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Abstract: In this paper we find out the homology of a type of octahedron with six vertices,

twelve edges and eight faces and have shown that it is analogous with the homology of a

chain complex 0 −→ R
6 −→ R

12 → R
8 → 0 and also find out the singular homology and

the Euler characteristic of this type of octahedron which is equal to
∞∑

n=0

dimR(Hn(S)), where

S is a octahedron.
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§1. Introduction

Homology classes were first defined rigorously by Henri Poincaré in his seminal paper “Analysis

situs” in 1895 referring to the work of Riemann,Betti and von Dyck. The homology group was

further developed by Emmy Noether [1] and, independently, by Leopold Vietoris and Walther

Mayer [2] in the period 1925-28.

In mathematics (especially algebraic topology and abstract algebra), homology is a certain

general procedure to associate a sequence of abelian groups or modules with a given mathemat-

ical object such as a topological space or a group. So, in algebraic topology, singular homology

refers to the study of a certain set of algebraic invariants of a topological space X, the so-called

homology groups Hn(X). Intuitively spoken, singular homology counts, for each dimension n,

the n-dimensional holes of a space.

The abstract algebra invariants such as ring,field were used to make concept of homology

more rigorous and these developments give rise to mathematical branches such as homological

algebra and K-Theory.

Homological algebra is a tool used to prove nonconstructive existence theorems in algebra

(and in algebraic topology). It also provides obstructions to carrying out various kinds of

constructions; when the obstructions are zero, the construction is possible. Finally, it is detailed

enough so that actual calculations may be performed in important cases.

Let f and g be matrices whose product is zero. If g.v = 0 for some column vector v, say,

of length n, we can not always write v = f.u for some row vector u. This failure is measured

by the defect

d = n− rank(f)− rank(g).
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Let R be a ring and let U, V and W be the modules over R. In modern language, f and g

represent linear maps

U
f−−−−−−−→ V

g−−−−−−−→W

with gf = 0, and d is the dimension of the homology module

H = ker(g)/f(U)

Given an R-module homomorphism f : A −→ B, one is immediately led to study the

kernel ker f and image imf . Given another map g : B −→ C, we can form the sequence

A
f−−−−−−−→ B

g−−−−−−−→ C, (1)

where A, B and C are the modules over R. We say that such a sequence is exact (at B) if

ker(g) = im(f). This implies in particular that the composite gf : A −→ C is zero and finally

brings our attention to sequence (1) such that gf = 0.

The word polyhedron has slightly different meanings in geometry and algebraic geometry.

In elementary geometry, a polyhedron is simply a three-dimensional solid which consists of a

collection of polygons, usually joined at their edges. In [4], S. Dey et al. studied homology of

a type of heptahedron. Here we consider polyhedron octahedron with eight faces, six vertices

and twelve edges.

In this paper, first we find out that homology of a type of octahedron is analogous to

the homology of a chain complex, 0 −→ R7 −→ R12 −→ R7 −→ 0 and we also find out the

matrices of this complex. Next we show computationally, H2(S) ∼= H0(S) ∼= R and H1(S) = 0

and the Euler characteristic of this type of octahedron which is equal to
∞∑

n=0
dimR(Hn(S)).

§2. Homology of a Octahedron

We can obtain a chain complex from a geometric object. We refer to the Weibel’s book [3] for

some details of the construction. We illustrate it with a octahedron S in Fig.1 following.
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Level the vertex set of S as V = {v1, v2, v3, v4, v5, v6} and then the twelve edges e12, e23, e34,

e41, e15, e25, e35, e45, e16, e26, e36, e46, where eij=eji for i, j = 1, 2, 3, 4, 5, 6 can be ordered as

E = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v1}, {v1, v5}, {v2, v5},
{v3, v5}, {v4, v5}, {v1, v6}, {v2, v6}, {v3, v6}, {v4, v6}}

and seven faces f1, f2, f3, f4, f5, f6, f7, f8 can be ordered as

F = {{v1, v2, v5}, {v2, v3, v5}, {v3, v4, v5},
{v4, v1, v5}, {v1, v2, v6}, {v2, v3, v6}, {v4, v1, v6}}.

Let R be a ring and let Ci(S) be the free R-module on the set V, E, F, respectively. Define

maps ∂0, ∂1, ∂2: F → E by removing the first, second, and third vertices, respectively except

first face for each map. For the first face we define each map in such a way so that we can

construct the homology. So, ∂0, ∂1, ∂2 are given by

∂0 :f1 −→ e25 ∂1 :f1 −→ e15 ∂2 :f1 −→ e12

f2 −→ e35 f2 −→ e25 f2 −→ e23

f3 −→ e45 f3 −→ e35 f3 −→ e34

f4 −→ e15 f4 −→ e45 f4 −→ e41

f5 −→ e26 f5 −→ e16 f5 −→ e12

f6 −→ e36 f6 −→ e26 f6 −→ e23

f7 −→ e46 f7 −→ e36 f7 −→ e34

f7 −→ e16 f7 −→ e46 f7 −→ e41

The set maps ∂i yield k + 1 module maps Ck −→ Ck−1, which we also call ∂i, their

alternating sum di = Σ(−1)i∂i is the map Ck −→ Ck−1, where (0 ≤ i ≤ k ≤ n) in the chain

complex C. We can then define the map

d2 = ∂0 − ∂1 + ∂2 : C2 −→ C1,

which is given by

f1 −→ e25 − e15 + e12

f2 −→ e35 − e25 + e23

f3 −→ e45 − e35 + e34

f4 −→ e15 − e45 + e41

f5 −→ e26 − e16 + e12

f6 −→ e36 − e26 + e23



Homology of a Type of Octahedron 71

f7 −→ e46 − e36 + e34

f8 −→ e16 − e46 + e41

We can define maps ∂0, ∂1 : E −→ V by removing the first, second vertices, respectively.

Therefore we have

∂0 :e12 −→ v2 ∂1 :e12 −→ v1

e23 −→ v3 e23 −→ v2

e34 −→ v4 e34 −→ v3

e41 −→ v1 e41 −→ v4

e15 −→ v5 e15 −→ v1

e25 −→ v5 e25 −→ v2

e35 −→ v5 e35 −→ v3

e45 −→ v5 e45 −→ v4

e16 −→ v6 e16 −→ v1

e26 −→ v6 e26 −→ v2

e36 −→ v6 e36 −→ v3

e46 −→ v6 e46 −→ v4

We can define map d1 = ∂0 − ∂1 from C1 to C0, and it is given by

e12 −→ v2 − v1
e23 −→ v3 − v2
e34 −→ v4 − v3
e41 −→ v1 − v4
e15 −→ v5 − v1
e25 −→ v5 − v2
e35 −→ v5 − v3
e45 −→ v5 − v4
e16 −→ v6 − v1
e26 −→ v6 − v2
e36 −→ v6 − v3
e46 −→ v6 − v4

By viewing C0 = R6, C1 = R12, and C2 = R8, the maps d1 and d2 are given by the
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following matrices

d1 =




−1 0 0 1 −1 0 0 0 −1 0 0 0

1 −1 0 0 0 −1 0 0 0 −1 0 0

0 1 −1 0 0 0 −1 0 0 0 −1 0

0 0 1 −1 0 0 0 −1 0 0 0 −1

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1




and

d2 =




1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

−1 0 0 1 0 0 0 0

1 −1 0 0 0 0 0 0

0 1 −1 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 −1 0 0 1

0 0 0 0 1 −1 0 0

0 0 0 0 0 1 −1 0

0 0 0 0 0 1 1 −1




Because d1d2 is easily computed to be zero matrix, the sequence

· · ·C2
d2−−−−−−−→ C1

d1−−−−−−−→ C0 −→ 0

is a complex. We compute the homology Vn(S) of this complex with the help of Matlab. By

Finding the column space of d1, we find im(d1). This space has a basis consisting of the vectors

{(−1, 1, 0, 0, 0, 0), (0,−1, 1, 0, 0, 0), (0, 0,−1, 1, 0, 0), (−1, 0, 0, 0, 1, 0), (−1, 0, 0, 0, 0, 1)}.

We note that by adding (0, 0, 0, 0, 0, 1) that we get a basis for R6. Therefore

C0/im(d1) ∼= R.

Thus

V0(S) = R.
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Now, ker(d1) has a basis





(1, 1, 1, 1, 1, 1, 1), (1, 0, 1, 1, 0, 1, 1),

(1, 0, 0, 1, 0, 0, 1), (1, 0, 0, 0, 0, 0, 0),

(0,−1,−1,−1, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0),

(0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0),

(0, 0, 0, 0,−1,−1,−1), (0, 0, 0, 0, 1, 0, 0),

(0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 1)





Again, im(d2) has a basis






{(1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0),

(0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0),

(0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 1, 0),

(0, 0, 0, 0, 0, 0, 1), (0, 0, 0, 0,−1,−1,−1)

(−1, 0, 0, 1,−1, 0, 0), (1,−1, 0, 0, 0,−1, 0),

(0, 1,−1, 0, 0, 0,−1), (0, 0, 1,−1, 1, 1, 1)}






If ui are the basis vectors of ker(d1),then the following vectors of im(d2) can be constructed

in the following way:

(−1, 0, 0, 1,−1, 0, 0) is u9 − u4 + u12 + u10 + u11,

(1,−1, 0, 0, 0,−1, 0) is u4 − u6 − u11,

(0, 1,−1, 0, 0, 0,−1) is u6 − u7 − u12 and

(0, 0, 1,−1, 1, 1, 1) is u7 − u8 + u10 + u12 + u11.

The rest of the elements of im(d2) can be found in ker(d1).

Thus we see that im(d2) = ker(d1). Therefore, V1(S) = 0. Finally, ker(d2) has a basis of

one element {(−1,−1,−1,−1, 1, 1, 1, 1)}. So, V2(S) = ker d2 = R. To summarize, the singular

homology Vn(S) of the Octahedron is

V0(S) = V2(S) = R,

V1(S) = 0,

Vn(S) = 0 if n ≥ 3.

The Euler characteristic is a fundamental invariant for the classification of surfaces, so it is

particulary useful that it can be calculated with homological algebra. The Euler characteristic

of such surface H is v − e+ f , where v is the number of vertices, e is the number of edges and

f is the number of faces. Now, the Euler characteristic of octahedron is 2, which is equal to
∞∑

n=0
dimR(Vn(S)). This is the same as the Euler Characteristic of a sphere as a octahedron is
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homeomorphic to a sphere, so it is homotopic to a sphere.

§3. Conclusion

One can find the homology of other polyhedron like prism, decahedron etc.
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