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Abstract: In classical group theory, two elements composed yield another element. This

theory, definitely, has limitations in its use in the study of atomic reactions and reproduction

in organisms where two elements composed can yield more than one. In this paper, we

partly give a review of some properties of hyperstructures with some examples in chemical

sciences. On the other hand, we also construct some examples of hyperstructures in genotype,

extending the works of Davvaz (2007) to blood genotype. This is to motivate new and

collaborative researches in the use of hyperstructures in these related fields.
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§1. Introduction

The theory of hyperstructures began in 1934 by F. Marty. In his presentation at the 8th

congress of Scandinavian Mathematicians, he illustrated the definition of hypergroup and some

applications, giving some of its uses in the study of groups and some functions. It is a kind of

generalization of the concept of abstract group and an extension of well-known group theory

and as well leading to new areas of study.

The study of hypergroups now spans to the investigation and studying of subhyper-

groups, relations defined on hyperstructures, cyclic hypergroups, canonical hypergroups, P-

hypergroups, hyperrings, hyperlattices, hyperfields, hypermodules and Hν -structures but to

mention a few.

A very close concept to this is that of HX Group which was developed by Li [11] in

1985. There have been various studies linking HX Groups to hyperstructures. In the late 20th

century, the theory experienced more development in the applications to other mathematical

theories such as character theory of finite groups, combinatorics and relation theory. Researchers

like P. Corsini, B. Davvaz, T. Vougiouklis, V. Leoreanu, but to mention a few, have done very

extensive studies in the theory of hyperstructures and their uses.

§2. Definitions and Examples of Hyperstrutures

Definition 2.1 Let H be a non empty set. The operation ◦ : H × H −→ P∗(H) is called a
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hyperoperation and (H, ◦) is called a hypergroupoid, where P∗(H) is the collection of all non

empty subsets of H. In this case, for A, B ⊆ H, A ◦B = ∪{a ◦ b|a ∈ A, b ∈ B}.

Remark 2.1 A hyperstructure is a set on which a hyperoperation is defined. Some major

kinds of hyperstructures are hypergroups, HX groups, Hν groups, hyperrings and so on.

Definition 2.2 A hypergroupoid (H, ◦) is called a semihypergroup if

(a ◦ b) ◦ c = a ◦ (b ◦ c) ∀a, b, c ∈ H (Associativity)

.

Definition 2.3 A hypergroupoid (H, ◦) is called a quasihypergroup if

a ◦H = H = H ◦ a ∀a ∈ H (Reproduction Axiom).

Definition 2.4 A hypergroupoid (H, ◦) is called a hypergroup if it is both a semihypergroup and

quasihypergroup.

Example 2.1 (1) For any group G, if the hyperoperation is defined on the cosets, it generally

yields a hypergroup.

(2) If we partition H = {1,−1, i,−i} by K∗ = {{1,−1}, {i,−i}}, then (H/K∗, ◦) is a

hypergroup.

(3)([8]) Let (G, +) = (Z, +) be an abelian group with an equivalence relation ρ partitioning

G into x = {x,−x}. Then, if x ◦ y = {x + y, x− y} ∀x, y ∈ G/ρ, (G/ρ, ◦) is a hypergroup.

Definition 2.5 A hypergroupoid (H, ◦) is called a Hν group if it satisfies

(1) (a ◦ b) ◦ c ∩ a ◦ (b ◦ c) 6= ∅ ∀a, b, c ∈ H (Weak Associativity);

(2) a ◦H = H = H ◦ a ∀a ∈ H (Reproduction Axiom).

Remark 2.2 An Hν group may not be a hypergroup. A subset K ⊆ H is called a subhy-

pergroup if (K, ◦) is also a hypergroup. A hypergroup (H, ◦) is said to have an identity e if

∀a ∈ H a ∈ e ◦ a ∩ a ◦ e 6= ∅.

Example 2.2 Davvaz [8] has given an example of a Hν group as the chemical reaction

A2 + B2 energy←−−−→ 2AB

in which A◦ and B◦ are the fragments of A2, B2, AB and H = {A◦, B◦, A2, B2, AB}.

Definition 2.6 Let G be a group and ◦ : G×G −→ P∗(G) a hyperoperation. Let C ⊆ P∗(G)

and A, B ∈ C. If C, under the product A ◦B = ∪{a ◦ b|a ∈ A, b ∈ B}, is a group, then (C, ◦) is

a HX group on G with unit element E ⊆ C such that E ◦A = A = A ◦ E ∀A ∈ C.

It is important to study HX group separately because some hypergroups exist but are not
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HX groups. An example is ({{0}, (0, +∞), (−∞, 0)}, +); it a hypergroup but not a HX group.

Note that if the unit element E of the quotient group of G by E is a normal subgroup of G,

then the quotient group is a HX group.

Definition 2.7 If for the identity element e ∈ G we have e ∈ E, then (C, ◦) is a regular HX

group on G.

Theorem 2.1([10]) If C is a HX group on G, then ∀A, B ∈ C

(1) |A| = |B|;
(2) A ∩B 6= ∅ =⇒ |A ∩B| = |E|.

Remark 2.3 Corsini [4] has shown that a HX group, also referred to as Chinese Hyper-

structure is a Hν Group and that, under some condition, is a hypergroup. But, trivially, a

hypergroup is a Hν Group since only that associativity was relaxed in a hypergroup to obtain

a Hν Group. Besides, Onasanya [12] has shown that no additional condition is needed by a

Chinese Hyperstructure, that is a HX group, to become a hypergroup.

§3. Applications and Occurrences of Hyperstrutures in Biological and

Chemical Sciences

The chain reactions that occur between hydrogen and halogens, say iodine (I), give interesting

examples of hyperstructures [8]. This can be seen in Table 1. Many properties of these reactions

can be seen from the study of hyperstructures.

Table 1. Reaction of Hydrogen with Iodine

+ Ho Io H2 I2 HI

Ho Ho, H2 Ho, Io, HI Ho, H2 Ho, Io, HI, I2 Ho, Io, H2, HI

Io Io, Ho, HI Io, I2 Io, Ho, HI,H2 Io, I2 Ho, Io, HI, I2

H2 Ho, H2 Ho, Io, HI,H2 Ho, H2 Ho, Io, HI,H2, I2 Ho, Io, H2, HI

I2 Io, Ho, I2, HI Io, I2 Ho, Io, HI, H2, I2 Io, I2 Ho, Io, HI, I2

HI Ho, Io, H2, HI Ho, Io, HI, I2 Ho, Io, HI,H2 Ho, Io, HI, I2 Ho, Io, HI, I2, H2

Let G = {Ho, Io, H2, I2, HI} so that (G, ◦) is such that ∀A, B ∈ G, we have that A◦B are

the possible product(s) representing the reaction between A and B. Then, (G, ◦) is a Hv-group.

The subsets G1 = {Ho, H2} and G2 = {Io, I2} are the only Hv-subgroups of (G, ◦) and indeed

they are trivial hypergroups.

Davvaz [6] has the following examples: Dismutation is a kind of chemical reaction. Com-

proportionation is a kind of dismutation in which two different reactants of the same element

having different oxidation numbers combine to form a new product with intermediate oxidation

number. An example is the reaction

Sn + Sn4+ → 2Sn2+.
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In this reaction, letting G = {Sn, Sn2+, Sn4+}, the following table shows all possible occur-

rences.

Table 2. Dismutation Reaction of Tin

◦ Sn Sn2+ Sn4+

Sn Sn Sn, Sn2+ Sn2+

Sn2+ Sn, Sn2+ Sn2+ Sn2+, Sn4+

Sn4+ Sn2+ Sn2+, Sn4+ Sn4+

While it is agreeable that (G, ◦) is weak associative as claimed by [6], we say further

that it is a Hν group. Also, while ({Sn, Sn2+}, ◦) is agreed to be a hypergroup, we say that

({Sn2+, Sn4+}, ◦) is not just a Hν semigroup as claimed by [6] but a Hν group.

Furthermore, Cu(0), Cu(I), Cu(II) and Cu(III) are the four oxidation states of copper. Its

different species can react with themselves (without energy) as defined below

(1) Cu3+ + Cu+ 7→ Cu2+;

(2) Cu3+ + Cu 7→ Cu2+ + Cu+.

Table 3. Redox (Oxidation-Reduction) reaction of Copper

◦ Cu Cu+ Cu2+ Cu3+

Cu Cu Cu, Cu+ Cu, Cu2+ Cu+, Cu2+

Cu+ Cu, Cu+ Cu+ Cu+, Cu2+ Cu2+

Cu2+ Cu, Cu2+ Cu+, Cu2+ Cu2+ Cu2+, Cu3+

Cu3+ Cu+, Cu2+ Cu2+ Cu2+, Cu3+ Cu3+

Let G = {Cu, Cu+, Cu2+, Cu3+}. Then (G, ◦) is weak associative and

Cu+ ◦X = X ◦ Cu+ 6= X

so that (G, ◦) is an Hv semigroup. {Cu, Cu+}, {Cu, Cu2+} {Cu+, Cu2+} and {Cu2+, Cu3+}
are hypergroups with respect to ◦. From Table 4 we also have that ({Cu, Cu+, Cu2+}, ◦) is a

hypergroup.

Table 4. Another Redox reaction of Cu

◦ Cu Cu+ Cu2+

Cu Cu Cu, Cu+ Cu, Cu2+

Cu+ Cu, Cu+ Cu+ Cu+, Cu2+

Cu2+ Cu, Cu2+ Cu+, Cu2+ Cu2+

It should be noted that {Cu, Cu+}, {Cu, Cu2+} and {Cu+, Cu2+} are subhypergroups of

({Cu, Cu+, Cu2+}, ◦).
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§4. Identities of Hyperstructures

Definition 4.1([8]) The set Ip = {e ∈ H |∃x ∈ H such that x ∈ x ◦ e ∪ e ◦ x} is refered to as

partial identities of H.

Definition 4.2([3]) An element e ∈ H is called the right (analogously the left) identity of H if

x ∈ x ◦ e(x ∈ e ◦ x) ∀x ∈ H. It is called an identity of H if it is both right and left identity.

Definition 4.3([3]) A hypergroup H is semi regular if each x ∈ H has at least one right and

one left identity.

It can be seen that every right or left identity of H is in Ip.

4.1 Blood Genotype as a Hyperstructure

Let G = {AA, AS, SS} and the hyperoperation ⊕ denote mating. The blood genotype is a kind

of hyperstructure.

Table 5. Genotype Table [12]

⊕ AA AS SS

AA {AA} {AA, AS} {AS}
AS {AA, AS} {AA, AS, SS} {AS, SS}
SS {AS} {AS, SS} {SS}

In Table 5, {AA} ⊕G 6= G 6= G⊕ {AA}; the reproduction axiom is not satisfied. Also, it

is weak associative. It is a Hν semigroup.

Note that a lot has been discussed on the occurrence of hyperstructure algebra in inheri-

tance [7]. For most of the monohybrid and dihybrid crossing of the pea plant, they are hyper-

groups in the second generation. Take for instance, the monohybrid Crossing in the Pea Plant ,

the parents has the RR(Round) and rr(Wrinkled) genes. The first generation has Rr(Round).

The second generation has RR(Round), Rr(Round) and rr(Wrinkled). Now consider the set

G = {R, W}; R for Round and W for Wrinkled. Crossing this generation under the operation

⊕ for mating, [7] already established it is a hypergroup.

In the following section, a little more information about their properties would be given

and an extension to cases which are hypergroups in earlier generations are made.

§5. Main Results

5.1 Hyperstructures in Group Theory

The following example is a construction of an HX group which is also a hypergroup and a Hν

Group by Remark 2.1.

Example 5.1 Let us partition (Z10, +) by ρ = {{0, 5}, {1, 6}, {2, 7}, {3, 8}, {4, 9}}. Then we
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can see that E = {0, 5} is a normal subgroup of (Z10, +) and that E2 = E. (Z10/ρ, ◦) is also a

regular HX group since 0 ∈ E.

We give some further clarifications on Table 5, that this is a Hν cyclic semigroup, with

generator {AS}. It has no Hν subsemigroups. The set of partial identites Ip of (G,⊕) is G

itself by Definition 4.1, and the identity (which is both right and left identity) of G is {AS} by

Definition 4.2. Then, (G,⊕) is also a semi regular hypergroupoid by Defnition 4.3. Note that

if the parents’ genotype are {AA, AS} or {AA, SS} or {AS, SS}, the first generations of each

of these are Hν semigroups. These can be seen in the tables below.

Table 6. Parents with the genotype AA and AS

⊕ AA AS

AA {AA} {AA, AS}
AS {AA, AS} {AA, AS, SS}

The first generation H1 = {AA, AS, SS} is a Hν semigroup under ⊕.

Table 7. Parents with the genotype AA and SS

⊕ AA SS

AA {AA} {AS}
SS {AS} {SS}

The first generation H2 = {AA, AS, SS} is a Hν semigroup under ⊕.

Table 8. Parents with the genotype AA and SS

⊕ AS SS

AS {AA, AS, SS} {AS, SS}
SS {AS, SS} {SS}

The first generation H3 = {AA, AS, SS} is a Hν semigroup under ⊕.

It is established in this work that the case of crossing between organism which have lethal

genes (i.e. the genes that cause the death of the carrier at homozygous condition), such as the

crossing of mice parents with traits Yellow(Y y) and Grey(yy), is a semi regular hypergroup at

all generations, including the parents’ generation. However, the parents with traits Yellow(Y y)

and Yellow(Y y) have their first generation and the generations of all other offsprings to be semi

regular hypergyoups. These are summarized in the tables below.

Table 9. Parents with the genotype Yellow(Y y) and Grey(yy)

⊕ Y y yy

Y y {Y y, yy} {Y y, yy}
yy {Y y, yy} {yy}
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They produce the offspring Y y and yy like themselves in the first generation in the ratio

2:3. Let G = {Y y, yy}, (G,⊕) is a semi regular hypergroup.

Table 10. Parents with the genotype Yellow(Y y) and Yellow(Y y)

⊕ Y y Y y

Y y {Y y, yy} {Y y, yy}
Y y {Y y, yy} {yy}

They produce the offspring Y y and yy in the first generation in the ratio 2:1 but is not a

hypergroupoid for the occurrence of yy. But crossing this first generation produces the result of

Table 9, showing that the first generation with ⊕ is a hypergroup. This same result is obtained

for all other generations in this crossing henceforth.

It is important to note that the monohybrid and dihybrid mating of pea plant considered

in [7] are not just hypergroups but semi regular hypergroups. The particular case mentioned

above has a right and a left identity I = {W}.

§6. Conclusions

The following is just to make some conclusions. Far reaching ones can be made from the in-

depth studies and applications of the theory of hyperstructures. The algebraic properties of

these hyperstructures can be used to gain insight into what happens in the biological situations

and chemical reactions which they have modelled. For instance, the weak associativity, in case

it is a case of Hν group, of some of the chemical reactions suggests that, given reactants A, B,

and C, one must be careful in the order of mixture as you may not always have the same

product when A + B is done before adding C as in when B + C is done before adding A. In

other words, A+(B+C) does not always equal (A+B)+C. Moreover, the strong associativity,

in the case of hypergroup, indicates that same products are obtained in both orders.

From blood the genotype table of G = {AA, AS, SS}, reproduction axiom is not satisfied

with the element {SS}, meaning that if marriages are only contracted between any member of

the group and someone with {SS} genotype, all offsprings shall be carriers of sickle cell in all

subsequent generations. Besides, its weak associativity property indicates that if there were to

be marriages between individuals with genotypes A, B, and C so that those with the genotypes

A and B marry and produce offsprings which now marry those with genotype C, then some of

the offsprings of this marriage will always have the same genotype as some of the offsprings of

those with genotype A marrying the offsprings produced by the marriages of people with the

genotypes B and C.

If the operation ⊕ denotes cross breeding, it should also be noted that genetic crossing (in

terms of genotype or phenotype) is not always, at the parents level, a hyperstructure. This is

because in the collection of all traits P∗(T ) of Parents, there sometimes will be trait A and

trait B which combine to form a trait C but such that C /∈ P∗(T ). An example is in the

incomplete dominance reported when Mendel crossed the four O’ clock plant (Mirabilis jalapa)

which produced an intermediate flower colour (Pink) from parents having Red and White
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colours. Not even at any generation will it be a hyperstructure as long as there is incomplete

dominance. Hence, the theory of hyperstructures should not be applied in this case.
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