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Abstract

We develop an alternative to the Higgs mechanism for spontaneously breaking the local SU(2)xU(1) gauge
invariance of the Electroweak Theory by coupling to Einstein-Cartan gravity in curved spacetime. The
theory exhibits a local scale invariance in the unbroken phase, while the gravitational sector does not
propagate according to the conventional quantum field theory definition. We define a unitary gauge for
the local SU(2) invariance which results in a complex Higgs scalar field. This approach fixes the local
SU(2) gauge without directly breaking the local U(1). We show how the electroweak symmetry can be
spontaneously broken by choosing a reference mass scale to fix the local scale invariance. The mass terms
for the quantum fields are then generated without adding any additional symmetry breaking terms to the
theory. We point out subtle differences of the quantum field interactions in the broken phase.

1 Einstein-Cartan Gravity coupled to a Dirac Spinor

Here we outline the basic formulation of General Relativity[1][2] coupled to a Dirac spinor in curved
spacetime[4][5][6]. In this formalism, we exclude the conventional restriction on torsion and follow the
approach introduced by Cartan[3]. The analysis does not result in a propagating theory of quantum
gravity, and the lack of renormalizability in the traditional sense[7][8] does not pose any inconsistency.
Furthermore, this approach does not necessarily lead to a symmetric canonical energy-momentum tensor
as in the Belinfante-Rosenfeld procedure[9][10].

For group and matrix indices we choose the lower case Roman letters (a, b, c, d), for flat spacetime indices
we choose the lower case Roman letters (m, n, p, q), and for curved spacetime indices we choose the lower
case Greek letters (µ, ν, ρ, σ).

We adopt the following conventions for the metric tensor and vierbein connection.

ηmn = (−+ ++)

gµν = ηmneµme
ν
n (1)
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We choose the Clifford algebra for γ matrices with this metric signature as follows.

{γm, γn} = −2ηmn

γ5 = iγ0γ1γ2γ3 (2)

In the spinor representation, we adopt the following conventions for the local Lorentz group.

ψ′(x) = Λ(x)ψ(x)

Λ(x) = exp

(
−1

2
θmn(x)Smn

)

ψ̄ = ψ†γ0

ψ̄′(x) = ψ̄(x)Λ−1(x)

Λ−1(x) = exp

(
+

1

2
θmn(x)Smn

)

Smn = −1

4
[γm, γn] (3)

This representation satisfies the SO(1, 3) Lie algebra of the generators Smn for the local Lorentz group.

[Smn, Spq] = − ηmpSnq − ηnqSmp + ηmqSnp + ηnpSmq (4)

The theory for a Dirac spinor in curved spacetime is symmetric with respect to both general covariant and
local Lorentz transformations. We use the convention that Γµν

ρ is the general covariant connection and
ωµ

mn is the local Lorentz spin connection. In our approach, the index order of the connections are set
deliberately. We also find it important to note that since ηmn and the Clifford algebra are invariant under
local Lorentz transformations, the vierbein transforms only as a general covariant vector. The covariant
derivative acting on the vierbein and Dirac spinor is defined as follows.

∇µ enν = ∂µ e
n
ν + Γµν

ρ enρ

∇µψ = ∂µψ +
1

2
ωµ

mn Smnψ

∇µψ̄ = ∂µψ̄ −
1

2
ψ̄ Smnωµ

mn (5)
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We make use of the following fundamental definitions, which allow for both a unique covariant derivative
and Riemann curvature tensor. The general covariant connection can then be eliminated from the theory
in favor of the vierbein and spin connection which remain as independent fields.

ωµ
mn := eνm∇µenν

Rµν
mn := eσm[∇µ,∇ν ] enσ (6)

These definitions lead directly to the desired results with ∇µgνρ = 0 giving ωµ
mn + ωµ

nm = 0.

∇µγν = 0

∇µγm = −ωµmn γn
∇µ(ψ̄γνψ) = ∂µ(ψ̄γνψ) + Γµν

ρ(ψ̄γρψ)

Rµν
mn = ∇[µων]

mn + ω[µ
mpων]p

n

R = eµme
ν
nω[ν

mpωµ]p
n (7)

where γν = emν γm and R = eµmeνnRµν
mn. After integrating by parts to evaluate the scalar curvature R,

we note that it no longer contains any derivates on the connections (e, ω). We now write the Lagrangian
density and gravitational field equations for Einstein-Cartan Gravity coupled to a Dirac spinor.

eL =
1

2κ
R+

1

2
ψ̄eµmγ

mi∇µψ −
1

2
(i∇µψ̄)eµmγ

mψ +mψ̄ψ

=
1

2κ
R+

1

2
ψ̄eµmγ

mi∂µψ −
1

2
(i∂µψ̄)eµmγ

mψ +
i

4
ωµ

pqeµmS
m
pq +mψ̄ψ

eκ
δL

δeµm
= Rµ

m − 1

2
emµ R+

κ

2
ψ̄γmi∂µψ −

κ

2
(i∂µψ̄)γmψ +

iκ

4
ωµ

pqSmpq = 0

eκ
δL

δωµpq
= ωµ

pq +
iκ

4
emµ Sm

pq = 0 (8)

where e = det(eµm) and Smpq = ψ̄{γm, Spq}ψ is the totally anti-symmetric spin field. The spin connection
is now totally anti-symmetric since the other components may be eliminated by their equations of motion.

2 Einstein-Cartan Gravity coupled to the Electroweak Theory

We develop the formalism for Einstein-Cartan Gravity coupled to the Electroweak Theory[11][12][13] in
curved spacetime. The classical action exhibits a local scale invariance in the unbroken phase[17][18]. We
do not follow the procedure of the Higgs mechanism for spontaneously breaking the local SU(2)xU(1) gauge
invariance of the Electroweak Theory[14][15][16]. Instead, we show how the electroweak symmetry can be
spontaneously broken by choosing a reference mass scale to fix the local scale invariance.

We define a unitary gauge for the local SU(2) invariance that results in a complex Higgs scalar field.
This approach fixes the local SU(2) gauge without directly breaking the local U(1). Technically, we fix
the local SU(2) unitary gauge then break the remaining local U(1) by choosing a reference mass scale.
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Therefore, the reference mass scale is fixed up to a local U(1) transformation and a corresponding local
scale transformation. We do not reduce the Higgs scalar to a constant as in[19], since the real and imaginary
components cannot both be set to a constant by a single local scale transformation.

We introduce the complex scalar SU(2) doublet with electroweak hypercharge Y = +1/2. We follow the
convention Y = Q− J3, where Q is the electromagnetic charge and J3 is the SU(2) generator.

φ =

(
φ+
φ0

)

J3 =
1

2

(
1 0
0 −1

)
(9)

We also define the following local SU(2) transformation T (x) and the reversal matrix m(x).

T =

 φ0 /(|φ0|+ i |φ+|) −φ+/(|φ0|+ i |φ+|)

φ̄+/(|φ0| − i |φ+|) φ̄0 /(|φ0| − i |φ+|)



Tφ =

 0

|φ0|+ i |φ+|



TmT † =

 0 1

1 0

 (10)

We introduce a chiral SU(2) doublet for the (neutrino, electron)L fields with Y = −1/2, and a chiral
SU(2) doublet for the (proton, neutron)L fields with Y = +1/2. We follow the standard representation
for chiral spinors. (ν, e, p, n)L = [(1− γ5)/2](ν, e, p, n) and (ν, e, p, n)R = [(1 + γ5)/2](ν, e, p, n).

Tψ =

(
νL
eL

)

Tχ =

(
pL
nL

)
(11)

Finally, we choose SU(2) singlets for the (ν, n)R fields with Y = 0, an SU(2) singlet for the electron field
eR with Y = −1, and an SU(2) singlet for the proton field pR with Y = +1.
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The Lagrangian density follows, where τa are the Pauli matrices and εabc are the SU(2) structure constants.

( /∇, /W a
, /B) = eµmγ

m(∇µ, W a
µ , Bµ)

W a
µρ = ∇[µWρ]

a + gεabcWµ
bWρ

c

Bµρ = ∇[µBρ] (12)

eL =
1

6
(φ†φ)R+ gµρ(i ∂µφ+

1

2
gτaW

a
µφ+

1

2
g′Bµφ)†(i ∂ρφ+

1

2
gτaW

a
ρ φ+

1

2
g′Bρφ) + λ2(φ†φ)2

+ ψ̄(i /∇+
1

2
gτa /W

a − 1

2
g′ /B)ψ + ν̄Ri /∇νR + ēR(i /∇− g′ /B)eR +Gν(ψ̄mφνR + ν̄Rφ

†m†ψ) +Ge(ψ̄φ eR + ēRφ
†ψ)

+ χ̄(i /∇+
1

2
gτa /W

a
+

1

2
g′ /B)χ+ p̄R(i /∇+ g′ /B)pR + n̄Ri /∇nR +Gp(χ̄mφpR + p̄Rφ

†m†χ) +Gn(χ̄φ nR + n̄Rφ
†χ)

+
1

4
W a
µρW

µρ
a +

1

4
BµρB

µρ

(13)

There exists a local scale invariance Ω(x) of the classical action S =
∫
d4xL. We present the corresponding

field transformations that generate the invariance in four spacetime dimensions. We also find it important
to note that the embedded torsion tensor is local scale invariant and does not transform.

gµρ → Ω2(x)gµρ

eµm → Ω(x)eµm

e→ Ω4(x)e

ωµ
mn → ωµ

mn − gρσe[mµ en]ρ Ω−1(x)∂σΩ(x)

φ→ Ω(x)φ

ψ → Ω3/2(x)ψ

χ→ Ω3/2(x)χ

(ν, e, p, n)R → Ω3/2(x)(ν, e, p, n)R

W a
µ →W a

µ

Bµ → Bµ (14)

We now fix the local scale invariance by choosing a reference mass scale in the unitary gauge for SU(2).

ΩTφ =
1√
2

 0

s+ iH(x)



Ω2φ†φ =
1

2
(s2 +H2) (15)

We identify H(x) as the Higgs boson and κs2 = 6.

The Electroweak symmetry has been spontaneously broken by fixing a reference mass scale in relation to
the gravitational coupling constant. The classical gravity sector connections (e, ω) do not exhibit quantum
fluctuations and now may be set to their vacuum expectation values (δ, 0). They merely act as background
fields to complete the local scale invariance. All masses for the quantum fields are proportional to the
reference mass scale, and each mass is suppressed by a corresponding coupling constant. The Higgs boson
does not develop a vacuum expectation value by adding any symmetry breaking terms to the theory.
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3 Field Transformations and the Spontaneously Broken Theory

Here we examine the physical content of the spontaneously broken electroweak field theory. Following con-
vention, we adopt the Weinberg angle in terms of the coupling constants to make the field transformations
more transparent and introduce the additional coupling q =

√
g2 + g′2 and vector boson Qµ.

cos θ =
g

q

sin θ =
g′

q

Wµ =
1√
2

(W 1
µ − iW 2

µ)

Zµ = −W 3
µ cos θ +Bµ sin θ

Aµ = +W 3
µ sin θ +Bµ cos θ

Qµ = +W 3
µ cos θ +Bµ sin θ

= −Zµ cos 2θ +Aµ sin 2θ

MH = sλ

MW =
sg

2

MZ =
sq

2

MA = 0

MQ = 0

Mf =
sGf√

2

f = (ν, e, p, n) (16)

The electroweak gauge connections are transformed to a 2x2 hermitian matrix of abelian vector bosons
(gWµ, gWµ, qZµ, qQµ) for (φ, ψ, χ) and to ∓q(Zµ + Qµ) for (eR, pR). The abelian gauge invariant kinetic
terms can now be written directly without computation, and the fermion interaction term follows naturally.

Lf =
g

2
√

2
[( ν̄ /W (1− γ5) e ) + ( ē /W (1− γ5) ν ) + ( p̄ /W (1− γ5)n ) + ( n̄ /W (1− γ5) p )]

− q

4
[( ν̄ /Z(1− γ5) ν ) + ( ē /Z(1 + γ5) e )− ( p̄ /Z(1 + γ5) p )− ( n̄ /Z(1− γ5)n )]− q

2
[( ē /Q e )− ( p̄ /Q p )]

(17)

The primary phenomenological differences in this approach are the absence of the 3-point Higgs self-
interaction term, the absence of a single Higgs coupled to two vector bosons, and a chiral change to the
Yukawa couplings of the Higgs to fermions in the form iHGf f̄γ5f/

√
2. These results bring into question

the predicted Higgs decay channels to bosons and their perturbative contributions to the Higgs mass.
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