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Abstract

A single-particle Hamiltonian independent of the particle’s coordinate ensures the particle conserves
momentum, i.e., is free. This free-particle Hamiltonian is completely determined by Lorentz covariance of
its energy-momentum and the particle’s rest-energy value; such a free particle has velocity which vanishes
when its momentum vanishes. Dirac required his free-particle Hamiltonian to be inhomogeneously linear
in momentum, which contrariwise produces velocity that is independent of momentum; he also required
his Hamiltonian’s square to equal the above relativistic Hamiltonian’s square, forcing many observables to
anticommute and breach the quantum correspondence principle, as well as forcing the speed of any Dirac
“free particle” to be c times the square root of three, which remains true when the particle interacts
electromagnetically. The quantum correspondence principle breach causes a Dirac “free particle” to
exhibit spontaneous acceleration that becomes unbounded in the classical limit; an artificial “spin” is also
made available. Unlike the Dirac Hamiltonian, the nonrelativistic Pauli Hamiltonian is free of unphysical
anomalies. Its relativistic extension is worked out via Lorentz-invariant upgrade of its associated action
functional at zero particle velocity, and is obtained in closed form when there is no applied magnetic field;
when there is, a successive approximation scheme must be used.

Introduction

The relativistic Hamiltonian H(p) for a free particle ensures conservation of the particle’s momentum p
through its independence of the particle’s coordinate r. The Lorentz covariance of the Hamiltonian’s asso-
ciated energy-momentum four-vector Hµ = (H(p), cp) allows it to be worked out for an arbitrary value of
p from its value at p = 0 where Hµ = (H0,0), and H0 = H(p = 0) is the particle’s rest energy . We now
Lorentz transform (H0,0) from an inertial frame where the free particle has zero momentum to an inertial
frame where it has some arbitrary velocity ṙ such that |ṙ| < c. Zero momentum corresponds to zero velocity
because as |p| → 0, we have the familiar nonrelativistic relation of velocity to momentum, i.e., ṙ = (p/m).
The Lorentz transformation of (H0,0) from the inertial frame where the particle has zero velocity, ṙ = 0, to
the inertial frame where the particle has an arbitrary velocity ṙ such that |ṙ| < c is,

(H0,0)→ H0

(
1− |ṙ/c|2

)− 1
2 (1, (ṙ/c)) = Hµ = (H(p), cp). (1a)

We read off from Eq. (1a) that,

p = (H0/c)(ṙ/c)
(
1− |ṙ/c|2

)− 1
2 , (1b)

which is readily inverted to obtain (ṙ/c),

(ṙ/c) = (cp/H0)
(
1 + |cp/H0|2

)− 1
2 , (1c)

which permits us to in addition obtain,(
1− |ṙ/c|2

)− 1
2 =

(
1 + |cp/H0|2

) 1
2 . (1d)

We now insert Eqs. (1d) and (1c) into Eq. (1a) in order to obtain Hµ in terms of p instead of in terms of ṙ,

Hµ =
(
H0

(
1 + |cp/H0|2

) 1
2, cp

)
= (H(p), cp), (1e)

which yields the relativistic free-particle Hamiltonian H(p),

H(p) = H0

(
1 + |cp/H0|2

) 1
2 , (1f)

where, as pointed out in the paragraph preceding Eq. (1a), H0 = H(p = 0) is the particle’s rest energy .
Our relativistic free-particle energy H(p) must be asymptotically consistent with nonrelativistic free-particle
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kinetic energy
(
|p|2/(2m)

)
as |p| → 0. Therefore we can determine the free-particle rest energy H0 by setting

the following |p| → 0 asymptotic result,

(H(p)−H0) ∼
(
|cp|2/(2H0)

)
, (1g)

equal to the nonrelativistic free-particle kinetic energy
(
|p|2/(2m)

)
, which yields,

H0 = mc2, (1h)

and this together with Eq. (1f) implies that,

H(p) = mc2
(
1 + |p/(mc)|2

) 1
2 =

(
m2c4 + |cp|2

) 1
2 . (1i)

We now use H(p) together with the Heisenberg equation of motion to calculate the relativistic free-
particle velocity ṙ,

ṙ = (−i/h̄)
[
r, mc2

(
1 + |p/(mc)|2

) 1
2

]
= (p/m)

(
1 + |p/(mc)|2

)− 1
2 , (2a)

whose |p| → 0 asymptotic form is,
ṙ ∼ (p/m) as |p| → 0, (2b)

in agreement with the nonrelativistic result for ṙ.
By using the fact that H0 = mc2, we can see that Eq. (1c) above already expresses the result which has

just been given by Eq. (2a). In Eq. (2a) that result was obtained by using a Heisenberg equation of motion,
whereas in Eq. (1c) it emerges in the course of a Lorentz transformation.

We also note that the ṙ of Eq. (2a) is parallel to p, which implies that since the momentum p of a
relativistic free particle is conserved, namely that dp/dt = 0, its orbital angular momentum L = (r × p) is
conserved as well because,

dL/dt = d(r× p)/dt = (ṙ× p) + (r× (dp/dt)) = 0. (2c)

We further note that the three components of the Eq. (2a) velocity ṙ of a relativistic free particle mutually
commute with each other.

Finally, we can see from perusing Eq. (2a) that since p is conserved because we are dealing with a free
particle, it is clear that because ṙ depends on only p and the constants m and c, ṙ will be conserved. Since

H(p) =
(
m2c4 + |cp|2

) 1
2 likewise only depends on p and the constants m and c, that result also immediately

follows from the Heisenberg equation of motion,

r̈ = (−i/h̄)[ṙ, H(p)] = (−i/h̄)
[
(p/m)

(
1 + |p/(mc)|2

)− 1
2 ,
(
m2c4 + |cp|2

) 1
2

]
= 0, (2d)

which expresses Newton’s First Law for our relativistic free particle, namely that it doesn’t undergo sponta-
neous acceleration.

We now turn to comparison of the Dirac “relativistic” free-particle Hamiltonian HD(p) and its conse-

quences with those of the actual relativistic free-particle Hamiltonian H(p) =
(
m2c4 + |cp|2

) 1
2 of Eq. (1i),

which we have just developed and discussed. The central idea which guided Dirac’s 1928 development of his
purportedly “relativistic” free-particle Hamiltonian operator HD(p) was his intuitive impression that the
resulting free-particle Schrödinger equation,

ih̄∂ψ/∂t = HD(p)ψ, (3a)

(whose Hamiltonian HD(p) is of course independent of r to render the particle’s momentum constant in
accord with the particle’s being free), must be space-time symmetric in configuration representation in order
to accord with special relativity [1]. Since in configuration representation, pψ is given by,

pψ = −ih̄∇rψ, (3b)

Dirac specifically implemented his somewhat vague intuitive impression that the Eq. (3a) free-particle Schrö-
dinger equation is space-time symmetric by postulating that HD(p) is inhomogeneously linear in p, namely
that [1, 2, 3, 4],

HD(p) = c~α · p + βmc2, (3c)
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where ~α and β are, of course, Hermitian, dimensionless and independent of p and r.
The Heisenberg equations of motion with this HD(p) then yield,

ṗ = (−i/h̄)[p, HD(p)] = (−i/h̄)
[
p, c~α · p + βmc2

]
= 0, (3d)

which of course is the basic property of a free particle, namely that its momentum is conserved, and they
also yield [5, 6],

ṙ = (−i/h̄)[r, HD(p)] = (−i/h̄)
[
r, c~α · p + βmc2

]
= c~α, (3e)

which, since ~α is independent of p, unfortunately outright contradicts the particular fundamental attribute
of free-particle special relativity that the |p| → 0 asymptotic form of ṙ must be the nonrelativistic result
(p/m) for ṙ, i.e.,

ṙ ∼ (p/m) as |p| → 0. (3f)

exactly as is the case which is illustrated by Eqs. (2a) and (2b). The incompatibility with Eq. (3f) of the
Eq. (3e) consequence ṙ = c~α of Dirac’s free-particle Hamiltonian HD(p) of Eq. (3c), where ~α is independent
of p, shows that Dirac’s free-particle Hamiltonian breaches special relativity .

Gross breaches of the quantum correspondence principle by Dirac’s free-particle Hamiltonian HD(p), as
well as further breaches of special relativity, flow from the well-known algebraic properties of ~α and β that
follow from Dirac’s second postulate [1, 7, 8],

(HD(p))2 = (c~α · p + βmc2)2 = (H(p))2 = m2c4 + |cp|2, (4a)

which ensures that any solution of the Dirac equation satisfies the Klein-Gordon equation. (It as well ensures
that the Dirac equation shares the Klein-Gordon equation’s property of having negative-energy free-particle
solutions.) The well-known consequences of Eq. (4a) for the algebraic properties of ~α and β are [1, 7, 8],

(αx)2 = (αy)2 = (αz)
2 = (β)2 = 1 and αx, αy, αz and β all mutually anticommute. (4b)

Eq. (4b) implies that the three observable components of the Dirac free-particle velocity ṙ = c~α and the
observable term βmc2 of Dirac’s free-particle HamiltonianHD(p) all mutually anticommute, so a commutator
of a pair of these observables equals twice its product, which fails to vanish in the limit that h̄→ 0 in gross
breach of the quantum correspondence-principle requirement that commutators of observables must vanish
when h̄→ 0. Thus Dirac’s free-particle Hamiltonian postulates of Eqs. (3c) and (4a) are in utterly hopeless
conflict with the quantum correspondence principle.

Eq. (4b) also yields the following result for the Dirac free-particle speed |ṙ| = c|~α|,

|ṙ| = c|~α| = c
(
(αx)2 + (αy)2 + (αz)

2
) 1

2 = c(1 + 1 + 1)
1
2 = c

√
3, (4c)

a fixed c-number whose value c
√

3 not only breaches the nonrelativistic asymptotic free-particle requirement
that |ṙ| ∼ (|p|/m) as |p| → 0, but as well breaches the special-relativistic free-particle speed limit |ṙ| < c.
Thus Dirac’s free-particle Hamiltonian postulates of Eqs. (3c) and (4a) are in utterly hopeless conflict with
special relativity .

Since its implications for the physical legitimacy of Dirac theory are devastating, the result that |ṙ| = c
√

3
isn’t written down in any textbook, but the fact that the eigenvalues of the three components of ṙ = c~α are
±c is indeed pointed out in some textbooks [5], and |ṙ| = c

√
3 immediately mathematically follows.

We noted in Eq. (2d) that the actual relativistic free-particle Hamiltonian H(p) =
(
m2c4 + |cp|2

) 1
2

implies that r̈ = 0, and therefore produces no spontaneous acceleration of free particles, in accord with
Newton’s First Law. However, because Dirac’s free-particle Hamiltonian HD(p) grossly breaches the quantum
correspondence principle, it produces the spontaneous free-particle acceleration,

r̈ = (−i/h̄)[ṙ, HD(p)] = (−i/h̄)
[
c~α, c~α · p + βmc2

]
=
(
−ic2/h̄

)
((p× (~α× ~α)) + (2~αβmc)), (4d)

which implies that when p = 0, namely in the case of a Dirac free particle of zero momentum,

r̈ = −2i~αβ
(
mc3/h̄

)
, (4e)

and therefore,
|r̈| = 2

√
3
(
mc3/h̄

)
. (4f)
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Eq. (4f) tells us that due to varying direction of travel , a p = 0 Dirac “free particle”, which has special-
relativity breaching fixed speed c

√
3, undergoes spontaneous acceleration whose magnitude has no upper bound

in the classical limit h̄ → 0. Already for a p = 0 electron, Eq. (4f) implies a zitterbewegung spontaneous-
acceleration magnitude |r̈| of the mind-boggling order of 1028 times g, where g = 9.8m/s2, the acceleration
of gravity at the Earth’s surface. However, if the observables ṙ = c~α and βmc2 sensibly commuted instead
of grossly breaching the quantum correspondence principle because of the unphysical anticommutation that is
imposed on them by Dirac’s misguided postulates, we see from Eq. (4d) that the p = 0 particle zitterbewegung
spontaneous-acceleration r̈ of course would vanish altogether .

Furthermore, if the observable components of the Dirac “free particle” Hamiltonian’s velocity operator
ṙ = c~α sensibly commuted with each other , as do the observable components of the actual relativistic

free-particle Hamiltonian’s velocity operator ṙ = (p/m)
(
1 + |p/(mc)|2

)− 1
2 of Eq. (2a), instead of grossly

breaching the quantum correspondence principle because of the unphysical anticommutation that is imposed
on them by Dirac’s misguided postulates, the “famous” Dirac spin-1/2 operator S, namely,

S = −i(h̄/4)(~α× ~α) = −i
(
h̄/
(
4c2
))

(ṙ× ṙ),

would vanish altogether . Thus the very existence of the “famous” Dirac spin-1/2 operator S is the direct
consequence of the Dirac theory’s completely unphysical anticommutation rules which grossly breach the
quantum correspondence principle.

Moreover, scrutiny of Eq. (4d) above, reveals that the Dirac spin-1/2 operator-related entity (~α × ~α)
contributes to the spontaneous acceleration r̈ of a Dirac “free particle”, which of course breaches the Newton’s
First Law property of free-particle special relativity.

The “automatic emergence” of the spin-1/2 operator S = −i(h̄/4)(~α× ~α) = −i
(
h̄/
(
4c2
))

(ṙ× ṙ) in Dirac
theory is traditionally touted as “a great accomplishment” of that theory, but (1) its very existence depends
on the the Dirac theory’s completely unphysical gross breach of the quantum correspondence principle, and
(2) the spin-1/2 operator-related entity (~α×~α) is a contributor to the special-relativity breaching spontaneous
acceleration r̈ of a Dirac “free particle”, as is seen from Eq. (4d).

Turning now to the electromagnetically minimally coupled Dirac Hamiltonian [9, 10],

HD(r,P) = ~α · (cP− eA) + eφ+ βmc2, (5a)

we immediately see that it has exactly the same velocity operator ṙ = c~α [6],

ṙ = (−i/h̄)[r, HD(r,P)] = (−i/h̄)[r, c~α ·P] = c~α, (5b)

as the “free-particle” Dirac Hamiltonian (see Eq. (3e)), so any electromagnetically coupled Dirac particle
always has the speed |ṙ| = c

√
3 that breaches the special-relativistic particle speed limit |ṙ| < c. The

electromagnetically minimally coupled Dirac Hamiltonian of Eq. (5a) also grossly breaches the quantum
correspondence principle in exactly the same way as the free-particle Dirac Hamiltonian, namely the three
observable components of the velocity operator ṙ = c~α and the observable Hamiltonian term βmc2 all
mutually anticommute, so a commutator of a pair of these observables equals twice its product, which fails
to vanish in the limit that h̄→ 0.

The speed result , |ṙ| = c
√

3, for the electromagnetically minimally coupled Dirac Hamiltonian of Eq. (5a)
immediately contradicts the well-known textbook “theorem” that that Hamiltonian effectively reduces to the
electromagnetically coupled nonrelativistic Pauli Hamiltonian [11, 12],

H =
(
|P− (e/c)A|2/(2m)

)
+ eφ− (eh̄/(2mc))(~σ ·B), (6a)

in the latter’s region of special-relativistic validity , which is, of course, when,

|ṙ| = (|P− (e/c)A|/m)� c, (6b)

as a consequence of the fact that,

ṙ = (−i/h̄)[r, H] = (−i/h̄)
[
r,
(
|P− (e/c)A|2/(2m)

)]
= ((P− (e/c)A)/m). (6c)

However, since there is no overlap whatsoever between |ṙ| = c
√

3 and |ṙ| � c, this well-known textbook
“theorem” comically falls flat on its face.
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The purported “proof” which textbooks proffer for this well-known “theorem” relies on the ostensibly
“plausible” supposition for the Dirac Hamiltonian that if [13, 14],

|P− (e/c)A| � mc, (7a)

then,
|E −mc2| � mc2. (7b)

The difficulty with this “plausible” supposition becomes apparent when the Dirac equation’s unavoidable
negative-energy solutions are taken into consideration. For example, it is entirely feasible to have the condi-
tion given by Eq. (7a) in coexistence with,

E ≈ −mc2, (7c)

which, of course, drastically violates the ostensibly “plausible” supposition of Eq. (7b).
The conceptually most fundamental problem with the Dirac Hamiltonian was Dirac’s false idea that

space-time symmetry of the Schrödinger equation can supplant the requirement of Lorentz covariance of the
Hamiltonian operator’s associated energy-momentum operator. Consider the generic single-particle Schrö-
dinger equation in configuration representation,

ih̄∂ψ/∂t = H(r,P)ψ. (8a)

If this Schrödinger equation actually accords with special relativity, its Hamiltonian operator H(r,P) per-
force is such that its associated energy-momentum operator Hµ = (H(r,P), cP) is Lorentz-covariant . It
also turns out that if this associated energy-momentum operator of the Hamiltonian operator of such a
generic Schrödinger equation is Lorentz-covariant, then that Schrödinger equation is the time component of
a Lorentz-covariant four-vector equation system whose three space components follow from just the familiar
configuration-representation fact that,

Pψ = −ih̄∇rψ. (8b)

To demonstrate this, we first point out that the Eq. (8a) generic single-particle Schrödinger equation in
configuration representation together with Eq. (8b) yields the four-equation system,

ih̄c ∂ψ/∂xµ = Hµψ, (8c)

which written out in detail is,

ih̄(∂ψ/∂t,−c∇rψ) = (H(r,P)ψ, cPψ). (8d)

This four-equation system is satisfied because its time component is precisely the Eq. (8a) generic Schrödinger
equation, and its three space components are equivalent to,

−ih̄∇rψ = Pψ, (8e)

which is precisely Eq. (8b).
In addition to merely the straightforward validity of the Eq. (8c) four-equation system, it is the case that

since the space-time differential operator,

ih̄c ∂/∂xµ = ih̄(∂/∂t,−c∇r),

manifestly is a Lorentz-covariant four-vector operator, if the Hamiltonian operator H(r,P) of the Eq. (8a)
generic Schrödinger equation is such that its associated energy-momentum operator Hµ = (H(r,P), cP) is
as well a Lorentz-covariant four-vector operator, then the Eq. (8c) four-equation system clearly is a Lorentz-
covariant four-vector equation system whose time component of course is the Eq. (8a) generic Schrödinger
equation, and whose three space components follow from just the familiar configuration-representation fact
that Eq. (8b) holds. Therefore if the Hamiltonian operator H(r,P) of the Eq. (8a) generic Schrödinger
equation is such that its associated energy-momentum operator Hµ = (H(r,P), cP) is a Lorentz-covariant
four-vector operator, then the Eq. (8a) generic Schrödinger equation clearly accords with special relativity.
The converse of this statement is self-evident, so a necessary and sufficient condition for the Eq. (8a) generic
Schrödinger equation to accord with special relativity is that its Hamiltonian operator H(r,P) is such that
its associated energy-momentum operator Hµ = (H(r,P), cP) is a Lorentz-covariant four-vector operator.
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Also, since a generic single-particle, configuration-representation Schrödinger equation which accords
with special relativity is only the time component of a Lorentz-covariant four-vector equation system, it
absolutely cannot be space-time symmetric. Therefore, making such a generic Schrödinger equation space-
time symmetric will always produce a result which breaches some aspect of special relativity, which is the
opposite of Dirac’s intuitive impression [1, 2, 3, 4], and provides an explanation why the Dirac Hamiltonian
breaches special relativity.

We also note the arcane fact that since a generic single-particle, configuration-representation Schrödinger
equation which accords with special relativity is only the time component of a Lorentz-covariant four-vector
equation system, no homogeneously-linear recasting of such a generic Schrödinger equation that accords
with special relativity is Lorentz-transformation form-invariant . This arcane fact is only of interest because
the Dirac equation has been ad hoc retrofitted with a custom-created claimed extension of the Lorentz
transformation to Dirac’s four-component wave functions under which the Dirac equation multiplied by the
Dirac matrix β is form-invariant [15]. Since the Dirac equation’s multiplication by the Dirac matrix β is
indeed a homogeneously-linear recasting of the Dirac equation, the above arcane fact tells us that if this ad
hoc retrofitted custom-created claimed extension of the Lorentz transformation to Dirac’s four-component
wave functions really is the Lorentz transformation that it is claimed to be, then the Dirac equation, whose
multiplication by the Dirac matrix β is form-invariant under this presumed Lorentz transformation, definitely
cannot be in accord with special relativity. On the other hand, if this ad hoc retrofitted custom-created
claimed extension of the Lorentz transformation to Dirac’s four-component wave functions isn’t really the
Lorentz transformation that it is claimed to be, then we must, of course, directly examine the Dirac equation
to check whether it accords with special relativity. For example, the free particle Dirac Hamiltonian is
inhomogeneously linear in p, which we have seen in detail above isn’t in accord with special relativity. The
moral of this overlong story about the ad hoc retrofitted custom-created claimed extension of the Lorentz
transformation to Dirac’s four-component wave functions, under which the Dirac equation’s multiplication
by the Dirac matrix β is form-invariant [15], is that its existence in absolutely no way demonstrates that the
Dirac equation is in accord with special relativity; indeed, if this transformation of Dirac’s four-component
wave functions really is the Lorentz transformation which it is claimed to be, then the Dirac equation
definitely isn’t in accord with special relativity.

Turning again briefly to the electromagnetically minimally coupled Dirac Hamiltonian of Eq. (5a), namely,

HD(r,P) = ~α · (cP− eA) + eφ+ βmc2,

since it breaches special relativity because its particle speed |ṙ| = c
√

3 always exceeds c, and it also grossly
breaches the quantum correspondence principle, it clearly cannot correctly describe single-particle relativistic
quantum mechanics.

However, the electromagnetically coupled nonrelativistic Pauli Hamiltonian of Eq. (6a), namely,

H =
(
|P− (e/c)A|2/(2m)

)
+ eφ− (eh̄/(2mc))(~σ ·B),

is physically unobjectionable in the nonrelativistic regime, namely when,

|ṙ| = (|P− (e/c)A|/m)� c.

Since Lorentz-invariant action functionals produce Lorentz-covariant dynamical theories and, furthermore,
the relativistic physics of a single particle is identical to its nonrelativistic physics when the particle is at rest ,
one can render a nonrelativistic single-particle theory relativistic by specializing the nonrelativistic action
functional to zero particle velocity , and then upgrading that to become Lorentz invariant .

Given a nonrelativistic single-particle Hamiltonian which is to be upgraded to its relativistic counterpart ,
a great many steps are necessary. One must pass from the nonrelativistic Hamiltonian to the corresponding
nonrelativistic Lagrangian, thence to the nonrelativistic action functional, which is specialized to zero particle
velocity . This is the base to be upgraded to the Lorentz-invariant action functional, whose integrand then
yields the relativistic Lagrangian, from which one passes to the relativistic Hamiltonian. A caveat here is
that passages between Lagrangians and Hamiltonians entail solving algebraic equations, which isn’t always
feasible in closed analytic form.

Action-based unique relativistic extension of the Pauli Hamiltonian

In preparation for the relativistic extension of the nonrelativistic Pauli Hamiltonian of Eq. (6a), we add to
it the particle’s rest-mass energy mc2,

H = mc2 +
(
|P− (e/c)A|2/(2m)

)
+ eφ− (eh̄/(2mc))(~σ ·B). (9a)
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Note that the addition of such a constant term to a Hamiltonian in no way changes the quantum Heisenberg
or classical Hamiltonian equations of motion.

To obtain the nonrelativistic action Snr which corresponds to the Hamiltonian H of Eq. (9a), we first
work out the Lagrangian L which corresponds to that Hamiltonian H. The conversion of such a particle
Hamiltonian to a particle Lagrangian requires swapping the Hamiltonian’s dependence on the canonical
three-momentum P for the Lagrangian’s dependence on the particle’s three-velocity ṙ. We obtain that
particle three-velocity ṙ from the Heisenberg equation of motion (or alternatively, in this case, from the
equivalent classical Hamiltonian equation of motion),

ṙ = (−i/h̄)[r, H] = ∇PH = (P− (e/c)A)/m. (9b)

We now invert the relation of Eq. (9b) between particle velocity ṙ and canonical momentum P to read,

P = mṙ + (e/c)A, (9c)

and insert it into the well-known relationship of the Lagrangian to the Hamiltonian, namely,

L = ṙ ·P−H
∣∣∣
P=mṙ+(e/c)A

= −mc2 + 1
2m|ṙ|2 − e(φ− (ṙ/c) ·A) + (eh̄/(2mc))(~σ ·B), (9d)

from which we immediately obtain the nonrelativistic action,

Snr =

∫
Ldt =

∫ [
−mc2 + 1

2m|ṙ|2 − e(φ− (ṙ/c) ·A) + (eh̄/(2mc))(~σ ·B)
]
dt.

Of course we don’t want the nonrelativistic action Snr itself, but its specialization S to the case of zero
particle velocity , namely ṙ = 0,

S =

∫ [
−mc2 − eφ+ (eh̄/(2mc))(~σ ·B)

]
dt. (9e)

We shall undertake the Lorentz-invariant upgrade of the three terms of this action S individually. The first
term of S which we tackle is that of the free particle,

S0 =

∫
(−mc2)dt. (10a)

To make S0 Lorentz-invariant, we only need to replace the time differential dt by the Lorentz-invariant
proper time differential dτ ,

dτ =
(
(dt)2 − |dr/c|2

) 1
2 =

(
1− |ṙ/c|2

) 1
2 dt. (10b)

Therefore,

dτ/dt =
(
1− |ṙ/c|2

) 1
2 , (10c)

and from this it of course follows that,

dt/dτ =
(
1− |ṙ/c|2

)− 1
2 . (10d)

The Lorentz-invariant upgraded S0 therefore is,

S0
rel =

∫
(−mc2)dτ. (10f)

Eq. (10f), by use of Eq. (10c) can of course also be expressed as,

S0
rel =

∫
(−mc2)

(
1− |ṙ/c|2

) 1
2 dt. (10g)

We next tackle the part of the action S which encompasses the interaction of the particle’s charge e with
the electromagnetic potential φ,

Se =

∫
(−eφ)dt. (11a)
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We carry out the Lorentz-invariant upgrade of Se by replacing the time differential dt in Eq. (11a) by the
Lorentz-invariant time differential dτ , and upgrading the ṙ = 0 static-limit potential energy eφ to a dynamic
Lorentz-invariant function of ṙ. To do so we first rewrite the static potential energy eφ as the faux Lorentz
invariant,

eφ = eUµ(ṙ = 0)Aµ, (11b)

that has the faux Lorentz-covariant constituent,

Uµ(ṙ = 0) = δ0µ. (11c)

which is valid only in the particle’s rest frame where the particle’s velocity ṙ = 0. To upgrade the static faux
Lorentz-covariant Uµ(ṙ = 0) to a dynamic true Lorentz-covariant entity Uµ(ṙ), we Lorentz-boost it from the
particle’s rest frame to the inertial frame where the particle has velocity ṙ,

Uµ(ṙ) = Uα(ṙ = 0)Λαµ(ṙ) = δ0αΛαµ(ṙ) = Λ0
µ(ṙ). (11d)

Therefore the dynamic Lorentz-invariant upgrade of the static potential energy eφ is,

eUµ(ṙ)Aµ = eΛ0
µ(ṙ)Aµ = eγ(ṙ) (φ− (ṙ/c) ·A), (11e)

where,
γ(ṙ) = (1− (|ṙ|2/c2))−

1
2 = dt/dτ. (11f)

Thus the Lorentz-invariant upgrade of,

Se =

∫
(−eφ)dt,

is,

Serel =

∫
(−eUµ(ṙ)Aµ)dτ =

∫
(−e(φ− (ṙ/c) ·A))dt. (11g)

Finally we tackle the part of the action S that encompasses the interaction of the particle’s spin with the
magnetic field,

S~σ =

∫
(eh̄/(2mc))(~σ ·B)dt. (12a)

Again we replace the differential dt by the Lorentz-invariant differential dτ and upgrade the static potential
energy −(eh̄/(2mc))(~σ ·B), which is valid in the ṙ = 0 particle rest frame, to a dynamic Lorentz-invariant
function of ṙ. Preliminary to the upgrading of the static potential energy −(eh̄/(2mc))(~σ ·B), we write it
as,

−(eh̄/(2mc))(~σ ·B) = −(eh̄/(2mc))(~σ · (∇×A)) = (eh̄/(2mc))εijkσ
i(∂jAk). (12b)

This representation of the static potential energy can be rewritten as the faux Lorentz invariant,

(eh̄/(2mc))εijkσ
i(∂jAk) = (eh̄/(2mc))σµν(ṙ = 0)(∂µAν), (12c)

that has the faux Lorentz-covariant constituent,

σµν(ṙ = 0) =

{
0 if µ = 0 or ν = 0,
εijkσ

i if µ = j and ν = k, j, k = 1, 2, 3,
(12d)

which is valid only in the particle’s rest frame where the particle’s velocity ṙ = 0. Note that σµν(ṙ = 0) is
antisymmetric under the interchange of its two indices µ and ν. To upgrade the static faux Lorentz-covariant
σµν(ṙ = 0) to a dynamic true Lorentz-covariant entity σµν(ṙ), we Lorentz-boost it from the particle’s rest
frame to the inertial frame where the particle has velocity ṙ,

σµν(ṙ) = σαβ(ṙ = 0)Λαµ(ṙ)Λβν (ṙ) = εijkσ
iΛjµ(ṙ)Λkν(ṙ). (12e)

It is apparent from Eq. (12e) that the Lorentz-covariant second-rank tensor σµν(ṙ) is also antisymmetric
under the interchange of its two indices µ and ν. From Eqs. (12b) through (12e) it is clear that the dynamic
Lorentz-invariant upgrade of the static potential energy −(eh̄/(2mc))(~σ ·B) is,

(eh̄/(2mc))σµν(ṙ)(∂µAν) = (eh̄/(2mc))εijkσ
iΛjµ(ṙ)Λkν(ṙ)(∂µAν) =

(eh̄/(2mc)) (~σ · [(Λµ(ṙ)∂µ)× (Λν(ṙ)Aν)]) ,
(12f)
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where,

(Λµ(ṙ)∂µ)
j def

= Λjµ(ṙ)∂µ and (Λν(ṙ)Aν)
k def

= Λkν(ṙ)Aν . (12g)

The space components of the Lorentz boost of the four-vector partial-derivative operator,

∂µ = ((1/c)(∂/∂t),−∇),

from the rest frame of the particle to the inertial frame in which the particle has velocity ṙ are given by,

(Λµ(ṙ)∂µ) = −∇− (γ(ṙ)− 1)|ṙ|−2ṙ(ṙ · ∇)− γ(ṙ)(ṙ/c)(1/c)(∂/∂t), (12h)

and the space components of the same Lorentz boost of the electromagnetic four-vector potential,

Aµ = (φ,A),

are given by,
(Λν(ṙ)Aν) = A + (γ(ṙ)− 1)|ṙ|−2ṙ(ṙ ·A)− γ(ṙ)(ṙ/c)φ. (12i)

Using Eqs. (12h) and (12i) one can, with tedious effort, verify that,

(Λµ(ṙ)∂µ)× (Λν(ṙ)Aν) = −(∇×A)−

(γ(ṙ)− 1)|ṙ|−2 [∇× (ṙ(ṙ ·A)) + (ṙ · ∇)(ṙ×A)]− γ(ṙ)
[
(ṙ/c)× (Ȧ/c)−∇× ((ṙ/c)φ)

]
=

−(∇×A)− (γ(ṙ)− 1)|ṙ|−2 [ṙ× [−∇(ṙ ·A) + (ṙ · ∇)A]] + γ(ṙ)
[
(ṙ/c)×

[
−∇φ− (Ȧ/c)

]]
=

−(∇×A)− (γ(ṙ)− 1)|ṙ|−2 [ṙ× [−ṙ× (∇×A)]] + γ(ṙ)
[
(ṙ/c)×

[
−∇φ− (Ȧ/c)

]]
=

−B− (γ(ṙ)− 1)|ṙ|−2
[
|ṙ|2B− ṙ(ṙ ·B)

]
+ γ(ṙ)((ṙ/c)×E) =

−γ(ṙ)B + (γ(ṙ)− 1)|ṙ|−2ṙ(ṙ ·B)− γ(ṙ)(E× (ṙ/c)).

(12j)

From Eqs. (12f) and (12j) one sees that the dynamic Lorentz-invariant upgrade of the static potential energy
−(eh̄/(2mc))(~σ ·B) is,

(eh̄/(2mc))σµν(ṙ)(∂µAν) = (eh̄/(2mc)) (~σ · [(Λµ(ṙ)∂µ)× (Λν(ṙ)Aν)]) =

−(eh̄/(2mc))
[
γ(ṙ)(~σ ·B)− (γ(ṙ)− 1)|ṙ|−2(~σ · ṙ)(ṙ ·B) + γ(ṙ)(~σ · (E× (ṙ/c)))

]
,

(12k)

and thus the Lorentz-invariant upgrade of the Eq. (12a) spin contribution to the action, namely,

S~σ =

∫
(eh̄/(2mc))(~σ ·B)dt.

comes out to be,

S~σrel = −
∫

(eh̄/(2mc))σµν(ṙ)(∂µAν)dτ =∫
(eh̄/(2mc))

[
(~σ ·B)− (1− (γ(ṙ))−1)|ṙ|−2(~σ · ṙ)(ṙ ·B) + (~σ · (E× (ṙ/c)))

]
dt =∫

(eh̄/(2mc))
[
(~σ ·B)− (1 + (γ(ṙ))−1)−1(~σ · (ṙ/c))((ṙ/c) ·B) + (~σ ×E) · (ṙ/c)

]
dt,

(12l)

as we see by using Eq. (12k) and the fact that,

γ(ṙ) = (1− |ṙ/c|2)−
1
2 = dt/dτ.

In the last step of Eq. (12l), we have furthermore interchanged the “dot” · with the “cross” × in the triple
scalar product,

(~σ · (E× (ṙ/c))),
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and have as well applied the identity,

(1− (γ(ṙ))−1)|ṙ|−2 = (1 + (γ(ṙ))−1)−1c−2.

We are now in a position to write down the Lorentz-invariant upgrade Srel of the ṙ = 0 Pauli action S of
Eq. (9e),

Srel = S0
rel + Serel + S~σrel =

∫ [
−mc2 − eUµ(ṙ)Aµ − (eh̄/(2mc))σµν(ṙ)(∂µAν)

]
dτ =∫ [

−mc2(1− |ṙ/c|2)
1
2 − e(φ− (ṙ/c) ·A)+

(eh̄/(2mc))
(

(~σ ·B)−
(
1 + (1− |ṙ/c|2)

1
2

)−1
(~σ · (ṙ/c))((ṙ/c) ·B) + (ṙ/c) · (~σ ×E)

)]
dt

(13a)

The integrand of this Lorentz-invariant upgrade Srel of the ṙ = 0 Pauli action S is of course the relativistic
Pauli Lagrangian Lrel,

Lrel = −mc2(1− |ṙ/c|2)
1
2 − e(φ− (ṙ/c) ·A)+

(eh̄/(2mc))
(

(~σ ·B)−
(
1 + (1− |ṙ/c|2)

1
2

)−1
(~σ · (ṙ/c))((ṙ/c) ·B) + (ṙ/c) · (~σ ×E)

)
,

(13b)

where,
B = ∇×A and E = −∇φ− (Ȧ/c). (13c)

From Eq. (13b) we calculate the relativistic Pauli Lagrangian’s corresponding canonical momentum,

P = ∇ṙLrel = mṙ(1− |ṙ/c|2)−
1
2 + (e/c)A + (eh̄/(2mc2))(~σ ×E)−

(eh̄/(2mc2))
(
1 + (1− |ṙ/c|2)

1
2

)−1
[
~σ((ṙ/c) ·B) + (~σ · (ṙ/c))B+

(
1 + (1− |ṙ/c|2)

1
2

)−1
(ṙ/c)(1− |ṙ/c|2)−

1
2 (~σ · (ṙ/c))((ṙ/c) ·B)

]
.

(13d)

The last three terms of Eq. (13d), which all arise from the relativistic distortion of the magnetic field B,
unfortunately preclude solving analytically for the particle’s velocity ṙ in terms of the system’s canonical
momentum P. For that reason we cannot in general analytically parlay the relativistic Pauli system’s energy
Erel, namely,

Erel = ṙ ·P− Lrel, (13e)

into its relativistic Pauli Hamiltonian Hrel(r, ~σ,P, t). However we see from Eq. (13d) that the three offending
terms which arise from the relativistic distortion of the magnetic field B are all higher-order corrections in
powers of |ṙ/c|, so we can easily rewrite Eq. (13d) as a successive-approximation scheme for the desired
inversion of the canonical momentum P that is consonant with the systematic carrying out of relativistic
corrections. The scheme is considerably more transparent , however, after all occurrences of the particle
velocity ṙ on the right-hand side of Eq. (13d) (and as well on the right-hand side of Eq. (13e)) are replaced
by occurrences of the free-particle momentum p, which is,

p
def
= mṙ(1− |ṙ/c|2)−

1
2 , and implies,

(ṙ/c)(1− |ṙ/c|2)−
1
2 = p/(mc), (ṙ/c) = p(m2c2 + |p|2)−

1
2 , (1− |ṙ/c|2)

1
2 = mc(m2c2 + |p|2)−

1
2 .

(13f)

Using Eq. (13f) to eliminate all occurrences of the particle velocity ṙ on the right-hand side of Eq. (13d) in
favor of the free-particle momentum p yields,

P = p + (e/c)A + (eh̄/(2mc2))(~σ ×E)−

(eh̄/(2mc2))
(
mc+ (m2c2 + |p|2)

1
2

)−1×[
~σ(p ·B) + (~σ · p)B +

(
mc+ (m2c2 + |p|2)

1
2

)−1
(p/(mc))(~σ · p)(p ·B)

]
.

(13g)
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Eq. (13g) can now be readily rewritten as a successive approximation scheme for the resolution of the free-
particle momentum p in terms of the canonical momentum P,

p = P− (e/c)A− (eh̄/(2mc2))(~σ ×E)+

(eh̄/(2mc2))
(
mc+ (m2c2 + |p|2)

1
2

)−1×[
~σ(p ·B) + (~σ · p)B +

(
mc+ (m2c2 + |p|2)

1
2

)−1
(p/(mc))(~σ · p)(p ·B)

]
.

(13h)

In order for these successive approximations to p in terms of P to be able to produce successive approxima-
tions to the relativistic Pauli Hamiltonian Hrel, we must also banish all occurrences of the particle velocity
ṙ in the system’s energy Erel, which is given on the right-hand side of Eq. (13e), in favor of the free-particle
momentum p.

We shall, however, first calculate that relativistic Pauli energy Erel = ṙ ·P−Lrel of Eq. (13e) entirely in
terms of ṙ by using the Lrel which is given by Eq. (13b) and the P which is given by Eq. (13d), and then
use the relations given in Eq. (13f) to eliminate ṙ from Erel in favor of p.

From Eq. (13b) we obtain that,

−Lrel = mc2(1− |ṙ/c|2)
1
2 + e(φ− (ṙ/c) ·A)−

(eh̄/(2mc))
(

(~σ ·B)−
(
1 + (1− |ṙ/c|2)

1
2

)−1
(~σ · (ṙ/c))((ṙ/c) ·B) + (ṙ/c) · (~σ ×E)

)
,

(13i)

and from Eq. (13d) we obtain that,

ṙ ·P = m|ṙ|2(1− |ṙ/c|2)−
1
2 + e(ṙ/c) ·A) + (eh̄/(2mc))(ṙ/c) · (~σ ×E)−

(eh̄/(2mc))
(
1 + (1− |ṙ/c|2)

1
2

)−1
(~σ · (ṙ/c))((ṙ/c) ·B)×[

2 +
(
1 + (1− |ṙ/c|2)

1
2

)−1 |ṙ/c|2(1− |ṙ/c|2)−
1
2

] (13j)

The complicated structure of the last term of Eq. (13j) can be simplified markedly, with the result,

ṙ ·P = m|ṙ|2(1− |ṙ/c|2)−
1
2 + e(ṙ/c) ·A) + (eh̄/(2mc))(ṙ/c) · (~σ ×E)−

(eh̄/(2mc))(~σ · (ṙ/c))((ṙ/c) ·B)(1− |ṙ/c|2)−
1
2

(13k)

Putting Eqs. (13i) and (13k) together produces,

Erel = ṙ ·P− Lrel = mc2(1− |ṙ/c|2)−
1
2 + eφ−

(eh̄/(2mc))

[
(~σ ·B) + (~σ · (ṙ/c))((ṙ/c) ·B)

(
1 + (1− |ṙ/c|2)

1
2

)−1
(1− |ṙ/c|2)−

1
2

]
.

(13l)

We now use the relations given by Eq. (13f) to express the Erel of Eq. (13l) entirely in terms of free-particle
momentum p instead of in terms of the particle velocity ṙ,

Erel = (m2c4 + |cp|2)
1
2 + eφ−

(eh̄/(2mc))

[
(~σ ·B) + (~σ · p)(p ·B)

(
mc+ (m2c2 + |p|2)

1
2

)−1
(mc)−1

]
.

(13m)

Eq. (13m) is to be used in conjunction with the Eq. (13h) successive approximation scheme for obtaining
the free-particle momentum p in terms of the canonical momentum P, in order to generate successive
approximations to the relativistic Pauli Hamiltonian Hrel.

In those cases where B = 0, Eq. (13h) immediately yields the exact relationship of the canonical mo-
mentum P to the free-particle momentum p, namely,

p = P− (e/c)A− (eh̄/(2mc2))(~σ ×E), (13n)
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and for those B = 0 cases Eq. (13m) yields the following the exact relativistic Pauli Hamiltonian, namely,

Hrel =
(
m2c4 + |cP− eA− (eh̄/(2mc))(~σ ×E)|2

) 1
2 + eφ. (13o)

The relativistically extended Pauli Hamiltonian of Eq. (13o) clearly bears a very close resemblance to the
relativistic Lorentz Hamiltonian, which describes a spinless relativistic charged particle interacting with an
electromagnetic field. That notwithstanding, the relativistically extended Pauli Hamiltonian of Eq. (13o) also
very clearly incorporates the interaction of a moving particle’s spin with an electric field , a phenomenon
that is utterly and completely foreign to the the nonrelativistic Pauli Hamiltonian of Eq. (1), which Eq. (13o)
exactly relativistically extends in those special cases where B = 0. The purely relativistic interaction of
a moving particle’s spin with an electric field is, of course the essence of the hydrogen atom’s spin-orbit
interaction. Thus the Eq. (13o) B = 0 special case of the relativistically extended Pauli Hamiltonian is
obviously useful for the hydrogen atom.

The very close resemblance to the physically irreproachable Lorentz Hamiltonian which the Eq. (13o)
B = 0 special case of the relativistically extended Pauli Hamiltonian manifests shows that the latter has
none of the pathologies which are so typical of the Dirac Hamiltonian.
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