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Abstract. A physical approach to a category of motives must account for the emergent nature
of spacetime, where real and complex numbers play a secondary role to discrete operations in
quantum computation. In quantum logic, the cardinality of a set is initially replaced by a
dimension of a linear space, making contact with the increasing dimensions in an operad. The
operad of associahedra governs tree level scattering, and is closely related to the permutohedra
and cube tiles, where cube vertices can encode components of a spinor in higher dimensional
octonionic approaches. A study of rest mass generation begins with the cosmological infrared
scale, set by the neutrino masses, and its related see-saw mechanism. We employ the anyonic
ribbon spectrum for Standard Model states, and consider its relation to magic star algebras,
giving a context for the Koide rest mass phenomenology of charged leptons and quarks.

1. Overview
What is motivic quantum gravity? Algebraic geometers study periods associated to Feynman
integrals in particle physics. Periods form a ring P ⊂ C, and we might construct this ring
from smaller rings in the plane. As physicists, we seek canonical discrete structures for
quantum gravity, rich enough to underlie a universal cohomology theory within which all physical
amplitudes are computed. In particular, the lattice of e8 is embedded in Z8/2, which in turn
is mapped densely into C [1] using only the integers of the golden ring extension of Q, where
φ = (1 +

√
5)/2 and σ =

√
φ+ 2 define real numbers of the form

a+ bφ+ cσ + dφσ, (1)

for integral a, b, c, d. The lattice defines the Penrose pentagonal tiling.
Thus our philosophy is not to begin with ordinary varieties or manifolds, but to consider the

difficult question of their emergence from combinatorial data associated to quantum gravitational
logic. Then any real or complex space, including spacetime or the full algebra of e8, become
secondary to the algorithms that generate them. Since quantum mechanics naturally defines a
symmetric monoidal category [2][3], one expects that its extension to gravity will also employ
higher dimensional category theory in a fundamental way, combining generalized associahedra
with canonical algebraic data.

Physically, the hypothesis of non local right handed neutrino states is capable of solving
many cosmological conundrums. After the 2010 discovery [4][5][6] of the exact correspondence
between a neutrino rest mass and the present day temperature of the CMB, it was natural to
consider a new IR scale defined by the overall neutrino scale at around 0.01 eV, as considered



in the neutrino condensate picture [7]. Successful predictions included a computation of the
observable mass of our universe, tighter constraints on neutrino masses and an effective sterile
mass for oscillation anomalies [8][9]. Connections to holography were discussed in [6]. The
crucial mass photon relation comes from Wien’s law

mc2 = βT, (2)

now justified by quantum inertia [10][11][12][13]. Neutrino states fit into the triplet ribbon
spectrum of [14][15] for the Standard Model. Brannen showed in [16] how to extend Koide’s
formula [17][18] for the low energy charged lepton masses to neutrino masses. An inverted
see-saw relation for the neutrino scale mν = 0.01 eV,

mH =
√
mνmP (3)

suggestively approximates the Higgs mass.
Neutrino states are also expected to define the vacuum in the octonionic algebras of

[19][20][21], as outlined in the next section. Section 3 introduces operad polytopes and a few
important categorical concepts. According to Vaughan Jones, to understand the Standard
Model, you need to see three monads. A proper monad is an endofunctor that generalizes
the idempotent rule P 2 = P . Points are generically idempotents, either as objects in a Heyting
algebra of open sets or as matrices in a Jordan algebra. A crucial monad in classical mathematics
is the power set monad, and its simplest quantum analogue is determined by a symmetric
monoidal category of vector spaces [22].

The importance of discretizing spaces was understood a long time ago by Nikola Tesla [23],
who famously said that the Universe comes down to the magic of 3, 6, 9. These numbers show
up as follows. Take the Fibonacci sequence, associated to powers of φ. Take the decimal parity
of each number in the sequence. For example, the parity of 13 is 1 + 3 = 4. As with binary
codes, this defines a parity check bit. Now the entire Fibonacci sequence is a repeating list of
24 numbers,

1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 9, (4)

containing two copies of 3, 6 and 9, which label the vertices of a hexagon in Metatron’s cube.
Decimal parity is analogous to the check bit in a classical binary code. We expect that quantum
gravity employs not only qubits, but also qutrits and 10-dits, to make up the base 60 of the
universal clock. Tesla’s code shows how the qutrit component separates from other numbers.

2. A topological particle spectrum
In the scheme of [14], a chiral set of massless Standard Model states is given as three strand
ribbon diagrams. If we forget the dyonic braiding for the moment, states are still distinguished
[15] by augmenting the underlying permutations in S3. For this single generation, ν and ν
annihilate to a photon identity

γ =

1 0 0
0 1 0
0 0 1

 . (5)

We approach electroweak symmetry breaking in reverse, allowing mass to emerge from some
abstract entanglement network. If the basis neutrinos are

ν =

0 1 0
0 0 1
1 0 0

 , ν =

0 0 1
1 0 0
0 1 0

 , (6)



the electromagnetic charge is a set of twists on the three ribbon strands, where distinct twists
may be assigned to each strand. We represent this by replacing 1s by one of three phases: 1 for
neutral, ω for +1/3, or ω for −1/3. Then the charged leptons are

e−L = ω

0 1 0
0 0 1
1 0 0

 , e+R = ω

0 0 1
1 0 0
0 1 0

 , (7)

which indeed compose to the identity. Similarly,

e+L = ω

0 1 0
0 0 1
1 0 0

 , e−R = ω

0 0 1
1 0 0
0 1 0

 . (8)

For quarks, put the charges onto individual strands, as in the colored matrices

uL(1) =

0 ω 0
0 0 ω
1 0 0

 , uL(2) =

0 1 0
0 0 ω
ω 0 0

 , uL(3) =

0 ω 0
0 0 1
ω 0 0

 (9)

for left handed up quarks. Leptons are circulants while quarks are not. The W± bosons are
given by

W− = ω

1 0 0
0 1 0
0 0 1

 , W+ = ω

1 0 0
0 1 0
0 0 1

 . (10)

The tricky particle in this massless model is the Z boson, built from six remaining neutral boson
matrices, 1 0 0

0 ω 0
0 0 ω

 ,

ω 0 0
0 1 0
0 0 ω

 ,

ω 0 0
0 ω 0
0 0 1

 (11)

and their three conjugates. These matrices permit a natural difermionic supersymmetry [15]
through the twisted Fourier transform F, defined on e−L by

F(e−L ) ≡ 1

3

1 0 0
0 ω 0
0 0 ω

1 1 1
1 ω ω
1 ω ω

0 ω 0
0 0 ω
ω 0 0

1 1 1
1 ω ω
1 ω ω

 = W−. (12)

For right handed states we replace the mixed diagonal by its complex conjugate,

F(e−R) ≡ 1

3

1 0 0
0 ω 0
0 0 ω

1 1 1
1 ω ω
1 ω ω

0 0 ω
ω 0 0
0 ω 0

1 1 1
1 ω ω
1 ω ω

 = W−. (13)

In this way, circulant leptons map to electroweak bosons

e± 7→W±, ν, ν 7→ γ. (14)

Since quarks are not circulant, the corresponding bosons are mixed phase non diagonals,
presumably associated to the confinement of color.

The braid group B3 extends the underlying permutations of S3 and covers the modular group.
In Fibonacci anyon categories, B3 models SU(2) in the construction of gates for universality in



quantum computation [24]. It is also well known that the string net condensation of [25], using
modular tensor categories, can recover QED and QCD with a Anderson-Higgs mechanism.

Recently, the relation of the ribbon spectrum to octonion algebras was clarified in [26], based
on the work of Furey [21]. We start with the 64 dimensions of the C⊗O ideal algebra [19][20][21],
which assigns U(1)Q and SU(3)C color charges to the quarks and leptons of the Standard Model.
Selecting one octonion unit for the lepton doublet, define the C⊗O idempotent ν = (1 + ie7)/2.
The other six units e1, · · · , e6 define

α1 =
1

2
(−e5 + ie4), α2 =

1

2
(−e3 + ie1), α3 =

1

2
(−e6 + ie2). (15)

The Lie algebra generators Λa for SU(3)C occur in three different ways. Taking (I, ν, ν) in
C⊗O, with I = 1,

1

4
[Λa,Λb] =

i

2
fabcΛc (16)

1

4
[Λaν,Λbν] =

i

2
fabcΛcν

1

4
[−Λaν,−Λbν] = − i

2
fabcΛcν.

Complex conjugation i 7→ −i sends particles to antiparticles. Charges for one generation [21]
come from the number operator

N =

3∑
j=1

α†jαj , (17)

with values in {0, 1, 2, 3}. Writing out the αj components of N , a set of eight charges on a three
qubit parity cube gives the set {ν, d(3), u(3), e−} from

A†A, αjA
†A, αjαkA

†A, αjαkαlA
†A, (18)

where
A ≡ α1α2α3 = iν. (19)

The three copies of 64 for the generations suggest a (massless form) of triality for e8. Moving
in this dirction, in (16) I represents LL−1, where L and R = L−1 are chiralities for the massless
neutrino ν. Since ribbon diagrams will characterise chirality, we start with a basis for the Hopf
algebra CC3,

I =

1 0 0
0 1 0
0 0 1

 , L =

0 1 0
0 0 1
1 0 0

 , R =

0 0 1
1 0 0
0 1 0

 . (20)

In every prime power dimension, the Fourier transform Fpr diagonalizes 1-circulants, and there
exists pr+1 mutually unbiased bases [27][28][29] generalizing the 2×2 Pauli matrices, providing
a canonical matrix representation for multiplication in finite fields.

Now let ω be the primitive cubed root of unity. The 3× 3 Fourier transform

F3 =
1√
3

1 1 1
1 ω ω
1 ω ω

 (21)

diagonalizes 1-circulants, as inλ1 0 0
0 λ2 0
0 0 λ3

 = F3

r θ θ

θ r θ

θ θ r

F3
†. (22)



The circulant idempotents are

I =

1 0 0
0 1 0
0 0 1

 , H =
1√
3

1 ω ω
ω 1 ω
ω ω 1

 , H =
1√
3

1 ω ω
ω 1 ω
ω ω 1

 . (23)

As Hermitian matrices, they belong to the Jordan algebra J3(C). We are particularly interested
in idempotents for the exceptional algebra J3(O) over the octonions [30][31], and its extensions
by an arbitrary division algebra. Its off diagonal integral points are known to give the Leech
lattice [32][33].

The four dimensional Fourier transform is the eigenvectors of the chiral operator γ5 in the
Dirac representation,

F4 = F2 ⊗ F2 =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 . (24)

As Alain Connes likes to say, our ignorance of numbers comes down to the interplay between
multiplication and addition on the adelic line. Discreteness in the golden ring integers tells us
to reconsider all valuations, which we do by introducing coordinates in terms of geometrical
elements, as required in any motivic approach.

3. Operads, logic and the magic star
Scattering amplitudes using on-shell methods utilise combinatorial operads, most notably
Stasheff’s associahedra [34][35][22]. Word labels are given to finite rooted planar trees in the
following way. Given l letters, the set of words of length n define the vertices of a subdivided
cube. For example, when n = l = 3 we have a cube in dimension 3 such that each edge is cut
in half, giving the vertices of a cuboctahedron. Words are noncommutative monomials. The
commutative monomials define triangular simplices, sliced diagonally through the corresponding
cube.

Postnikov [36] defines the associahedra and permutohedra in terms of these integral
simplex coordinates, which we view as powers of prime components in the factorization of
an integer. For the vertices of the permutohedron: write down all divisors of the number
N = p1

np2
n−1p3

n−2 · · · pn including 1. For the 24 permutations of S4, we get

1, p1, p2, p3, p1
2, p2

2, p1
3, (25)

p2p3, p1p3, p1p2, p3p2
2, p3p1

2, p2p1
2, p1p2

2, p2p3
2,

p2p3
3, p2

2p3
3, p2

2p3
2, p1p2p3,

p1p2
2p3, p1p2

2p3
2, p1p2

2p3
3, p1p2p3

2, p1p2p3
3.

The vertices of the associahedron are obtained by looking at divisor classes: two divisors
are equivalent if their set of powers is the same. In the case of S4 we obtain the 14 vertex
associahedron

1, p1, p1
2, p1

3, p1p2, p1
2p2, p1

3p2, p1
3p2

2, p1
2p2

2, (26)

p1p2p3, p1
2p2p3, p1

2p2
2p3, p1

3p2p3, p1
3p2

2p3,

alternatively written as

000, 100, 200, 300, 110, 210, 310, 320, 220, 111, 211, 221, 311, 321. (27)



Finally, the vertices of Kapranov’s permutoassociahedron [37] are pairs (u)[v], with u in Sn and
v in the class for the associahedron. For example, write (p1

2)[q1q2] to denote p1
2 ∈ S3 and

the class of p1p2. The 120 vertex polytope contains 24 pentagons, much like the discrete Hopf
fibration [38] for S7 → S4, related to the e8 lattice. Extending rooted trees in both the upwards
and downwards directions (in a PRO) we obtain a (3 + 3) dimensional catalog of the 240 roots
of e8.

Consider now the magic star for e8. A basic parity cube for three qubits (n = 3, l = 2) is
inscribed inside larger cubes, starting with the cube with halved edges, for the d3 lattice. The
magic star projection [39][40][41] of Lie algebra lattices contains a hexagon of edge centers on
the cube, perpendicular to the three points on the diagonal, say (0, 0, 0), (1, 1, 1) and (2, 2, 2).
This diagonal collapses to the central e6 point in the magic plane.

This magic plane is tiled by a tetractys simplex for 3 qutrits, since the triangles defining the
star of David contain two interior points along each edge. The associahedra sit inside simplices of
this type, where n = l. For the tetractys, we obtain Postnikov’s pentagon [36] as the five points
(x1, x2, x3) with

∑
i xi = 3 such that in the i-th coordinate the sum of xi with i ≤ i is greater

than or equal to i. These coordinates directly encode the noncommutative forest representation
of vertices on the associahedron. Now one tetractys holds exactly three pentagons.

A generic point on the star hexagon in the magic plane [39] carries two labels:

(i) one of the 27 dimensions of J3(O) for e8 (or its analogue for other algebras)

(ii) a word label for the center of a tetractys tile, out of the six elements of S3.

Now as it happens, 6/27 = 2/9 is very close to the θ parameter for the lepton Koide mass
matrices [17][18][16][42], something that certainly warrants further investigation. Moreover, in
Tesla numerology it is observed that φ2 is close to 5π/6, which appears in a knot invariant
estimate for the fine structure constant [42].

A discrete blowup, or scale shift, sends each point in the plane to a new tetractys, creating
larger copies of the magic star. Three dimensional space is regularly tiled either by parity cubes
or by permutohedra. The parity cube is derived from the permutohedron as follows. The 24
vertices of S4 have integral coordinates, namely the permutations of (1, 2, 3, 4) in R3. Each
s ∈ S4 is assigned a signature, which lists the shifts between entries in s. For example, (2, 3, 1, 4)
has signature + − +. The eight signature classes for S4 define the vertices of the parity cube
in three dimensions. The product of two signature classes for Sn is given by the product in the
group Hopf algebra CSn, producing the descent Hopf algebra of Solomon [43]. For example,

(−+ +)(−−+) = (+−−) + (+−+) + (−−−). (28)

In any dimension, this is the Hopf algebra needed to construct Jordan pairs [44][45][46] for the
magic star.

In the Jordan pair picture, points and higher dimensional objects are idempotents. Similarly,
from a categorical perspective, open sets are idempotents in a Heyting algebra [47], which is a
not necessarily distributive poset lattice, with 0, 1 and an implication map x ⇒ y. Objects in
the lattice satisfy

x ∨ x = x, x ∧ x = x (29)

and
x ∧ (y ∨ x) = x = (x ∧ y) ∨ x. (30)

Implication satisfies
(x⇒ y) ∧ x = x ∧ y (31)

and the higher distributivity rule

x⇒ (y ∧ z) = (x⇒ y) ∧ (x⇒ z). (32)



A lattice is non distributive if it contains a pentagon. Vector spaces for quantum logic are non
distributive under the closure of union operation.

The loop structure on octonions in the e8 lattice weakens both commutativity and
associativity, effectively introducing braiding and fusion rules for a category.

The duality of product and coproduct appears on the fundamental cubes. The αi labels of
(17) give the parity cube as a three element power set lattice. Conversely, when we consider
instead a quantum configuration of three non parallel lines in a plane, the source (the empty
set ν) becomes the whole plane, while the target three point set is now the empty intersection
of the three lines.

4. Masses and Mixings
If there are three rest mass particle states, and mass is energy, then the limit of the uncertainty
principle requires three time lines. In the neutrino CMB correspondence, temperatures
correspond to past, present and future [6]. The breaking of the massless 3× 3 matrix spectrum
requires a braiding, associated to dyonic states, and a quantum neutrino mass.

A rest mass operator
√
M obeying the Koide relation [16][17][18] is a circulant of the form

(22) plus a scale factor µ. The diagonal of eigenvalues under F3 gives a sum of three idempotents
for J3(C), where we recall that C is densely filled by Z8/2 using the quasilattice of [1]. The
determinant of

√
M [42] satisfies

1 +
√
λ1λ2λ3 ≡ r cos(3θ), (33)

and this quantity goes to zero when one eigenvalue of
√
M is negative, which occurs for Brannen’s

extension [16] of the Koide rule to the neutrinos. This justifies the choice r =
√

2 for the leptons,
since it is centered around zero for the basic arithmetic phase θ = ±π/12. This rule provides a
second constraint on the mass triplet, after the Koide relation itself. For neutrinos, it takes the
form √

m1m2m3

(
√
m1 +

√
m2 −

√
m3)3

=
1

27
. (34)

Observationally, the charged lepton phase θ is very close to 2/9, while the active neutrino triplet
fits oscillation data with a phase of θ = 2/9 + π/12 [9]. Similarly, quark rest mass triplets are
obtained with phases 2/27 and 4/27. The charged lepton scale µ is a simple multiple of the
proton mass [16] and the right handed neutrino phase is 2/9− π/12 [6].

Although a better clarification of mixing angles relies on further details in motivic quantum
gravity, we outline here a useful quark lepton complementarity model. The first Euler angle in
the CKM matrix [48][49] is the Cabibbo angle δ12, approximated by the rule

δ12 + δ13 =
π

4
− arctan

1

φ
= 13.28◦. (35)

The other two irrationals in the golden ring give

δ23 =
π

6
− arctan

1√
φ+ 2

= 2.3◦,
π

2
− arctan

1

φ
√
φ+ 2

= 72◦, (36)

where 72◦ is an angle in the Penrose tiling [1][50][51]. The phases π/6 and π/4 define the
tribimaximal matrix [52], which is a planar approximation to the PMNS neutrino mixing matrix
[53][54]. For the small quark phase δ13 ' 0.2◦ we look to the breaking of tribimaximal mixing
in the neutrino sector. The small mixing angle 8.5◦ is close to 4/27, which is obtained as two
thirds of 2/9 from a triality action on the complex phase X in a X X

X a X
X X a

 (37)



in J3(C) [42]. With this deformation, the CKM matrix δ12 = 13.01◦ and δ13 is close to 0.27.
Since Euler angles are expressed as circulants in the Hopf algebra CS3, complex phases are
automatically included and the CKM and PMNS matrices exhibit maximal CP violation, in line
with observations.

In the full theory, the phases π/6 and π/4 are of course associated to automorphic forms,
which we construct from the combinatorics of higher dimensional discrete geometries. Here, for
instance, the allowed dimensions of matrix components in the 3×3 T -algebras of [41] determine
the restricted Euler factors, such as a b 0

b a 0
0 0 a+ b

 , (38)

of our circulant mixing matrices.
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