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Abstract

In this paper, we theoretically investigate the low-rank matrix recovery problem
in the context of the unconstrained regularized nuclear norm minimization (RN-
NM) framework. Our theoretical findings show that, one can robustly recover
any matrix X from its few noisy measurements b = A(X) + n with a bound-
ed constraint ‖n‖2 ≤ ε via the RNNM, if the linear map A satisfies restricted
isometry property (RIP) with

δtk <

√
t− 1

t

for certain fixed t > 1. Recently, this condition with t ≥ 4/3 has been proved
by Cai and Zhang (2014) to be sharp for exactly recovering any rank-k matri-
ces via the constrained nuclear norm minimization (NNM). To the best of our
knowledge, our work first extends nontrivially this recovery condition for the
constrained NNM to that for its unconstrained counterpart. Furthermore, it
will be shown that similar recovery condition also holds for regularized `1-norm
minimization, which sometimes is also called Basis Pursuit DeNoising (BPDN).

Keywords: Low-rank matrix recovery, regularized nuclear norm minimization,
restricted isometry property, basis pursuit denoising

1. Introduction1

Over the past decade, low-rank matrix recovery (LRMR) problem has at-
tracted considerable interest of researchers in many fields, including comput-
er vision [1], recommender systems [2], and machine learning [3] to name a
few. Mathematically, this problem aims to recover an unknown low-rank ma-
trix X ∈ Rn1×n2 from

b = A(X) + n,
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where b ∈ Rm(m� n1n2) is an observed vector, n ∈ Rm is the unknown noise,
and A : Rn1×n2 → Rm is a known linear map defined as

A(X) = [tr(XTA(1)), tr(XTA(2)), · · · , tr(XTA(m))]T . (1)

Here, tr(·) is the trace function and A(i) ∈ Rn1×n2 is the ith measurement2

matrix.3

A popular approach for the LRMR problem is to solve the nuclear norm
minimization (NNM)

min
X∈Rn1×n2

‖X‖∗, s.t. ‖b−A(X)‖2 ≤ ε, (2)

So far, much work has been done to find the explicit conditions under which the4

exact/robust recovery of any low-rank matrices can be guaranteed [4, 5, 6, 7]. As5

one of the most powerful and widely used theoretical tools, restricted isometry6

property (RIP) captures particular attention.7

Definition 1 ([5]). A linear map A defined by (1) is said to satisfy the RIP
with restricted isometry constant (RIC) of order k, denoted by δk

1, if δk is the
smallest value δ ∈ (0, 1) such

(1− δ)‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δ)‖X‖2F

for every rank-k matrix X ∈ Rn1×n2 , i.e., the signal whose rank is at most k.8

There exist many RIP-based sufficient conditions for the exact recovery (i.e.,9

the case when n = 0 and ε = 0) of any rank-k matrices through (2). These10

include δ4k <
√

2 − 1 [5], δ4k < 0.558, and δ3k < 0.4721 [8], δ2k < 0.4931 [9],11

δ2k < 1/2 and δk < 1/3 [10]. In particular, the sharpest conditions with the12

form of δtk < δ∗ for t > 0 have been completely given by Cai and Zhang [11]13

and Zhang and Li [12], where δ∗ =
√

(t− 1)/t for t ≥ 4/3 and δ∗ = t/(4 − t)14

otherwise, and they have also proved that under these conditions, one can still15

robustly reconstruct any (low-rank) matrices.16

An alternative approach to the constrained NNM (2) is to solve its uncon-
strained counterpart, i.e., the following Regularized NNM (RNNM):

min
X∈Rn1×n2

‖X‖∗ +
1

2λ
‖b−A(X)‖22. (3)

Compared to the constrained problem (2), this unconstrained problem is much17

more suitable for noisy measurements and approximately low-rank matrix re-18

covery [13]. Currently, almost all the researches are focus on the algorithms19

induced by (3), see, e.g., [13, 14, 15]. To the best of our knowledge, Candès and20

Plan [5] provided the first RIP-based performance guarantee for (3), and their21

results show that, when the noise n obeys ‖A∗(n)‖ , ‖
∑m
i=1 ni · A(i)‖ ≤ λ/2,22

1When k is not an integer, we define δk as δdke.

2



and the map A satisfies δ4k < (3
√

2− 1)/17, the robust recovery of any rank-k23

matrices can be guaranteed through (3). However, after their initial work, the24

theoretical investigation of (3) is rarely reported. Note that their noise setting25

is based on the Dantzig selector rather than the often used `2-norm setting (i.e.,26

‖n‖2 ≤ ε), and the obtained sufficient condition still has room to improve.27

In this paper, we theoretically investigate the RIP-based performance guar-28

antee of the constrained problem (3) when the noise n obeys ‖n‖2 ≤ ε. We29

show that if A satisfies δtk <
√

(t− 1)/t for certain t > 1, one can robustly30

recover any (low-rank) matrices from (3). The obtained results first extend the31

recovery condition recently obtained by Cai and Zhang [11] for the constrained32

problem (2) to that for its unconstrained counterpart. It should be also noted33

that similar condition also holds for the well-known Basis Pursuit DeNoising34

(BPDN) [16] to guarantee the robust recovery of any (sparse) signals.35

The remainder of the paper is organized as follows. Section II introduces36

some notations and useful lemmas. Section III presents the main results. Section37

IV gives the related proofs. Finally, conclusion and future works are given in38

Section V.39

2. Notations and Preliminaries40

2.1. Notations41

We assume w.l.o.g. that n1 ≤ n2 and the SVD of X ∈ Rn1×n2 is X =42 ∑n1

i=1 σi(X) · u(i)
X · (v

(i)
X )T , where u

(i)
X and v

(i)
X are the left and right singular43

value vectors of X, respectively, and σi(X) is the ith largest singular value of X.44

For any positive integer s, we denote [s] = {1, 2, · · · , s}, and Ec = [n1]\E for any45

E ⊂ [n1]. We also denote σE(X) as a vector whose element (σE(X))i = σi(X)46

for i ∈ E and (σE(X))i = 0 otherwise, and XE =
∑
i∈E σi(X) ·u(i)

X · (v
(i)
X )T and47

X[s] =
∑s
i=1 σi(X)u

(i)
X (v

(i)
X )T . Besides, we denote ‖ · ‖βα = (‖ · ‖α)β where ‖ · ‖α48

is certain (quasi-)norm. Then clearly ‖σE(X)‖1 = ‖XE‖∗. In the end, ‖x‖0 is49

defined to be the number of the nonzero elements in x.50

2.2. Three key lemmas51

Before presenting our main results, we need some lemmas.52

Lemma 1 ([11]). For a positive number α and a positive integer k, define the
polytope T (α, k) ⊂ Rn by T (α, k) = {v ∈ Rn : ‖v‖∞ ≤ α, ‖v‖1 ≤ kα}. For any
v ∈ Rn, define the set U(α, k,v) ⊂ Rn by U(α, k,v) = {u ∈ Rn : supp(u) ⊆
supp(v), ‖u‖0 ≤ k, ‖u‖1 = ‖v‖1, ‖u‖∞ ≤ α}. Then v ∈ T (α, k) iff v is in the
convex hull of U(α, k,v). In particular, any v ∈ T (α, k) can be expressed as

v =

c∑
i=1

γiui

where ui ∈ U(α, k,v) and 0 ≤ γi ≤ 1,
∑c
i=1 γi = 1.53
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Lemma 2. If the map A obeys the RIP of order tk(t > 1) with RIC δtk ∈ (0, 1),
then for any matrix H ∈ Rn1×n2 and E ⊂ [n1] with |E| = k, it holds that

‖HE‖F ≤ β1‖A(H)‖2 + β2
‖HEc‖∗√

k
, (4)

where

β1 ,
2

(1− δtk)
√

1 + δtk
, and β2 ,

δtk√
(1− (δtk)2)(t− 1)

.

Lemma 3. Assume that X] is the solution of (3) and H = X] − X. If the
noisy measurements b = A(X) + n are observed with the noise level ‖n‖2 ≤ ε,
then for any subset E ⊂ [n1] with |E| = k, we have

‖A(H)‖22 − 2ε‖A(H)‖2 ≤2λ(‖HE‖∗ − ‖HEc‖∗ + 2‖XEc‖∗) (5)

and

‖HEc‖∗ ≤ ‖HE‖∗ + 2‖XEc‖∗ +
ε

λ
‖A(H)‖2. (6)

3. Main results54

With previous preparations in mind, we now present our main results.55

Theorem 4. For any observed vector b = A(X) +n with a bounded constraint
‖n‖2 ≤ λ/2, if the map A satisfies RIP with

δtk <

√
t− 1

t
(7)

for certain fixed t > 1, then we have

‖A(X] −X)‖2 ≤ C1‖X −X[k]‖∗ + C2, (8)

‖X] −X‖F ≤ C3‖X −X[k]‖∗ + C4, (9)

where X] is the optimal solution of (3), and

C1 =
2λ√

kβ1λ+ ε
, C2 = 2

√
kβ1λ+ 2ε,

C3 =
2
√
kβ1(2

√
k + 1 + β2)λ+ 2(

√
kβ2 + 2β2 +

√
k)ε

kβ1(1− β2)λ
,

C4 =
2(k +

√
k)β1λ+ (β2 + 2

√
k −
√
kβ2)ε√

k(1− β2)λ(
√
kβ1λ+ ε)−1

.
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Remark 1. The condition (7) has been obtained recently by Cai and Zhang in56

[11] for exact/robust signal recovery from (2), and it was proved to be sharp for57

the exact rank-k matrix recovery when t > 4/3. To the best of our knowledge,58

we first extend nontrivially this condition from the constrained problem (2) to59

its unconstrained counterpart. When compared to some existing results, e.g,60

[17], our upper bound estimate for ‖X] −X‖F seems relatively loose. However61

it can be further improved by using the skills in [17].62

Remark 2. BPDN is closely related to (3), and there are some recovery con-63

ditions for this BPDN, see, e.g., [17, 18, 19]. However, most of these conditions64

are unsatisfactory. In fact, by combing Lemma 2 (with setting D be an identity65

matrix) in [20] and also using the techniques in proof of our Theorem 4, one will66

obtain a new and much weaker recovery condition for the BPDN. Besides, our67

theoretical results can still be extended to deal with the noise under Dantzig68

Selector settings for both sparse signal and low-rank matrix recovery.69

Remark 3. There are some special cases of Theorem 4 which can be used to70

cope with several different LRMR tasks. For examples, one can set n = 0 and71

ε = 0 for the noiseless recovery. In this case, the error will almost disappear if one72

chooses the parameter λ as small as possible, and this result is also coincident73

with the results obtained in [17, 20]; one can consider the rank-k matrix recovery74

in presence of noise; similar with [5, 17, 20], one can also associate ε with λ, and75

set ε = λ/2.76

4. Proofs77

4.1. Proof of Lemma 278

Proof. The proof mainly follows from [20]. When tk is not an integer, let
t′ = dtke/k, then t′ > t and t′k is an integer. In view of this, we here only need
to prove Lemma 2 when tk is a positive integer for a given t > 1. To do so, we
first denote the SVD of H as

H =

n1∑
i=1

σi(H) · u(i)
H · (v

(i)
H )T .

We also denote α = ‖HEc‖∗/((t− 1)k), and

E1 = {i ∈ Ec : σi(H) > α}, E2 = {i ∈ Ec : σi(H) ≤ α}.

Then clearly E1 ∪ E2 = Ec and E1 ∩ E2 = ∅. We will begin with proving

‖HE∪E1
‖F ≤ β1‖A(H)‖2 +

β2√
k
‖HEc‖∗ (10)

Before this, we will show that s , |E1| < (t− 1)k. In fact it holds naturally for
E1 = ∅. When E1 6= ∅, we know that

‖σE1
(H)‖1 = ‖HE1

‖∗ > sα = s
‖HEc‖∗
(t− 1)k

≥ s

(t− 1)k
‖HE1

‖∗ =
s

(t− 1)k
‖σE1

(H)‖1.
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Thus a quick simplification of the above inequality yields the desired result.79

On the other hand, in terms of σE2(H), we have

‖σE2
(H)‖1 = ‖HE2

‖∗ = ‖HEc‖∗ − ‖HE1
‖∗ ≤ (t− 1)kα− sα = ((t− 1)k − s)α,

and ‖σE2(H)‖∞ = maxi∈E2 σi(H) ≤ α. Then using Lemma 1, we have

σE2(H) =

l∑
i=1

γiz
(i),

where l is a certain positive integer, z(i) ∈ U(α, (t − 1)k − s, σE2(H)) and

0 ≤ γi ≤ 1,
∑l
i=1 γi = 1. By further defining

b(i) = (1 + δtk)σE∪E1
(H) + δtkz

(i), d(i) = (1− δtk)σE∪E1
(H)− δtkz(i),

Z(i) =

n1∑
j=1

(z(i))j · u(j)
H · (v

(j)
H )T , B(i) =

n1∑
j=1

(b(i))j · u(j)
H · (v

(j)
H )T ,

D(i) =

n1∑
j=1

(d(i))j · u(j)
H · (v

(j)
H )T ,

we can easily induce that both b(i) and d(i) are all tk-sparse, and

HE2
=

l∑
i=1

γiZ
(i), B(i) = (1 + δtk)HE∪E1

+ δtkZ
(i), D(i) = (1− δtk)HE∪E1

− δtkZ(i).

Now applying Definition 1, we will estimate the upper and lower bounds of

ρ ,
l∑
i=1

γi

(
‖A(B(i))‖22 − ‖A(D(i))‖22

)
.

As to the upper bound of ρ, we have

ρ = 4δtk〈A(HE∪E1
),A(HE∪E1

+

l∑
i=1

γiZ
(i))〉

= 4δtk〈A(HE∪E1
),A(H)〉 ≤ 4δtk‖A(HE∪E1

)‖2‖A(H)‖2
≤ 4δtk

√
1 + δtk‖HE∪E1

‖F ‖A(H)‖2. (11)

As to the lower bound of ρ, we have

ρ ≥
l∑
i=1

γi

(
(1− δtk)‖b(i)‖22 − (1 + δtk)‖d(i)‖22

)
= 2δtk(1− (δtk)2)‖σE∪E1

(H)‖22 − 2(δtk)3
l∑
i=1

γi‖zi‖22

≥ 2δtk(1− (δtk)2)‖HE∪E1‖2F −
2(δtk)3

(t− 1)k
‖HEc‖2∗, (12)

6



where we used 〈σE∪E1(H), z(i)〉 = 0 for the equation,and

‖z(i)‖22 ≤ ‖z(i)‖0‖z(i)‖2∞ ≤ ((t− 1)k − s)α2 =
‖HEc‖2∗
(t− 1)k

for the last inequality. Combing (11) and (12) yields

(1− (δtk)2)‖HE∪E1
‖2F − 2

√
1 + δtk‖A(H)‖2‖HE∪E1

‖F −
(δtk)2

(t− 1)k
‖HEc‖2∗ ≤ 0.

Therefore,

‖HE∪E1‖F ≤
2
√

1 + δtk‖A(H)‖2
2(1− (δtk)2)

+

√
(2
√

1 + δtk‖A(H)‖2)2 + 4(1− (δtk)2) (δtk)2

(t−1)k‖HEc‖2∗
2(1− (δtk)2)

≤2(1− δtk)−1√
1 + δtk

‖A(H)‖2 +
δtk√

(1− (δtk)2)(t− 1)

‖HEc‖∗√
k

,

where we used
√
x2 + y2 ≤ |x|+ |y| for the last inequality. Then combing (10)80

and ‖HE‖F ≤ ‖HE∪E1
‖F directly leads to (4), which completes the proof.81

4.2. Proof of Lemma 382

Proof. Since X] is the optimal solution of (3), we have

‖X]‖∗ +
1

2λ
‖b−A(X])‖22 ≤ ‖X‖∗ +

1

2λ
‖b−A(X)‖22,

which is equivalent to

‖A(H)‖22 − 2〈n,A(H)〉 ≤ 2λ(‖X‖∗ − ‖X]‖∗). (13)

As to the left-hand side of (13), we have

‖A(H)‖22 − 2〈n,A(H)〉 ≥ ‖A(H)‖22 − 2ε‖A(H)‖2. (14)

As to the right-hand side of (13), we know

‖X]‖∗ − ‖X‖∗ =

n1∑
i=1

σi(X +H)− (‖XE‖∗ + ‖XEc‖∗)

≥
n1∑
i=1

|σi(X)− σi(−H)| − (‖XE‖∗ + ‖XEc‖∗)

≥
∑
i∈E

(σi(X)− σi(H)) +
∑
i∈Ec

(σi(H)− σi(X))− (‖XE‖∗ + ‖XEc‖∗)

=− ‖HE‖∗ + ‖HEc‖∗ − 2‖XEc‖∗, (15)

where we used Theorem 1 in [21] for the first inequality. Then combing (13),83

(14), and (15) leads to the desired result (5), and (6) follows trivially from (5).84
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4.3. Proof of Theorem 485

Proof. We start with Denoting E = [k] and H = X] −X. Then by Lemma 2
and Lemma 3, we have

‖A(H)‖22 − 2ε‖A(H)‖2 ≤2λ(
√
k‖HE‖F − ‖HEc‖∗ + 2‖XEc‖∗)

≤2
√
kλ(β1‖A(H)‖2 +

β2√
k
‖HEc‖∗)− 2λ‖HEc‖∗ + 4λ‖XEc‖∗

=2
√
kβ1λ‖A(H)‖2 − 2(1− β2)λ‖HEc‖∗ + 4λ‖XEc‖∗

(16)

According to the condition (7), we know

1− β2 = 1− δtk√
(1− (δtk)2)(t− 1)

> 1−
√

(t− 1)/t√
(1− (t− 1)/t)(t− 1)

= 0.

Therefore we can further know from (16) that

‖A(H)‖22 − 2(
√
kβ1λ+ ε)‖A(H)‖2 − 4λ‖XEc‖∗ ≤ 0,

which implies that

‖A(H)‖2 ≤(
√
kβ1λ+ ε) +

√
(
√
kβ1λ+ ε)2 + 4λ‖XEc‖∗

≤(
√
kβ1λ+ ε) + (

√
kβ1λ+ ε) +

2λ‖XEc‖∗
(
√
kβ1λ+ ε)

≤ 2λ√
kβ1λ+ ε

‖XEc‖∗ + 2
√
kβ1λ+ 2ε.

This completes (8). Based on (6) and (8), we now give a new upper bound
estimate for ‖HEc‖∗, i.e.,

‖HEc‖∗ ≤
√
k‖HE‖F +

2(
√
kβ1λ+ 2ε)√
kβ1λ+ ε

‖XEc‖∗ +
2ε

λ
(
√
kβ1λ+ ε), (17)

where we used ‖HE‖∗ ≤
√
k‖HE‖F .86

On the other hand, using (4), (8), and (17), we can also give a new upper
bound estimate for ‖HE‖F , i.e.,

‖HE‖F ≤ β2‖HE‖F +
2
√
kβ1(1 + β2)λ+ 4β2ε

kβ1λ+
√
kε

‖XEc‖∗ + 2(β1 +
β2ε√
kλ

)(
√
kβ1λ+ ε),

which is equivalent to

‖HE‖F ≤
2
√
kβ1(1 + β2)λ+ 4β2ε

(1− β2)(kβ1λ+
√
kε)
‖XEc‖∗ +

2(
√
kβ1λ+ β2ε)(

√
kβ1λ+ ε)√

k(1− β2)λ
.

(18)
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Combining (17), (18), and ‖HEc‖F ≤ ‖HEc‖∗, we have

‖H‖F ≤‖HE‖F + ‖HEc‖F

≤(
√
k + 1)‖HE‖F +

2(
√
kβ1λ+ 2ε)√
kβ1λ+ ε

‖XEc‖∗ +
2ε

λ
(
√
kβ1λ+ ε)

≤C3‖XEc‖∗ + C4,

where C3 and C4 are defined in Theorem 4. This completes the proof.87

5. Conclusion and future works88

The goal of this work was to provide a theoretical investigation for the LRMR89

problem in the context of the unconstrained RNNM framework. In particular,90

using the powerful RIP tool, we have established a series of sufficient conditions91

(related to the δtk) of this RNNM model for recovery of any (low-rank) matrices92

with the `2-norm bounded noise. One of our future works will focus on deriving93

the new recovery conditions on the δtk for 0 < t ≤ 1. Besides, extending the94

current theoretical results to more unconstrained convex/nonconvex models for95

vector/matrix/tensor recovery will be another future work.96
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