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We investigate the no-cloning theorem that relies on the properties of a statistical model. Usually,
the no-cloning theorem implies that two quantum states are identical or orthogonal if we allow a
cloning to be on the two quantum states. Here, we rely on a statistical model. We may result
in the fact that the two quantum states under consideration could not be orthogonal if we accept
the statistical model. The no-cloning theorem may imply that the two quantum states under
consideration may be identical if we accept the statistical model. The no-cloning theorem itself has
this character.
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I. INTRODUCTION

Quantum mechanics gives accurate and at times remarkably accurate numerical predictions. Much experimental
data has fit to the quantum predictions for long time.

The no-cloning theorem is a result of quantum mechanics that forbids the creation of identical copies of an arbitrary
unknown quantum state. It was stated by Wootters and Zurek [1] and Dieks [2] in 1982, and has profound implications
in quantum computing and related fields.

The state of one system can be entangled with the state of another system. For instance, one can use the Controlled
NOT gate and the Walsh-Hadamard gate to entangle two qubits. This is not cloning. No well-defined state can be
attributed to a subsystem of an entangled state. Cloning is a process whose result is a separable state with identical
factors. According to Asher Peres and David Kaiser, the publication of the no-cloning theorem was prompted by a
proposal of Nick Herbert [3] for a superluminal communication device using quantum entanglement.

A literature concerning quantum cloning topic can be seen in Ref. [4].
Our discussion may provide the good security of quantum cryptography. The no-cloning theorem in this discussion

implies that the two quantum states under consideration are identical even though an eavesdropper allows a cloning
to be on the two quantum states. A probability that the eavesdropper selects unknown and identical quantum state
is very small.

In this paper, we reconsider the no-cloning theorem that relies on a statistical model. We see quantum phenomena
by using a statistical model in a real experiment. Thus it may be essential we introduce the statistical model in
our argumentations. Here we discuss the no-cloning theorem based on the statistical model. Usually, the no-cloning
theorem implies that two quantum states are identical or orthogonal if we allow a cloning to be on the two quantum
states.

We review the no-cloning theorem as follows:

U |φ�A|e�B = |φ�A|φ�B . (1)

U is the time evolution operator. Alice has a quantum state |φ�A. Bob has a quantum state |e�B . Bob’s state changes
into |φ�B by using the time evolution operator. Thereby Alice’s state is cloned into Bob’s state. Let us consider
the inner product of them. The inner product is explained as follows: A generalization of the scalar product. Any
product �u, v� of vectors which satisfies the following conditions. It must be distributive over addition, be reflexive,
�au, v� must equal a�u, v� and �v, v� = 0 ⇒ v = 0 [5].

Then we have

�e|B�φ|A|ψ�A|e�B = �e|B�φ|AU
†U |ψ�A|e�B = �φ|B�φ|A|ψ�A|ψ�B . (2)

Thus,

�φ|ψ�A = �φ|ψ�A�φ|ψ�B . (3)

By omitting subscripts A and B, we have

�φ|ψ� = �φ|ψ�2. (4)

We derive the following proposition:

�φ|ψ�2 = 0 ∨ �φ|ψ�2 = 1. (5)

Therefore the no-cloning theorem implies that two quantum states are identical or orthogonal if we allow a cloning
to be on the two quantum states. By squaring each propositions, we have

�φ|ψ�4 = 0 ∨ �φ|ψ�4 = 1. (6)

We would assume that the two propositions (5) and (6) would be always true. We may not assume the two quantum
states are orthogonal:

�φ|ψ�4 = 0 (7)

when we consider a statistical model. This may mean that we would not assume �φ|ψ� = 0. And we may assume
�φ|ψ� = 1. The no-cloning theorem may imply that the two quantum states under consideration may be identical
when we consider the statistical model in the discussion below.
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II. THE NO-CLONING THEOREM BASED ON A STATISTICAL MODEL

A. Orthogonal case

We consider a quantum expected value as

�φ|ψ�2 = 0. (8)

The above quantum expected value is zero if the two quantum states under consideration |φ� and |ψ� are orthogonal.
We derive a necessary condition for the quantum expected value given in (8). By squaring the proposition (8), we

derive the following proposition concerning quantum theory

�φ|ψ�4 = 0. (9)

Thus, we have

�φ|ψ�4 ≤ 0. (10)

Therefore, we have

(�φ|ψ�4)max = 0. (11)

The result is true when we ignore the statistical model.

B. Whether the orthogonal case can be possible

On the other hand, a mean value E satisfies the statistical model if it can be written as

E =

�m

l=1
rl(�φ|ψ�

2)

m
, (12)

where l denotes a label and r is the result of quantum measurements. The notation rl(�φ|ψ�
2) implies that the lth

outcome of quantum measurements when we would measure the expected value �φ|ψ�2 in a thought experiment. We
can assume the value of r is ±1.

In what follows, we assume the two quantum states are orthogonal, that is, �φ|ψ�4 = 0. And we derive a contra-
diction when we rely on the statistical model.

Assume the quantum mean value given in (12) admits the statistical model. One has the following proposition
concerning the statistical model

�φ|ψ�2(m) =

�m

l=1
rl(�φ|ψ�

2)

m
. (13)

We can assume as follows by Strong Law of Large Numbers [6],

�φ|ψ�2(+∞) = �φ|ψ�2. (14)

Assume the proposition (13) would be true. By changing the label l into l′, we have the same quantum mean value
as follows:

�φ|ψ�2(m) =

�m

l′=1
rl′(�φ|ψ�

2)

m
. (15)

An important note here is that the value of the right-hand-side of (13) is equal to the value of the right-hand-side of
(15) because we only change the label l into l′.

We introduce an assumption that Sum rule and Product rule commute with each other. We have

�φ|ψ�2(m)× �φ|ψ�2(m)

=

�m

l=1
rl(�φ|ψ�

2)

m
×

�m

l′=1
rl′(�φ|ψ�

2)

m

≤

�m

l=1

m
×

�m

l′=1

m
|(rl(�φ|ψ�

2)rl′(�φ|ψ�
2)|

=

�m

l=1

m
· (rl(�φ|ψ�

2))2

=

�m

l=1

m
= 1. (16)
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We use the following fact

�l|rl(�φ|ψ�
2) = 1� = �l′|rl′(�φ|ψ�

2) = 1�,

�l|rl(�φ|ψ�
2) = −1� = �l′|rl′(�φ|ψ�

2) = −1�.

(17)

We only change the label l into l′. And

(rl(�φ|ψ�
2))2 = 1. (18)

Thus we may derive a proposition concerning the statistical model, that is,

(�φ|ψ�2(m)× �φ|ψ�2(m))max = 1. (19)

From Strong Law of Large Numbers, we may have

(�φ|ψ�2 × �φ|ψ�2)max = 1. (20)

Hence we may derive the following proposition concerning the statistical model

(�φ|ψ�4)max = 1. (21)

We cannot assign the truth value “1” for the proposition (11) and the proposition (21).
Therefore, we may not assume the two quantum states under consideration could be orthogonal:

�φ|ψ�4 = 0 (22)

and we may assume that the two quantum states under consideration could be identical:

�φ|ψ� = 1 ∧ �φ|ψ�4 = 1. (23)

Hence we may assume the following case

|φ� = |ψ�. (24)

The no-cloning theorem may imply that the two quantum states under consideration could be identical if we consider
the statistical model.

III. CONCLUSIONS

In conclusion, we have investigated the no-cloning theorem that relies on the properties of a statistical model.
Usually, the no-cloning theorem has implied that two quantum states are identical or orthogonal if we allow a cloning
to be on the two quantum states. Here, we have relied on a statistical model. We may have resulted in the fact
that the two quantum states under consideration could not be orthogonal if we accept the statistical model. The
no-cloning theorem may have implied that the two quantum states under consideration may be identical if we accept
the statistical model. The no-cloning theorem itself has had this character.
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