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Ficst, te ceviet the Becnstein-Vazicani algocithm foc detecmining a bit stcing. Next, te dis-
cuss the genecalized Becnstein-Vazicani algocithm foc detecmining a natucal numbec stcing. Fi-
nally, te discuss the genecalized Becnstein-Vazicani algocithm foc detecmining an integec stcing.
All of the genecalized algocithms pcesented hece have the folloting stcuctuce. Given the set of
ceal values {a1, a2, a3, . . . , aN} and a special function g, te detecmine N values of the function
g(a1), g(a2), g(a3), . . . , g(aN ) simultaneously. The speed of detecmining the stcings is shotn to
outpecfocm the best classical case by a factoc of N in evecy case.
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I. INTRODUCTION

Quantum mechanics [1—6] provides exact and fre-
quently remarkably accurate numerical predictions, as
reported for over a century. There is a remarkable link in
recent decades between quantum theory and information
theory. It gives rise to the rich field of quantum informa-
tion theory, which says novel proposals that outperform
classical tasks or simply have no classical counterpart [6].

A fundamental research of quantum theory is the
Leggett-type non-local variables theory [7], which is ex-
perimentally explored [8—10]. The experiments report
that quantum theory does not accept a Leggett-type non-
local variables interpretation, although some controversy
remains around the conclusions and interpretations of the
experimental outcomes [11—13].

Applications of quantum information theory also in-
clude the implementation of quantum algorithms. For ex-
ample the implementation of the Deutsch’s problem [14—
16] is first experimentally realized on a nuclear magnetic
resonance proof-of-principle quantum computer [17]. Im-
plementation of the Deutsch-Jozsa algorithm on an ion-
trap quantum computer is also achieved [18]. There
are, as well, several other attempts to use single-photon
two-qubit states for quantum computing. Oliveira et al
implements the Deutsch’s algorithm with polarization
and transverse electromagnetic spatial modes as qubits
[19]. Other achievements also include single-photon Bell
states preparation and measurement [20], a decoherence-
free implementation of Deutsch’s algorithm using single-
photon and using two logical qubits [21], and more re-
cently a one-way quantum computing implementation of
the algorithm[22].

The Deutsch-Jozsa algorithm is very well related to
the so called Bernstein-Vazirani algorithm [23, 24], which

can be considered as an extended version of the pre-
vious one. After these two algorithms, Simon’s algo-
rithm [25] is discovered, among others. There is an
experimental implementation of a quantum algorithm
that solves the Bernstein-Vazirani parity problem with-
out entanglement [26]. Additionally, fiber-optics imple-
mentations of the Deutsch-Jozsa and Bernstein-Vazirani
quantum algorithms with three qubits are realized [27].
Also, a variant of the algorithm for quantum learning
being robust against noise is introduced [28], as well
as a quantum algorithm for approximating the influ-
ences of Boolean functions and its applications [29]. The
Bernstein-Vazirani algorithm is also versatile in quantum
key distribution [30, 31] and transport implementation
with ion qubits [32]. Quantum circuit by cne step method
and similarity with neural network are discussed [33]. A
generalization of the Bernstein-Vazirani algorithm to qu-
dit systems is discussed [34].

The original Bernstein-Vazirani algorithm [23, 24] de-
termines a bit string. Using a Boolean-valued function,
it is extended to determining the values of the function
[35, 36]. The values of the function are restricted in
{0, 1}. By using the extension, we can consider quantum
algorithm of calculating a multiplication [36]. Further,
we can consider the root finding problem [37].

By extending the Bernstein-Vazirani algorithm more,
we give an algorithm of determining the values of a func-
tion that are extended to the natural numbers N. That
is, the extended algorithm determines a natural number
string instead of a bit string. So we have the generalized
Bernstein-Vazirani algorithm for determining a natural
number string. By using the extension, quantum algo-
rithm for determining a homogeneous linear function is
studied [38].

By extending the quantum algorithm more and more,
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we present an algorithm of determining the values of a
function that are extended to the integers Z. That is, the
extended algorithm determines an integer string instead
of a natural number string.

In this article, first, we review the Bernstein-Vazirani
algorithm for determining a bit string. Next, we dis-
cuss the generalized Bernstein-Vazirani algorithm for de-
termining a natural number string. Finally, we dis-
cuss the generalized Bernstein-Vazirani algorithm for de-
termining an integer string. All of the generalized al-
gorithms presented here have the following structure.
Given the set of real values {a1, a2, a3, . . . , aN} and a
special function g, we determine N values of the func-
tion g(a1), g(a2), g(a3), . . . , g(aN ) simultaneously. The
speed of determining the strings is shown to outperform
the best classical case by a factor of N in every case.

This article is organized as follows.
In Sec. II, we discuss the Bernstein-Vazirani algorithm

for determining a bit string.
In Sec. III, we discuss the generalized Bernstein-

Vazirani algorithm for determining a natural number
string.

In Sec. IV, we discuss the generalized Bernstein-
Vazirani algorithm for determining an integer string.

Section V concludes the article.

II. ALGORITHM FOR DETERMINING A BIT

STRING

Let us suppose that the following sequence of real val-
ues is given

a1, a2, a3, . . . , aN . (1)

Let us now introduce a function

g : R→ {0, 1}. (2)

Our goal is of determining the following values (a bit
string)

g(a1), g(a2), g(a3), . . . , g(aN ). (3)

Recall that in the best classical case, we need N queries,
that is, N separate evaluations of the function (2). In
our quantum algorithm, we shall require a single query.

Throughout the discussion, we consider the problem in
the modulo 2. Assume g(aj) ∈ {0, 1}, and we define

g(a) = (g(a1), g(a2), g(a3), . . . , g(aN )), (4)

where each entry of g(a) is a bit. Here g(a) ∈ {0, 1}N .
We define f(x) as follows:

f(x) = g(a) · x mod 2

= g(a1)x1 + g(a2)x2 + · · ·+ g(aN )xN mod 2, (5)

where x = (x1, ..., xN ) ∈ {0, 1}N . Let us follow the quan-
tum states through the algorithm.

The input state is

|ψ0� = |0�⊗N |1�, (6)

where |0�⊗N means

N� �� �
|0, 0, ..., 0�. Here |0� is a 2-

dimensional state and |1� is a 2-dimensional state. We
discuss the Fourier transform of |0�

|0� →
1�

y=0

ωy·0|y�√
2

=

1�

y=0

|y�√
2

=
|0�+ |1�√

2
, (7)

where ω = eπi = −1 and ω0 = 1.
Subsequently let us define the 2-dimensional state |φ�

as follows:

|φ� =
1√
2

(|0� − |1�). (8)

In the following, we discuss the Fourier transform of |1�

|1� →
1�

y=0

ωy·1|y�√
2

=
1�

y=0

ωy2−y|y�√
2

=

1�

y=0

ω2−y|y�√
2

= |φ�, (9)

where ωy2 = ω2 = 1.
The Fourier transform of |x1...xN � is as follows:

|x1...xN �

→
1�

z1=0

· · ·
1�

zN=0

ωz1x1 |z1�√
2

. . .
ωzNxN |zN �√

2

=
�

z∈K

ωz·x|z�√
2N

, (10)

where K = {0, 1}N and z is (z1, z2, ..., zN ). Hence, for
completeness,

�
z∈K is a shorthand to the compound

sum
�

z1∈{0,1}

· · ·
�

zN∈{0,1}

. (11)

After the componentwise Fourier transforms of the first
N 2-dimensional states and after the Fourier transform
of the 2-dimensional state |1� in (6)

N� �� �
F |0� × F |0� × ...× F |0�×F |1�, (12)

we have

|ψ1� =
�

x∈K

|x�√
2N
|φ�. (13)

Here, the notation F |0� means the Fourier transform of
|0� and the notation F |1� means the Fourier transform
of |1�.

We introduce SUMf(x) gate

|x�|j� → |x�|(f(x) + j) mod 2�, (14)

where

f(x) = g(a) · x mod 2. (15)
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We have

SUMf(x)|x�|φ� = ωf(x)|x�|φ�. (16)

In what follows, we discuss the rationale behind of the
above relation (16). Now consider applying the SUMf(x)

gate to the state |x�|φ�. Each term in |φ� is of the form
ω2−j |j�. We see

SUMf(x)ω
2−j |x�|j�

→ ω2−j |x�|(j + f(x)) mod 2�. (17)

We introduce k such as f(x)+j = k ⇒ 2−j = 2+f(x)−k.
Hence (17) becomes

SUMf(x)ω
2−j |x�|j�

→ ωf(x)ω2−k|x�|k mod 2�. (18)

When k < 2 we have |k mod 2� = |k� and thus, the terms
in |φ� such that k < 2 are transformed as follows:

SUMf(x)ω
2−j |x�|j� → ωf(x)ω2−k|x�|k�. (19)

When k = 2, we have |k mod 2� = |0� and

ω2−k = ω2−2 = 1 = ω2−0. (20)

So the above relation (19) holds. Therefore, the relation
(16) holds.

We have |ψ2�, by operating SUMf(x) to |ψ1�,

SUMf(x)|ψ1� = |ψ2� =
�

x∈K

ωf(x)|x�√
2N

|φ�. (21)

After the Fourier transform of |x�, using the previous
equations (10) and (21), we can now evaluate |ψ3� as
follows:

|ψ3� =
�

z∈K

�

x∈K

(ω)x·z+f(x)|z�
2N

|φ�

=
�

z∈K

�

x∈K

(ω)x·z+g(a)·x|z�
2N

|φ�. (22)

Notice
�

x∈K

(ω)x·(z+g(a)) = 2Nδz+g(a),�2

= 2Nδz,�2−g(a), (23)

where �2 =

N� �� �
(2, 2, ..., 2). Therefore, the above summation

is zero if z �= �2− g(a) and the above summation is 2N if

z = �2− g(a). Thus we have

|ψ3� =
�

z∈K

�

x∈K

(ω)x·z+g(a)·x|z�
2N

|φ�

=
�

z∈K

2Nδz,�2−g(a)|z�
2N

|φ�

= |�2− (g(a1), g(a2), g(a3), . . . , g(aN ))�|φ� (24)

from which

|�2− (g(a1), g(a2), g(a3), . . . , g(aN ))� (25)

can be obtained. That is to say, if we measure the first
N 2-dimensional states of the state |ψ3�, that is, |�2 −
(g(a1), g(a2), g(a3), . . . , g(aN ))�, then we can retrieve the
following values (a bit string)

g(a1), g(a2), g(a3), . . . , g(aN ) (26)

using a single query.

III. ALGORITHM FOR DETERMINING A

NATURAL NUMBER STRING

Let us suppose that the following sequence of real val-
ues is given

a1, a2, a3, . . . , aN . (27)

Let us now introduce a function

g : R→ N. (28)

Our goal is of determining the following values (a natural
number string)

g(a1), g(a2), g(a3), . . . , g(aN ). (29)

Recall that in the best classical case, we need N queries,
that is, N separate evaluations of the function (28). In
our quantum algorithm, we shall require a single query.

We introduce a positive integer d. Throughout the dis-
cussion, we consider the problem in the modulo d. As-
sume the following

0 ≤
N� �� �

g(a1), g(a2), g(a3), . . . , g(aN ) ≤ d− 1, (30)

where g(aj) ∈ {0, 1, ..., d− 1}, and we define

g(a) = (g(a1), g(a2), g(a3), . . . , g(aN )), (31)

where each entry of g(a) is a natural number. Here g(a) ∈
{0, 1, ..., d− 1}N . We define f(x) as follows:

f(x) = g(a) · x mod d

= g(a1)x1 + g(a2)x2 + · · ·+ g(aN )xN mod d, (32)

where x = (x1, ..., xN ) ∈ {0, 1, ..., d− 1}N . Let us follow
the quantum states through the algorithm.

The input state is

|ψ0� = |0�⊗N |d− 1�, (33)

where |0�⊗N means

N� �� �
|0, 0, ..., 0�. Here |0� is a d-

dimensional state and |d − 1� is a d-dimensional state.
We discuss the Fourier transform of |0�

|0� →
d−1�

y=0

ωy·0|y�√
d

=
d−1�

y=0

|y�√
d
, (34)
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where ω0 = 1.
Subsequently let us define the d-dimensional state |φ�

as follows:

|φ� =
1√
d

(ωd|0�+ ωd−1|1�+ · · ·+ ω|d− 1�), (35)

where ω = e2πi/d. In the following, we discuss the Fourier
transform of |d− 1�

|d− 1� →
d−1�

y=0

ωy·(d−1)|y�√
d

=
d−1�

y=0

ωyd−y|y�√
d

=

d−1�

y=0

ωd−y|y�√
d

= |φ�, (36)

where ωyd = ωd = 1.
The Fourier transform of |x1...xN � is as follows:

|x1...xN �

→
d−1�

z1=0

· · ·
d−1�

zN=0

ωz1x1 |z1�√
d

. . .
ωzNxN |zN �√

d

=
�

z∈K

ωz·x|z�√
dN

, (37)

where K = {0, 1, ..., d − 1}N and z is (z1, z2, ..., zN ).
Hence, for completeness,

�
z∈K is a shorthand to the

compound sum
�

z1∈{0,1,...,d−1}

· · ·
�

zN∈{0,1,...,d−1}

. (38)

After the componentwise Fourier transforms of the first
N d-dimensional states and after the Fourier transform
of the d-dimensional state |d− 1� in (33)

N� �� �
F |0� × F |0� × ...× F |0�×F |d− 1�, (39)

we have

|ψ1� =
�

x∈K

|x�√
dN
|φ�. (40)

Here, the notation F |0� means the Fourier transform of
|0� and the notation F |d−1�means the Fourier transform
of |d− 1�.

We introduce SUMf(x) gate

|x�|j� → |x�|(f(x) + j) mod d�, (41)

where

f(x) = g(a) · x mod d. (42)

We have

SUMf(x)|x�|φ� = ωf(x)|x�|φ�. (43)

In what follows, we discuss the rationale behind of the
above relation (43). Now consider applying the SUMf(x)

gate to the state |x�|φ�. Each term in |φ� is of the form
ωd−j |j�. We see

SUMf(x)ω
d−j |x�|j�

→ ωd−j |x�|(j + f(x)) mod d�. (44)

We introduce k such as f(x)+j = k ⇒ d−j = d+f(x)−k.
Hence (44) becomes

SUMf(x)ω
d−j |x�|j�

→ ωf(x)ωd−k|x�|k mod d�. (45)

Now, when k < d we have |k mod d� = |k� and thus, the
terms in |φ� such that k < d are transformed as follows:

SUMf(x)ω
d−j |x�|j� → ωf(x)ωd−k|x�|k�. (46)

Also, as f(x) and j are bounded above by d − 1, k is
strictly less than 2d. Hence, when d ≤ k < 2d we have
|k mod d� = |k − d�. Now, we introduce m such that
k − d = m then we have

ωf(x)ωd−k|x�|k mod d� = ωf(x)ω−m|x�|m�
= ωf(x)ωd−m|x�|m�. (47)

Hence the terms in |φ� such that k ≥ d are transformed
as follows:

SUMf(x)ω
d−j |x�|j� → ωf(x)ωd−m|x�|m�. (48)

Hence from (46) and (48) we have

SUMf(x)|x�|φ� = ωf(x)|x�|φ�. (49)

Therefore, the relation (43) holds.
We have |ψ2�, by operating SUMf(x) to |ψ1�,

SUMf(x)|ψ1� = |ψ2� =
�

x∈K

ωf(x)|x�√
dN

|φ�. (50)

After the Fourier transform of |x�, using the previous
equations (37) and (50), we can now evaluate |ψ3� as
follows:

|ψ3� =
�

z∈K

�

x∈K

(ω)x·z+f(x)|z�
dN

|φ�

=
�

z∈K

�

x∈K

(ω)x·z+g(a)·x|z�
dN

|φ�. (51)

Notice
�

x∈K

(ω)x·(z+g(a)) = dNδz+g(a),�d

= dNδz,�d−g(a), (52)

where �d =

N� �� �
(d, d, ..., d). Therefore, the above summation

is zero if z �= �d− g(a) and the above summation is dN if
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z = �d− g(a). Thus we have

|ψ3� =
�

z∈K

�

x∈K

(ω)x·z+g(a)·x|z�
dN

|φ�

=
�

z∈K

dNδz,�d−g(a)|z�
dN

|φ�

= |�d− (g(a1), g(a2), g(a3), . . . , g(aN ))�|φ� (53)

from which

|�d− (g(a1), g(a2), g(a3), . . . , g(aN ))� (54)

can be obtained. That is to say, if we measure the first

N d-dimensional states of the state |ψ3�, that is, |�d −
(g(a1), g(a2), g(a3), . . . , g(aN ))�, then we can retrieve the
following values (a natural number string)

g(a1), g(a2), g(a3), . . . , g(aN ) (55)

using a single query.

IV. ALGORITHM FOR DETERMINING AN

INTEGER STRING

Let us suppose that the following sequence of real val-
ues is given

a1, a2, a3, . . . , aN . (56)

Let us now introduce a function

g : R→ Z. (57)

Our goal is of determining the following values (an integer
string)

g(a1), g(a2), g(a3), . . . , g(aN ). (58)

Recall that in the best classical case, we need N queries,
that is, N separate evaluations of the function (57). In
our quantum algorithm, we shall require a single query.

We introduce a positive integer d. Throughout the dis-
cussion, we consider the problem in the modulo d. As-
sume the following

−(d− 1) ≤
N� �� �

g(a1), g(a2), g(a3), . . . , g(aN ) ≤ d− 1,

(59)

where g(aj) ∈ {−(d − 1), ...,−1, 0, 1, ..., d − 1}, and we
define

g(a) = (g(a1), g(a2), g(a3), . . . , g(aN )), (60)

where each entry of g(a) is an integer. Here g(a) ∈ {−(d−
1), ...,−1, 0, 1, ..., d− 1}N . We define f(x) as follows:

f(x) = g(a) · x mod d

= g(a1)x1 + g(a2)x2 + · · ·+ g(aN )xN mod d, (61)

where x = (x1, ..., xN ) ∈ {−(d−1), ...,−1, 0, 1, ..., d−1}N .
Let us follow the quantum states through the algorithm.

The input state is

|ψ0� = |0�⊗N |d− 1�, (62)

where |0�⊗N means

N� �� �
|0, 0, ..., 0�. Here |0� is a (2d − 1)-

dimensional state and |d − 1� is a d-dimensional state.
We discuss the general transform of |0�

|0� →
d−1�

y=−(d−1)

ωy·0|y�√
2d− 1

=
d−1�

y=−(d−1)

|y�√
2d− 1

, (63)

where ω0 = 1.
Subsequently let us define the d-dimensional state |φ�

as follows:

|φ� =
1√
d

(ωd|0�+ ωd−1|1�+ · · ·+ ω|d− 1�), (64)

where ω = e2πi/d. In the following, we discuss the Fourier
transform of |d− 1�

|d− 1� →
d−1�

y=0

ωy·(d−1)|y�√
d

=
d−1�

y=0

ωyd−y|y�√
d

=

d−1�

y=0

ωd−y|y�√
d

= |φ�, (65)

where ωyd = ωd = 1.
The general transform of |x1...xN � is as follows:

|x1...xN �

→
d−1�

z1=−(d−1)

· · ·
d−1�

zN=−(d−1)

ωz1x1 |z1�√
2d− 1

. . .
ωzNxN |zN �√

2d− 1

=
�

z∈K

ωz·x|z�
�

(2d− 1)N
, (66)

where K = {−(d − 1), ...,−1, 0, 1, ..., d − 1}N and z

is (z1, z2, ..., zN ). Hence, for completeness,
�

z∈K is a
shorthand to the compound sum

�

z1∈{−(d−1),...,−1,0,1,...,d−1}

· · ·
�

zN∈{−(d−1),...,−1,0,1,...,d−1}

.

(67)

After the componentwise general transforms of the first
N (2d−1)-dimensional states and after the Fourier trans-
form of the d-dimensional state |d− 1� in (62)

N� �� �
G|0� ×G|0� × ...×G|0�×F |d− 1�, (68)

we have

|ψ1� =
�

x∈K

|x�
�

(2d− 1)N
|φ�. (69)
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Here, the notation G|0� means the general transform of
|0� and the notation F |d−1�means the Fourier transform
of |d− 1�.

We introduce SUMf(x) gate

|x�|j� → |x�|(f(x) + j) mod d�, (70)

where

f(x) = g(a) · x mod d. (71)

We have

SUMf(x)|x�|φ� = ωf(x)|x�|φ�. (72)

The rationale behind of the above relation (72) is equiva-
lent to it of the relation (43). We have |ψ2�, by operating
SUMf(x) to |ψ1�,

SUMf(x)|ψ1� = |ψ2� =
�

x∈K

ωf(x)|x�
�

(2d− 1)N
|φ�. (73)

After the general transform of |x�, using the previous
equations (66) and (73), we can now evaluate |ψ3� as
follows:

|ψ3� =
�

z∈K

�

x∈K

(ω)x·z+f(x)|z�
(2d− 1)N

|φ�

=
�

z∈K

�

x∈K

(ω)x·z+g(a)·x|z�
(2d− 1)N

|φ�. (74)

Notice

�

x∈K

(ω)x·(z+g(a)) = (2d− 1)Nδz+g(a),0

= (2d− 1)Nδz,−g(a). (75)

Therefore, the above summation is zero if z �= −g(a) and
the above summation is (2d−1)N if z = −g(a). Thus we

have

|ψ3� =
�

z∈K

�

x∈K

(ω)x·z+g(a)·x|z�
(2d− 1)N

|φ�

=
�

z∈K

(2d− 1)Nδz,−g(a)|z�
(2d− 1)N

|φ�

= | − (g(a1), g(a2), g(a3), . . . , g(aN ))�|φ� (76)

from which

| − (g(a1), g(a2), g(a3), . . . , g(aN ))� (77)

can be obtained. That is to say, if we measure the first
N (2d − 1)-dimensional states of the state |ψ3�, that is,
| − (g(a1), g(a2), g(a3), . . . , g(aN ))�, then we can retrieve
the following values (an integer string)

g(a1), g(a2), g(a3), . . . , g(aN ) (78)

using a single query.
V. CONCLUSIONS

In conclusion, first, we have discussed the Bernstein-
Vazirani algorithm for determining a bit string. Next,
we have discussed the generalized Bernstein-Vazirani
algorithm for determining a natural number string.
Finally, we have discussed the generalized Bernstein-
Vazirani algorithm for determining an integer string.
All of the generalized algorithms presented here have
had the following structure. Given the set of
real values {a1, a2, a3, . . . , aN} and a special func-
tion g, we have determined N values of the function
g(a1), g(a2), g(a3), . . . , g(aN ) simultaneously. The speed
of determining the strings has been shown to outperform
the best classical case by a factor of N in every case.
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[12] M. Żukotski, Found. Phys. 38, 1070 (2008).
[13] A. Suacez, Found. Phys. 39, 156 (2009).
[14] D. Deutsch, Proc. Roy. Soc. London Ser. A 400, 97

(1985).
[15] D. Deutsch and R. Jozsa, Proc. Roy. Soc. London Ser. A

439, 553 (1992).
[16] R. Cleve, A. Ekect, C. Macchiavello, and M. Mosca, Proc.

Roy. Soc. London Ser. A 454, 339 (1998).
[17] J. A. Jones and M. Mosca, J. Chem. Phys. 109, 1648

(1998).
[18] S. Gulde, M. Riebe, G. P. T. Lancastec, C. Bechec, J.
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