DIRICHLET PROBLEM FOR HERMITIAN-EINSTEIN EQUATIONS OVER BI-HERMITIAN MANIFOLDS

PAN ZHANG

ABSTRACT. In this paper, we solve the Dirichlet problem for α -Hermitian-Einstein equations on I_{\pm} -holomorphic bundles over bi-Hermitian manifolds. As a corollary, we obtain an analogue result about generalized holomorphic bundles on generalized Kähler manifolds.

1. INTRODUCTION

A bi-Hermitian structure on a 2n-dimensional manifold M consists of a triple (g, I_+, I_-) , where g is a Riemannian metric on M and I_{\pm} are integrable complex structures on M that are both orthogonal with respect to g. Let (M, g, I_+, I_-) be a bi-Hermitian manifold. Let E be a holomorphic vector bundle on M endowed with two holomorphic structures $\bar{\partial}_+$ and $\bar{\partial}_-$ with respect to the complex structures I_+ and I_- , respectively. Suppose H ia a Hermitian metric on E. Let F_{\pm}^H be the curvatures of the Chern connections ∇_{\pm}^H on E associated to the Hermitian metric H and the holomorphic structures $\bar{\partial}_{\pm}$. Motivated by Hitchin [14], Hu *et al.* [16] introduced the following α -Hermitian-Einstein equation, where $\alpha \in (0, 1)$ and $\lambda \in \mathbb{R}$:

(1.1)
$$\sqrt{-1}(\alpha F_+^H \wedge \omega_+^{n-1} + (1-\alpha)F_-^H \wedge \omega_-^{n-1}) = (n-1)!\lambda \cdot \mathrm{Id}_E \cdot \mathrm{vol}_g,$$

where $\omega_{\pm}(\cdot, \cdot) = g(I_{\pm}, \cdot)$ are the fundamental 2-forms of g. Once $I_{+} = I_{-}$, (1.1) reduces to the Hermitian-Einstein equation. A Hermitian metric H on E is called α -Hermitian-Einstein if it satisfies (1.1).

Recently, the existence of Hermitian-Einstein metrics on holomorphic vector bundles has attracted a lot of attention. The celebrated Donaldson-Uhlernbeck-Yau theorem states that holomorphic vector bundles over compact Kähler manifolds admit Hermitian-Einstein metrics if they are polystable. It was proved by Narasimhan and Seshadri [26] for compact Riemann surface, by Donaldson [8] for algebraic manifolds and by Uhlenbeck and Yau [34] for general compact Kähler manifolds. There are many interesting generalized Donaldson-Uhlernbeck-Yau theorem (see the References [1, 2, 3, 4, 13, 15, 16, 17, 18, 19, 20, 21, 25, 27, 36], etc.). It is natural to hope that geometric results dealing with closed manifolds will extend to yield interesting information for manifolds with boundary. In [9], Donaldson solved the Dirichlet problem for Hermitian-Einstein equations over compact Kähler manifolds with non-empty boundary. Zhang [37] generalized Donaldson's result to the general Hermitian manifolds. Later, Li and Zhang [23] solved the Dirichlet problem for a class of vortex equations, which generalize the well-known Hermitian-Einstein

²⁰¹⁰ Mathematics Subject Classification. 53C07; 58E15.

Key words and phrases. I_{\pm} -holomorphic bundle; bi-Hermitian manifold; α -Hermitian-Einstein metric; Dirichlet problem equations.

equations. At the same time, Zhang [38] also solved the Dirichlet problem for Hermitian Yang-Mills-Higgs equations for holomorphic vector bundles on compact Kähler manifolds.

Just very recently, Hu *et al.* [16] proved that the I_{\pm} -holomorphic vector bundles admit α -Hermitian-Einstein metrics iff they are α -polystable, for any $\alpha \in (0, 1)$. In this paper, we want to consider the Dirichlet boundary value problem for α -Hermitian-Einstein equations. We obtain the following theorem.

Theorem 1.1. Let (M, g, I_+, I_-) be a compact bi-Hermitian manifold with nonempty boundary ∂M such that $\operatorname{vol}_g = \frac{\omega_{\pm}^n}{n!}$. Suppose $(E, \bar{\partial}_+, \bar{\partial}_-)$ is an I_{\pm} -holomorphic bundle on M. Then for any Hermitian metric φ on the restriction of E to ∂M , there is a unique α -Hermitian-Einstein metric H on E such that $H = \varphi$ on ∂M .

Remark 1.2. In Theorem 1.1, we assume the bi-Hermitian manifold (M, g, I_+, I_-) satisfying vol_g = $\frac{\omega_{\pm}^n}{n!}$. The existence of such manifold can be found in Remark 6.14 in [10]. In this case, one can rewrite (1.1) as

$$\alpha \sqrt{-1}\Lambda_+ F_+^H + (1-\alpha)\sqrt{-1}\Lambda_- F_-^H - \lambda \cdot \mathrm{Id}_E = 0,$$

where Λ_{\pm} are the contraction operators associated to ω_{\pm} , respectively.

Our motivation for studying such bundles also comes from generalized complex geometry. In [11], Gualtieri introduced generalized holomorphic bundles, which are analogues of holomorphic vector bundles on complex manifolds. For instance, on a complex manifold M, generalized holomorphic bundles correspond to co-Higgs bundles, which is a holomorphic vector bundle E on M together with a holomorphic map $\phi : E \to E \otimes T_M$ for which $\phi \wedge \phi = 0$. Some of the general properties of co-Higgs bundles were studied by Hitchin in [14] and moduli spaces of stable co-Higgs bundles were studied in [28, 29, 30, 35], etc. Given the relationship between the generalized complex geometry and the bi-Hermitian geometry, one can study generalized holomorphic bundles in terms of I_{\pm} -holomorphic bundles. Recall that any \mathbb{J} -holomorphic bundle over generalized Kähler manifold $(M, \mathbb{J}, \mathbb{J}')$ induces an I_{\pm} -holomorphic bundle on (M, g, I_{+}, I_{-}) (see [16, Proposition 2.11]). We will not list the definitions on generalized complex geometry (see [11, 16] for more details). Therefore, combining Theorem 1.1, we have the following result.

Corollary 1.3. Let $(M, \mathbb{J}, \mathbb{J}')$ be a compact generalized Kähler manifold with nonempty boundary ∂M whose associated bi-Hermitian structure (g, I_+, I_-) is such that $\operatorname{vol}_g = \frac{\omega_{\pm}^n}{n!}$. Moreover, suppose $(E, \bar{\partial}_+, \bar{\partial}_-)$ is a \mathbb{J} -holomorphic bundle on M. Then for any Hermitian metric φ on the restriction of E to ∂M , there is a unique α -Hermitian-Einstein metric H on E such that $H = \varphi$ on ∂M .

This paper is organized as follows. In Section 2, we will introduce the α -Hermitian-Einstein flow on bi-Hermitian manifolds. And some elementary calculations will be presented. In Section 3, we prove the long-time existence of the α -Hermitian-Einstein flow over a compact bi-Hermitian manifold. At last, we deal with convergence of the α -Hermitian-Einstein flow over a compact bi-Hermitian manifold with boundary, that is we complete the proof of Theorem 1.1.

2. Preliminary results

Suppose $(E, \bar{\partial}_+, \bar{\partial}_+)$ is an I_{\pm} -holomorphic bundle on a bi-Hermitian manifold (M, g, I_+, I_-) . Let us fix the I_{\pm} -holomorphic structures $\bar{\partial}_{\pm}$ and a Hermitian metric H_0 on $(E, \bar{\partial}_+, \bar{\partial}_+)$. For any positive-definite Hermitian endomorphism $h \in$ Herm⁺ (E, H_0) , let $H := H_0 h$ be the Hermitian metric defined by

$$\langle s,t\rangle_H := \langle hs,t\rangle_{H_0},$$

for $s, t \in C^{\infty}(E)$. Let $\nabla^{H}_{\pm} = \bar{\partial}_{\pm} + \partial^{H}_{\pm}$ be the corresponding Chern connections. The relation between ∂^{H}_{\pm} and $\partial^{H_{0}}_{\pm}$ is given by

(2.1)
$$\partial^H_{\pm} = \partial^{H_0}_{\pm} + h^{-1} \partial^{H_0}_{\pm} h$$

Then the curvatures with respect to ∇^{H}_{\pm} and $\nabla^{H_{0}}_{\pm}$ satisfy

(2.2)
$$F_{\pm}^{H} = F_{\pm}^{H_{0}} + \bar{\partial}_{\pm}(h^{-1}\partial_{\pm}^{H_{0}}h).$$

We turn to a family of Hermitian metrics H(t) on E with an initial metric $H(0) = H_0$. We will follow the classical heat flow method to deduce the existence of α -Hermitian-Einstein metric. Actually, we introduce the following α -Hermitian-Einstein flow

(2.3)
$$H^{-1}\frac{\partial}{\partial t}H = -\left(\alpha\sqrt{-1}\Lambda_{+}F_{+}^{H} + (1-\alpha)\sqrt{-1}\Lambda_{-}F_{-}^{H} - \lambda\cdot\operatorname{Id}_{E}\right).$$

If $I_+ = I_-$, (2.3) is the Hermitian-Einstein flow considered in [8, 9]. By taking a local holomorphic basis e_{α} $(1 \le \alpha \le r)$ on bundle E and local complex coordinates $\{z^i\}_{i=1}^m$ on M, the α -Hermitian-Einstein flow (2.3) can be written as following:

(2.4)
$$\frac{\partial H}{\partial t} = -\alpha \sqrt{-1}\Lambda_{+}\bar{\partial}_{+}H + \alpha \sqrt{-1}\Lambda_{+}\bar{\partial}_{+}HH^{-1}\partial_{+}H \\ -(1-\alpha)\sqrt{-1}\Lambda_{-}\bar{\partial}_{-}\partial_{-}H + (1-\alpha)\sqrt{-1}\Lambda_{-}\bar{\partial}_{-}HH^{-1}\partial_{-}H \\ +\lambda \cdot H,$$

where H denote the Hermitian matrix $(H_{\alpha\beta})_{1\leq\alpha,\beta\leq r}$ and ∂_{\pm} denote the (1,0)-parts of the exterior differential d with respect to the complex structures I_{\pm} , respectively. From the above equation, we see that the α -Hermite-Einstein evolution equation is a non-linear strictly parabolic equation.

We define

$$\Delta_{\bar{\partial}_{\pm}} := -\sqrt{-1}\Lambda_{\pm}\bar{\partial}_{\pm}\partial_{\pm}$$

and

$$\Delta_{\bar{\partial},\alpha} := \alpha \Delta_{\bar{\partial}_+} + (1-\alpha) \Delta_{\bar{\partial}_-}.$$

We will see later the following proposition plays an important role in our discussion.

Proposition 2.1. Let H(t) be a solution of the flow (2.3), then

$$(\Delta_{\bar{\partial},\alpha} - \frac{\partial}{\partial t})|\alpha\sqrt{-1}\Lambda_{+}F_{+}^{H} + (1-\alpha)\sqrt{-1}\Lambda_{-}F_{-}^{H} - \lambda \cdot \mathrm{Id}_{E}|_{H}^{2} \ge 0.$$

Proof. For simplicity, set

$$\eta = \alpha \sqrt{-1} \Lambda_+ F_+^H + (1-\alpha) \sqrt{-1} \Lambda_- F_-^H - \lambda \cdot \mathrm{Id}_E.$$

Then from (2.1) and (2.2), we have

$$\Delta_{\bar{\partial}_{\pm}} |\eta|_{H}^{2} = -\sqrt{-1}\Lambda_{\pm}\bar{\partial}_{\pm}\partial_{\pm}\mathrm{tr}\{\eta H^{-1}\bar{\eta}^{T}H\}$$

$$= -\sqrt{-1}\Lambda_{\pm}\bar{\partial}_{\pm}\mathrm{tr}\{\partial_{\pm}\eta H^{-1}\bar{\eta}^{T}H - \eta H^{-1}\partial_{\pm}HH^{-1}\bar{\eta}^{T}H + \eta H^{-1}\overline{\bar{\partial}_{\pm}\eta}^{T}H + \eta H^{-1}\bar{\eta}^{T}HH^{-1}\partial_{\pm}H\} = 2\mathrm{Re}\langle -\sqrt{-1}\Lambda_{\pm}\bar{\partial}_{\pm}\partial_{\pm}^{H}\eta, \eta\rangle_{H} + |\partial_{\pm}^{H}\eta|_{H}^{2} + |\bar{\partial}_{\pm}\eta|_{H}^{2},$$

and

4

$$\begin{split} \frac{\partial}{\partial t}(\sqrt{-1}\Lambda_{\pm}F_{\pm}^{H}) &= \frac{\partial}{\partial t}(\sqrt{-1}\Lambda_{\pm}\bar{\partial}_{\pm}(h^{-1}\partial_{\pm}^{H_{0}}h))\\ &= \sqrt{-1}\Lambda_{\pm}\bar{\partial}_{\pm}\frac{\partial}{\partial t}(h^{-1}\partial_{\pm}h + h^{-1}H_{0}^{-1}\partial_{\pm}H_{0}h)\\ &= \sqrt{-1}\Lambda_{\pm}\bar{\partial}_{\pm}\left(\partial_{\pm}(h^{-1}\frac{\partial h}{\partial t}) - h^{-1}\frac{\partial h}{\partial t}H^{-1}\partial_{\pm}H + H^{-1}\partial_{\pm}Hh^{-1}\frac{\partial h}{\partial t}\right)\\ &= \sqrt{-1}\Lambda_{\pm}\bar{\partial}_{\pm}(\partial_{\pm}^{H}(h^{-1}\frac{\partial h}{\partial t}))\\ &= -\sqrt{-1}\Lambda_{\pm}\bar{\partial}_{\pm}\partial_{\pm}^{H}\eta. \end{split}$$

Hence

$$\begin{aligned} (\Delta_{\bar{\partial},\alpha} - \frac{\partial}{\partial t}) |\eta|_{H}^{2} &= \Delta_{\bar{\partial},\alpha} |\eta|_{H}^{2} - 2\operatorname{Re}\langle \frac{\partial}{\partial t}\eta, \eta \rangle_{H} \\ &= \alpha (|\partial_{+}^{H}\eta|_{H}^{2} + |\bar{\partial}_{+}\eta|_{H}^{2}) + (1-\alpha)(|\partial_{-}^{H}\eta|_{H}^{2} + |\bar{\partial}_{-}\eta|_{H}^{2}) \\ &\geq 0. \end{aligned}$$

Now we recall the Donaldson's distance on the space of Hermitian metrics as follows.

Definition 2.2. For any two Hermitian metrics H and K on the bundle E, we define

$$\sigma(H, K) = \operatorname{tr}(H^{-1}K) + \operatorname{tr}(K^{-1}H) - 2r,$$

where $r = \operatorname{rank}(\mathbf{E})$.

If we choose a local frame to diagonalize $H^{-1}K$ to be diag $(\lambda_1, \ldots, \lambda_r)$, then

$$\sigma(H,K) = \sum_{i=1}^{r} (\lambda_i + \lambda_i^{-1} - 2),$$

from which we can see that $\sigma \geq 0$, with equality holds if and only if H = K. Let d be the Riemannian distance function on the metric space, then

$$f_1(d) \le \sigma \le f_2(d)$$

holds for some monotone functions f_1 and f_2 . So we can conclude from this inequality that a sequence of metrics H_i converge to some H in the usual C^0 -topology if and only if $\sup_M \sigma(H_i, H) \to 0$.

Proposition 2.3. Let H, K be two α -Hermitian-Einstein metrics, then

$$\Delta_{\bar{\partial},\alpha}\sigma(H,K) \ge 0$$

Proof. Let $h = K^{-1}H$, from (2.2) we have

$$\operatorname{tr}\{\sqrt{-1}h(\Lambda_{\pm}F_{\pm}^{H}-\Lambda_{\pm}F_{\pm}^{K})\}=-\Delta_{\bar{\partial}_{\pm}}\operatorname{tr}h+\operatorname{tr}(-\sqrt{-1}\Lambda_{\pm}\bar{\partial}_{\pm}hh^{-1}\partial_{\pm}^{K}h),$$

and

$$\operatorname{tr}\{\sqrt{-1}h^{-1}(\Lambda_{\pm}F_{\pm}^{K}-\Lambda_{\pm}F_{\pm}^{H})\}=-\Delta_{\bar{\partial}_{\pm}}\operatorname{tr}h^{-1}+\operatorname{tr}(-\sqrt{-1}\Lambda_{\pm}\bar{\partial}_{\pm}h^{-1}h\partial_{\pm}^{H}h^{-1}).$$

On the other hand, by doing calculation locally([8]), it is easy to check that

$$\operatorname{tr}(-\sqrt{-1}\Lambda_{\pm}\bar{\partial}_{\pm}hh^{-1}\partial_{\pm}^{K}h)\geq 0$$

and

$$\operatorname{tr}(-\sqrt{-1}\Lambda_{\pm}\bar{\partial}_{\pm}h^{-1}h\partial_{\pm}^{H}h^{-1}) \ge 0.$$

Hence we complete the proof.

Next, instead of considering H and K to be α -Hermitian-Einstein metrics, we assume H = H(t), K = K(t) to be two solutions of the α -Hermitian-Einstein flow (2.3) with the same initial value H_0 . Similar to Proposition 2.3, we can prove the following.

Proposition 2.4.

$$(\Delta_{\bar{\partial},\alpha} - \frac{\partial}{\partial t})\sigma(H(t), K(t)) \ge 0.$$

Proof. Set $h(t) = K(t)^{-1}H(t)$. Notice that

$$\frac{\partial}{\partial t} \operatorname{tr} h = \operatorname{tr} (K^{-1} H H^{-1} \frac{\partial}{\partial t} H - K^{-1} \frac{\partial}{\partial t} K K^{-1} H),$$
$$\frac{\partial}{\partial t} \operatorname{tr} h^{-1} = \operatorname{tr} (-H^{-1} \frac{\partial}{\partial t} H H^{-1} K + H^{-1} K K^{-1} \frac{\partial}{\partial t} K).$$

These two identities together with Proposition 2.3 show that

$$\left(\Delta_{\bar{\partial},\alpha} - \frac{\partial}{\partial t}\right) \left(\mathrm{tr}h + \mathrm{tr}h^{-1}\right) \ge 0.$$

3. α -Hermitian-Einstein flow on compact BI-Hermitian manifold

In this section our primary purpose is to prove the long-time existence of the α -Hermitian-Einstein flow over a compact bi-Hermitian manifold. When the base manifold M is closed, we consider the following problem:

(3.1)
$$\begin{cases} H^{-1}\frac{\partial}{\partial t}H = -\left(\alpha\sqrt{-1}\Lambda_{+}F_{+}^{H} + (1-\alpha)\sqrt{-1}\Lambda_{-}F_{-}^{H} - \lambda\cdot\operatorname{Id}_{E}\right),\\ H(0) = H_{0}. \end{cases}$$

And when M is a compact manifold with a non-empty smooth boundary ∂M , for any given initial metric φ over ∂M we instead consider the following boundary value problem:

(3.2)
$$\begin{cases} H^{-1}\frac{\partial}{\partial t}H = -\left(\alpha\sqrt{-1}\Lambda_{+}F_{+}^{H} + (1-\alpha)\sqrt{-1}\Lambda_{-}F_{-}^{H} - \lambda\cdot\operatorname{Id}_{E}\right),\\ H(0) = H_{0},\\ H|_{\partial M} = \varphi. \end{cases}$$

Since (2.3) is non-linear strictly parabolic. So we get the short-time existence from the standed parabolic PDE theory [12].

Theorem 3.1. For sufficiently small $\varepsilon > 0$, the problem (3.1) and (3.2) have a smooth solution defined for $0 \le t < \varepsilon$.

Next, following a standard argument, we can show the long-time existence of (3.1) and (3.2).

Lemma 3.2. Suppose that a smooth solution H_t to (3.1) or (3.2) is defined for $0 \le t < T$. Then H_t converges in C^0 topology to some continuous non-degenerate metric H_T as $t \to T$.

Proof. In order to prove the convergence, it suffices to show that, given any $\varepsilon > 0$ we can find $\delta > 0$ such that

$$\sup_{M} \sigma(H_t, H_{t'}) < \varepsilon, \text{ for all } t, t' > T - \delta.$$

And this can be easily seen from the continuity at t = 0 combining with Proposition 2.4 and the maximum principle.

So, it remains to show H_T is non-degenerate. By Proposition 2.1 we know that

$$\sup_{M \times [0,T)} |\alpha \sqrt{-1}\Lambda_+ F_+^H + (1-\alpha)\sqrt{-1}\Lambda_- F_-^H - \lambda \cdot \mathrm{Id}_E|_H^2 < C,$$

where $C = C(H_0)$ is a uniform constant. By a direct calculation we have

$$\begin{aligned} \frac{\partial}{\partial t}(\ln \operatorname{tr} h) \bigg| &= \left| \operatorname{tr} \left\{ h \left(\alpha \sqrt{-1} \Lambda_{+} F_{+}^{H} + (1-\alpha) \sqrt{-1} \Lambda_{-} F_{-}^{H} - \lambda \cdot \operatorname{Id}_{E} \right) \right\} \frac{1}{\operatorname{tr} h} \bigg|_{H} \\ &\leq \left| \alpha \sqrt{-1} \Lambda_{+} F_{+}^{H} + (1-\alpha) \sqrt{-1} \Lambda_{-} F_{-}^{H} - \lambda \cdot \operatorname{Id}_{E} \right|_{H}. \end{aligned}$$

And similarly

$$\left| \frac{\partial}{\partial t} (\ln \operatorname{tr} h^{-1}) \right| \leq \left| \alpha \sqrt{-1} \Lambda_{+} F_{+}^{H} + (1 - \alpha) \sqrt{-1} \Lambda_{-} F_{-}^{H} - \lambda \cdot \operatorname{Id}_{E} \right|_{H}.$$

Then we can conclude that $\sigma(H, H_0)$ are uniformly bounded on $M \times [0, T)$, which implies that H_T is non-degenerate.

For further consideration, we prove the following lemma in the same way as [8, Lemma 19] and [31, Lemma 6.4] (also see [37, Lemma 3.3]).

Lemma 3.3. Suppose (M, g, I_+, I_-) is a closed bi-Hermitian manifold without boundary (compact with non-empty boundary). Let H(t), for $0 \le t < T$, be a one-parameter family of Hermitian metrics on $(E, \bar{\partial}_+, \bar{\partial}_-)$ over M (satisfying the Dirichlet boundary condition), such that

- (i) H(t) converges in C^0 topology to some continuous metric H_T as $t \to T$,
- (ii) $\sup_{M} |\alpha \sqrt{-1}\Lambda_{+}F_{+}^{H} + (1-\alpha)\sqrt{-1}\Lambda_{-}F_{-}^{H}|_{H_{0}}$ is uniformly bounded for t < T.

Then H(t) is bounded in C^1 , and also bounded in L_2^p (for any 1) uniformly in t.

Proof. Let us first follow Donaldson's arguments [8, Lemma 19]. Let $h(t) = H_0^{-1}H(t)$. We claim that h(t) are bounded uniformly in C^1 . If this not true, then for some subsequence t_j there are points $x_j \in M$ with $\sup |dh_j| = l_j$ achieved at x_j , and $l_j \to \infty$, here we denoted by $h_j = h(t_j)$.

(a) When M is a closed manifold. We can suppose that the x_j converges to a point x in M after taking a subsequence. Once choosing local coordinates $\{z_{\alpha}\}_{\alpha=1}^{n}$ around x_j and translating the coordinates slightly, we can suppose that

$$\sup |\mathrm{d}h_j| = l_j$$

is attained at z = 0. Rescale $\{z_{\alpha}\}$ to new coordinates $\{w_{\alpha}\}$ by $w_{\alpha} = l_i z_{\alpha}$; that is, via the maps $\{|w_{\alpha}| < 1\} \rightarrow \{|w_{\alpha}| < l_i^{-1}\}$, pull back the matrices h_j to matrices \tilde{h}_j

defined for $|w_{\alpha}| < 1$. With respect to the rescaled coordinates,

$$\sup_{|w_{\alpha}|<1} |\mathrm{d}h_j| = 1$$

is attained at the origin point. For convenience, we set $\partial_{\pm}^{0} := \partial_{\pm}^{H_{0}}, \widetilde{F}_{\pm}^{j} := \widetilde{F}_{\pm}^{H(t_{j})}$. Under the assumption of the lemma, we have

$$(3.3) \qquad \begin{aligned} &|\alpha\sqrt{-1}\Lambda_{+}\dot{F}_{+}^{j}+(1-\alpha)\sqrt{-1}\Lambda_{-}\dot{F}_{-}^{j}-\alpha\sqrt{-1}\Lambda_{+}\dot{F}_{+}^{0}-(1-\alpha)\sqrt{-1}\Lambda_{-}\dot{F}_{-}^{0}|\\ &=|\alpha\widetilde{h}_{j}^{-1}(\Lambda_{+}\bar{\partial}_{+}\partial_{+}^{0}\tilde{h}_{j}-\Lambda_{+}\bar{\partial}_{+}\tilde{h}_{j}\tilde{h}_{j}^{-1}\partial_{+}^{0}\tilde{h}_{j})\\ &+(1-\alpha)\widetilde{h}_{j}^{-1}(\Lambda_{-}\bar{\partial}_{-}\partial_{-}^{0}\tilde{h}_{j}-\Lambda_{-}\bar{\partial}_{-}\tilde{h}_{j}\tilde{h}_{j}^{-1}\partial_{-}^{0}\tilde{h}_{j})|\end{aligned}$$

is bounded in $\{|w_{\alpha}| < 1\}$. Since \tilde{h}_j and $d\tilde{h}_j$ are bounded, $|\Lambda_{\pm}\bar{\partial}_{\pm}\partial_{\pm}^0\tilde{h}_j|$ are bounded independent of j, then $|\Delta_{\bar{\partial},\alpha}\tilde{h}_j|$ is also bounded independent of j. By the properties of the elliptic operator $\Delta_{\bar{\partial},\alpha}$ on L^p spaces, \tilde{h}_j are uniformly bounded in L_2^p on a small ball. After taking p > 2n, $L_2^p \to C^1$ is compact, then we deduce that some subsequence of the \tilde{h}_j converge strongly in C^1 to \tilde{h}_{∞} . But on the other hand the variation of \tilde{h}_{∞} is zero, since the original metrics approached a C^0 limit, which contradicts the fact

$$|\mathrm{d}\widetilde{h}_{\infty}|_{z=0} = \lim_{j \to \infty} |\mathrm{d}\widetilde{h}_j|_{z=0} = 1.$$

(b) When M is a compact manifold with non-empty boundary ∂M . We will adapt Simpson's arguments [31, Lemma 6.4] to our settings. Let d_j denote the distance from x_j to the boundary ∂M , then there are two cases.

(b1) If $\limsup d_j l_j > 0$, then we can choose balls of radius $\leq d_j$ around x_j and rescale by a factor of $\frac{l_j}{\epsilon}$ to a ball of radius 1 (where $\epsilon < \limsup d_j l_j$), and pull back the matrixes h_j to matrixes \tilde{h}_j defined on $\{|w_{\alpha}| < 1\}$. With respect to the rescaled coordinates,

$$\sup |\mathrm{d}h_j| = \epsilon$$

is attained at the origin. By condition of the lemma, and discussing like that in (a), we will deduce contradiction.

(b2) On the other hand, if $\limsup d_j l_j = 0$, we can assume that x_j approach a point y on the boundary. Then let $\tilde{x}_j \in \partial M$ so that $\operatorname{dist}(\tilde{x}_j, x_j) = d_j$, also \check{x}_j approach y. Choose half-balls of radius $\frac{1}{l_j}$ around \check{x}_j and rescale by l_j to the unit half-balls. In the rescaled picture, x_j approach z = 0. In the rescaled coordinates, $|\Lambda_{\pm}\bar{\partial}_{\pm}\partial_{\pm}^0\tilde{h}_j|$ are still bounded, \tilde{h}_j are uniformly bounded, and $\sup |d\tilde{h}_j| = 1$. Since \tilde{h}_j satisfy boundary condition along the face of the half-ball, then using elliptic estimates with boundary, and discussing like that in (a), we can also deduce contradiction.

From the above discussion, h(t) are uniformly bounded in C^1 . Using (3.3) together with the bounds on h(t), $|\alpha\sqrt{-1}\Lambda_+F^H_+ + (1-\alpha)\sqrt{-1}\Lambda_-F^H_-|$, and dh imply that $\Lambda_{\pm}\bar{\partial}_{\pm}\partial_{\pm}^0 h$ are uniformly bounded. The by the elliptic estimates with boundary conditions, h(t) are uniformly bounded in L_2^p for any 1 .

Theorem 3.4. (3.1) and (3.2) have a unique solution H(t) which exists for $0 \le t < \infty$.

Proof. By Theorem 3.1, we suppose that there is a solution H(t) existing for $0 \le t < T$. By Lemma 3.2, H(t) converges in C^0 topology to a continuous nondegenerate metric H_T . This together with the fact that $\sup_M |\alpha \sqrt{-1} \Lambda_+ F_+^H + (1 - 1) |\alpha \sqrt{-1} \Lambda$ $\alpha)\sqrt{-1}\Lambda_{-}F_{-}^{H}|_{H_{0}}$ is bounded uniformly in t implies that H(t) are bounded in C^{1} , and also bounded in L_2^p (for any 1) uniformly in t. Since (3.1) and(3.2) are quadratic in the first derivative of H, we can apply Hamilton's method [12] to deduce that $H(t) \to H_T$ in C^{∞} , and the solution can be extended past T. Hence we have showed the long-time existence of problem (3.1) and (3.2). As for the uniqueness, one can easily achieve it from Proposition 2.4 and the maximum principle.

4. Proof of Theorem 1.1

Since we have proved the long-time existence of (3.2), it remains for us to show that the solution H(t) converges to a metric H_{∞} as the time t approaches to the infinity, and that the limit H_{∞} is α -Hermitian-Einstein.

Suppose H(t) is a solution to (3.2) for $0 \le t < \infty$. As in the previous section we still set

$$\eta = \alpha \sqrt{-1}\Lambda_+ F_+^H + (1-\alpha)\sqrt{-1}\Lambda_- F_-^H - \lambda \cdot \mathrm{Id}_E.$$

From Proposition 2.1 and the fact that $|d|\theta|_H|_H^2 \leq |d\theta|_H^2$ holds for any section θ of $\operatorname{End}(E)$, we have

(4.1)
$$(\Delta_{\bar{\partial},\alpha} - \frac{\partial}{\partial t}) |\eta|_H \ge 0.$$

Next, according to the Proposition 1.8 of Chapter 5 in [33], the following Dirichlet problem is solvable:

(4.2)
$$\begin{cases} \Delta_{\bar{\partial},\alpha} v = - \left| \alpha \sqrt{-1} \Lambda_{+} F_{+}^{H_{0}} + (1-\alpha) \sqrt{-1} \Lambda_{-} F_{-}^{H_{0}} - \lambda \cdot \mathrm{Id}_{E} \right|_{H_{0}} \\ v|_{\partial M} = 0. \end{cases}$$

Then set $w(x,t) = \int_0^t |\eta|_H(x,s) ds - v(x)$, where v(x) is a solution to the problem above. From (4.1), (4.2) and the boundary condition satisfied by H we can see that for t > 0, $|\eta|_H$ vanishes over the boundary ∂M . Then one can easily check that w(x,t) satisfies

(4.3)
$$\begin{cases} (\Delta_{\bar{\partial},\alpha} - \frac{\partial}{\partial t})w(x,t) \ge 0\\ w(x,0) = -v(x),\\ w(x,t)|_{\partial M} = 0. \end{cases}$$

Therefore the maximum principle implies that

(4.4)
$$\int_0^t |\eta|_H(x,s) \mathrm{d}s \le \sup_{y \in M} v(y),$$

for any $y \in M$ and $0 \leq t < \infty$.

Let $0 \le t_1 \le t < \infty$, $\bar{h} = H^{-1}(x, t_1)H(x, t)$. Obviously \bar{h} satisfies

$$\bar{h}^{-1}\frac{\partial}{\partial t}\bar{h} = -\left(\alpha\sqrt{-1}\Lambda_{+}F_{+}^{H} + (1-\alpha)\sqrt{-1}\Lambda_{-}F_{-}^{H} - \lambda\cdot\mathrm{Id}_{E}\right) = -\eta.$$

Then we have

$$\frac{\partial}{\partial t} \ln \operatorname{tr} \bar{h} \le 2 \left| \eta \right|_H.$$

Integrating it over $[t_1, t]$ gives

$$\operatorname{tr}\bar{h} = \operatorname{tr}\left(H^{-1}(x,t_1)H(x,t)\right) \le r \exp\left(2\int_{t_1}^t |\eta|_H \,\mathrm{d}s\right).$$

Treating \bar{h}^{-1} in the same way one can get a similar estimate for it. Combining them together we can conclude that

(4.5)
$$\sigma(H(x,t),H(x,t_1)) \le 2r\left(\exp(2\int_{t_1}^t |\eta|_H \,\mathrm{d}s) - 1\right).$$

From (4.4) and (4.5), we have that H(t) converges in the C^0 topology to some continuous metric H_{∞} as $t \longrightarrow +\infty$. Hence using Lemma 3.3 again we know that H(t) has uniform C^1 and L_2^p bounds. This together with the fact that $|H^{-1}\frac{\partial}{\partial t}H|$ is uniformly bounded and the standard elliptic regularity arguments shows that, by passing to a subsequence if necessary, $H(t) \to H_{\infty}$ in C^{∞} topology. And from (4.4) we have

$$\alpha \sqrt{-1}\Lambda_+ F^{\infty}_+ + (1-\alpha)\sqrt{-1}\Lambda_- F^{\infty}_- - \lambda \cdot \mathrm{Id}_E = 0,$$

i.e. H_{∞} is the desired α -Hermitian-Einstein metric satisfying the Dirichlet boundary condition. The uniqueness of the solution comes from Proposition 2.3 and the maximum principle. Hence we complete the proof of Theorem 1.1.

References

- Alvarez-Consul L, Garcis-Prada O, Hitchin-Kobayashi correspondence, quivers, and vortices. Commun Math Phys, 2003, 238: 1-33.
- [2] Biquard O. On parabolic bundles over a complex surface. J London Math Soc, 1996, 53: 302-316.
- [3] Biswas I, Schumacher G. Yang-Mills equation for stable Higgs sheaves. Inter J Math, 2009, 20: 541-556.
- [4] Bradlow S B. Vortices in holomorphic line bundles over closed Kähler manifolds. Commun Math Phys, 1990, 135: 1-17.
- [5] Bruzzo U, Graña Otero B. Metrics on semistable and numerically effective Higgs bundles. J Reine Angew Math, 2007, 612: 59-79.
- [6] Buchdahl N P. Hermitian-Einstein connections and stable vector bundles over compact complex surfaces. Math Ann, 1988, 280: 625-648.
- [7] De Bartolomeis P, Tian G. Stability of complex vector bundles. J Differ Geom, 1996, 43: 231-275.
- [8] Donaldson S K. Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles. Proc London Math Soc, 1985, 3: 1-26, 1985.
- [9] Donaldson S K. Boundary value problems for Yang-Mills fields. J Geom Phys, 1992, 8, 89-122.
- [10] Gualtieri M. Generalized complex geometry, DPhil thesis, University of Oxford, 2004
- [11] Gualtieri M. Generalized complex geometry, Ann Math, 2011, 174, 75-123.
- [12] Hamilton R S. Harmonic maps of manifolds with boundary, Vol 471, Springer, 2006.
- [13] Hitchin N J. The self-duality equations on a Riemann surface. Proc London Math Soc, 1987, 3, 59-126, 1987.
- [14] Hitchin N J. Generalized holomorphic bundles and the B-field action, J Geom Phys, 2011, 61, 352-362.
- [15] Hong M C. Heat flow for the Yang-Mills-Higgs field and the Hermitian Yang-Mills-Higgs metric, Annals of Global Analysis and Geometry, 2001, 20, 23-46.
- [16] Hu S, Moraru R, Seyyedali R. A Kobayashi-Hitchin correspondence for I_{\pm} -holomorphic bundles, Advances in Mathematics, 2016, **287**, 519-566.
- [17] Jacob A, Walpuski T. Hermitian Yang-Mills metrics on reflexive sheaves over asymptotically cylindrical Kähler manifolds, arXiv:1603.07702, 2016.
- [18] Li J, Yau S T. Hermitian-Yang-Mills connection on non-Kähler manifolds. In: Mathematical Aspects of String Theory, pp. 560-573. World Scientific, New York, 1987.

- [19] Li J Y, Zhang X. Existence of approximate Hermitian-Einstein structures on semi-stable Higgs bundles. Calc Var, 2015, 52: 783-795.
- [20] Li J Y, Zhang C, Zhang X. Semi-stable Higgs sheaves and Bogomolov type inequality. Calc Var, 2017, 56: 1-33.
- [21] Li J Y, Zhang C, Zhang X. The limit of the Hermitian-Yang-Mills flow on reflexive sheaves. Adv Math, 2018, 325: 165-214.
- [22] Li J Y, Zhang C, Zhang X. A note on curvature estimate of the Hermitian-Yang-Mills flow. Commun Math Stat, 2018, 6: 319-358.
- [23] Li Z, Zhang X. Dirichlet problem for Hermitian Yang-Mills-Higgs equations over Hermitian manifolds. J Math Anal Appl, 2005, 310, 68-80.
- [24] Lübke M. Stability of Einstein-Hermitian vector bundles. Manuscr Math, 1983, 42: 245-257.
- [25] Mochizuki T. Kobayashi-Hitchin correspondence for tame harmonic bundles and an application. Astérisque, 309, Soc. Math. France, Paris, 2006.
- [26] Narasimhan M S, Seshadri C S. Stable and unitary vector bundles on a compact Riemann surface. Ann Math, 1965, 82, 540-567.
- [27] Nie Y, Zhang X. Semistable Higgs bundles over compact Gauduchon manifolds. J Geom Anal, 2018, 28: 627-642.
- [28] Rayan S. Geometry of co-Higgs bundles, DPhil thesis, Oxford University, 2011.
- [29] Rayan S. Co-Higgs bundles on \mathbb{P}^1 New York J Math, 2013, **19**: 925-945
- [30] Rayan S. Constructing co-Higgs bundles on CP², Quarterly Journal of Mathematics, 2014, 65: 1437-1460.
- [31] Simpson C T. Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization. J Amer Math Soc, 1988, 1: 867-918.
- [32] Siu Y T. Lectures on Hermitian-Einstei metrics for stable bundles and Kähler-Einstein metrics: delivered at the German Mathematical Society Seminar in Düsseldorf in June, 1986, Vol 8, Birkhäuser, 2012.
- [33] Taylor M E. Partial differential equations I (Applied Mathematical Sciences), Vol 115. Springer New York, 2011.
- [34] Uhlenbeck K K, Yau S T. On the existence of Hermitian-Yang-Mills connections in stable vector bundles. Commun Pure Appl Math, 1986, 39S: S257-S293.
- [35] A. Vicente Colmenares, Semistable rank 2 co-Higgs bundles over Hirzebruch surfaces, PhD thesis, University of Waterloo, 2015.
- [36] Zhang C, Zhang P, and Zhang X. Higgs bundles over non-compact Gauduchon manifolds. arXiv:1804.08994, 2018.
- [37] Zhang X. Hermitian-Einstein metrics on holomorphic vector bundles over Hermitian manifolds. J Geom Phys, 2005, 53: 315-335.
- [38] Zhang X. Hermitian Yang-Mills-Higgs metrics on complete Kähler manifolds. Canad J Math, 2005, 57, 871-896.

SCHOOL OF MATHEMATICS, SUN YAT-SEN UNIVERSITY, GUANGZHOU 510275, P.R. CHINA *E-mail address*: zhangpan5@mail.sysu.edu.cn

10