{K}_{H_0})$
 $-\sum_{j=1}^{l-1} (\mu_{j+1} - \mu_j) \left\{ \int_M \operatorname{tr}(\pi_j \mathcal{K}_{H_0}) - \int_M \left(\alpha |\bar{\partial}_+ \pi_j|^2_{H_0} + (1-\alpha) |\bar{\partial}_+ \pi_j|^2_{H_0} \right) \right\}$
 $= \int_M \operatorname{tr}\left(\mu_l \operatorname{Id}_E - \sum_{j=1}^{l-1} (\mu_{j+1} - \mu_j) \pi_j \right) \mathcal{K}_{H_0}$
 $+ \sum_{j=1}^{l-1} (\mu_{j+1} - \mu_j) \int_M \left(\alpha |\bar{\partial}_+ \pi_j|^2_{H_0} + (1-\alpha) |\bar{\partial}_+ \pi_j|^2_{H_0} \right)$
 $= \int_M \operatorname{tr}(u_\infty \mathcal{K}_{H_0}) + \int_M \alpha \left\{ \sum_{\alpha=1}^{l-1} (\mu_{j+1} - \mu_j) (\mathrm{d}P_j)^2 (u_\infty) (\bar{\partial}_+ u_\infty), \bar{\partial}_+ u_\infty \right\}_{H_0}$
 $+ \int_M (1-\alpha) \left\{ \sum_{\alpha=1}^{l-1} (\mu_{j+1} - \mu_j) (\mathrm{d}P_j)^2 (u_\infty) (\bar{\partial}_- u_\infty), \bar{\partial}_- u_\infty \right\}_{H_0}$

where the function $dP_j : \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ is defined by

$$dP_j(x,y) = \begin{cases} \frac{P_j(x) - P_j(y)}{x - y}, & x \neq y; \\ P'_j(x), & x = y. \end{cases}$$

By simple calculation, if $\mu_a \neq \mu_b$,

(3.18)
$$\sum_{j=1}^{l-1} (\mu_{j+1} - \mu_j) (\mathrm{d}P_j)^2 (\mu_a, \mu_b) = |\mu_a - \mu_b|^{-1}.$$

Since $tr(u_{\infty}) = 0$, by (3.14) and the same arguments in [24, p. 793-794], it holds that

$$(3.19) 2\pi\nu \le -\frac{\delta}{C}.$$

Combining (3.16) with (3.19), we have

$$\sum_{j=1}^{l-1} (\mu_{j+1} - \mu_j) \operatorname{rank}(E_j) \left(\frac{\deg_{\alpha}(E)}{\operatorname{rank}(E)} - \frac{\deg_{\alpha}(E_j)}{\operatorname{rank}(E_j)} \right) < 0,$$

which contradicts the α -semi-stability of E.

Theorem 3.3. If $(E, \overline{\partial}_+, \overline{\partial}_-)$ admits an approximate α -Hermitian-Einstein structure, then it is α -semi-stable.

Proof. Let \mathcal{F} be any saturated subsheaf with rank p. Then by [22, p. 119], $\wedge^p E \otimes \det \mathcal{F}^{-1}$ admits an approximation α -Hermitian-Einstein structure with the constant

(3.20)
$$\lambda = \frac{2p\pi}{\operatorname{Vol}(M)}(\mu_{\alpha}(E) - \mu_{\alpha}(\mathcal{F})).$$

The injective map $\det(\mathcal{F}) \to \wedge^p E$ induced by the inclusion $\mathcal{F} \hookrightarrow E$, defines a section of $\wedge^p E \otimes \det \mathcal{F}^{-1}$, say *s*. By construction, *s* is an I_{\pm} -holomorphic section with respect to the induced I_{\pm} -holomorphic structures. By the vanishing theorem

PAN ZHANG

[18, Theorem 5.4], we have $\lambda \geq 0$. This together with (3.20) gives $\mu_{\alpha}(\mathcal{F}) \leq \mu_{\alpha}(E)$, i.e. $(E, \bar{\partial}_{+}, \bar{\partial}_{-})$ is α -semi-stable.

References

- L. Alvarez-Consul, O. Garcis-Prada, Hitchin-Kobayashi correspondence, quivers, and vortices. Commun Math Phys, 2003, 238: 1-33.
- [2] O. Biquard, On parabolic bundles over a complex surface. J London Math Soc, 1996, 53: 302-316.
- [3] I. Biswas, G. Schumacher, Yang-Mills equation for stable Higgs sheaves. Inter J Math, 2009, 20: 541-556.
- [4] S. B. Bradlow, Vortices in holomorphic line bundles over closed Kähler manifolds. Commun Math Phys, 1990, 135: 1-17.
- [5] U. Bruzzo, B. Graña Otero, Metrics on semistable and numerically effective Higgs bundles. J Reine Angew Math, 2007, 612: 59-79.
- [6] U. Bruzzo, B. Graña Otero, Approximate Hermitian-Yang-Mills structures on semistable principal Higgs bundles. Annals of Global Analysis and Geometry, 2015, 47(1): 1-11.
- [7] N. P. Buchdahl, Hermitian-Einstein connections and stable vector bundles over compact complex surfaces. Math Ann, 1988, **280**: 625-648.
- [8] P. De Bartolomeis, G. Tian, Stability of complex vector bundles. J Differ Geom, 1996, 43: 231-275.
- S. A. H. Cardona, Approximate Hermitian-Yang-Mills structures and semistability for Higgs bundles. I: generalities and the one-dimensional case. Annals of Global Analysis and Geometry, 2012, 42: 349-370.
- [10] S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles. Proc London Math Soc, 1985, 3: 1-26, 1985.
- [11] S. K. Donaldson, Boundary value problems for Yang-Mills fields. J Geom Phys, 1992, 8, 89-122.
- [12] M. Gualtieri, Generalized complex geometry, DPhil thesis, University of Oxford, 2004
- [13] M. Gualtieri, Generalized complex geometry, Ann Math, 2011, 174, 75-123.
- [14] R. S. Hamilton, Harmonic maps of manifolds with boundary, Vol 471, Springer, 2006.
- [15] N. J. Hitchin, The self-duality equations on a Riemann surface. Proc London Math Soc, 1987, 3, 59-126, 1987.
- [16] N. J. Hitchin, Generalized holomorphic bundles and the *B*-field action, J Geom Phys, 2011, 61, 352-362.
- [17] M. C. Hong, Heat flow for the Yang-Mills-Higgs field and the Hermitian Yang-Mills-Higgs metric, Annals of Global Analysis and Geometry, 2001, 20, 23-46.
- [18] S. Hu, R. Moraru, R. Seyyedali, A Kobayashi-Hitchin correspondence for I_{\pm} -holomorphic bundles, Advances in Mathematics, 2016, **287**, 519-566.
- [19] A. Jacob, Existence of approximate Hermitian-Einstein structures on semi-stable bundles. Asian Journal of Mathematics, 2014, 18: 859-883.
- [20] A. Jacob, T. Walpuski, Hermitian Yang-Mills metrics on reflexive sheaves over asymptotically cylindrical Kähler manifolds, arXiv:1603.07702, 2016.
- [21] S. Kobayashi, Curvature and stability of vector bundles. Proc Jpn Acad Ser A, 1982, 58: 158-162.
- [22] S. Kobayashi, Differential geometry of complex vector bundles. Publications of the Mathematical Society of Japan, 15, Princeton University Press, Princeton, NJ, 1987.
- [23] J. Li, S. T. Yau, Hermitian-Yang-Mills connection on non-Kähler manifolds. In: Mathematical Aspects of String Theory, pp. 560-573. World Scientific, New York, 1987.
- [24] J. Y. Li, X. Zhang, Existence of approximate Hermitian-Einstein structures on semi-stable Higgs bundles. Calc Var, 2015, 52: 783-795.
- [25] J. Y. Li, C. Zhang, X. Zhang, Semi-stable Higgs sheaves and Bogomolov type inequality. Calc Var, 2017, 56: 1-33.
- [26] J. Y. Li, C. Zhang, X. Zhang, The limit of the Hermitian-Yang-Mills flow on reflexive sheaves. Adv Math, 2018, 325: 165-214.
- [27] J. Y. Li, C. Zhang, X. Zhang, A note on curvature estimate of the Hermitian-Yang-Mills flow. Commun Math Stat, 2018, 6: 319-358.

10

- [28] M. Lübke, Stability of Einstein-Hermitian vector bundles. Manuscr Math, 1983, 42: 245-257.
- [29] M. Lübke and A. Teleman, The Kobayashi-Hitchin correspondence. World Scientific Publishing, 1995.
- [30] M. Lübke and A. Teleman, The universal Kobayashi-Hitchin correspondence on Hermitian manifolds. Memoirs of the American Mathematical Society, 183(863), 2006.
- [31] T. Mochizuki, Kobayashi-Hitchin correspondence for tame harmonic bundles and an application. Astérisque, 309, Soc. Math. France, Paris, 2006.
- [32] M. S. Narasimhan, C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface. Ann Math, 1965, 82, 540-567.
- [33] Y. Nie, X. Zhang, Semistable Higgs bundles over compact Gauduchon manifolds. J Geom Anal, 2018, 28: 627-642.
- [34] S. Rayan, Geometry of co-Higgs bundles, DPhil thesis, Oxford University, 2011.
- [35] S. Rayan, Co-Higgs bundles on \mathbb{P}^1 New York J Math, 2013, **19**: 925-945
- [36] S. Rayan, Constructing co-Higgs bundles on CP², Quarterly Journal of Mathematics, 2014, 65: 1437-1460.
- [37] C. T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization. J Amer Math Soc, 1988, 1: 867-918.
- [38] Y. T. Siu, Lectures on Hermitian-Einstei metrics for stable bundles and Kähler-Einstein metrics: delivered at the German Mathematical Society Seminar in Düsseldorf in June, 1986, Vol 8, Birkhäuser, 2012.
- [39] M. E. Taylor, Partial differential equations I (Applied Mathematical Sciences), Vol 115. Springer New York, 2011.
- [40] K. Uhlenbeck, S. T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles. Commun Pure Appl Math, 1986, 39S: S257-S293.
- [41] A. Vicente Colmenares, Semistable rank 2 co-Higgs bundles over Hirzebruch surfaces, PhD thesis, University of Waterloo, 2015.
- [42] C. Zhang, P. Zhang, and X. Zhang, Higgs bundles over non-compact Gauduchon manifolds. arXiv:1804.08994, 2018.

SCHOOL OF MATHEMATICS, SUN YAT-SEN UNIVERSITY, GUANGZHOU 510275, P.R. CHINA *E-mail address*: zhangpan5@mail.sysu.edu.cn