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Abstract: In this work, by summarising our recent works on the differential geometric and 

topological structures of quantum particles and spacetime manifold, we discuss the possibility 

to classify quantum particles according to their intrinsic geometric structures associated with 

differentiable manifolds that are solutions to wave equations of two and three dimensions. 

We show that fermions of half-integer spin can be identified with differentiable manifolds 

which are solutions to a general two-dimensional wave equation, in particular, a two-

dimensional wave equation that can be derived from Dirac equation. On the other hand, 

bosons of integer spin can be identified with differentiable manifolds which are solutions to a 

general three-dimensional wave equation, in particular, a three-dimensional wave equation 

that can be derived from Maxwell field equations of electromagnetism. We also discuss the 

possibility that being restricted to three-dimensional spatial dimensions we may not be able to 

observe the whole geometric structure of a quantum particle but rather only the cross-section 

of the manifold that represents the quantum particle and the space in which we are confined. 

Even though not in the same context, such view of physical existence may comply with the 

Copenhagen interpretation of quantum mechanics which states that the properties of a 

physical system are not definite but can only be determined by observations. 

 

1. Covariant formulations of classical and quantum physics  

In physics, the electromagnetic field has a dual character and plays a crucial role both in the 

formulation of relativity theory and quantum mechanics. However, since the electromagnetic 

field itself is regarded simply as a physical event whose dynamics can be described by 

mathematical methods therefore it is reasonable to suggest that it should be formulated in 

both forms of classical and quantum mathematical formulations. This amounts to suggesting 

that it should be derived from the same mathematical structure of classical theories, such as 

the gravitational field, and at the same time from the same mathematical structure of quantum 

theories, such as Dirac formulation of quantum mechanics. In this section we show that in 

fact this is the case. As shown in our works on spacetime structures of quantum particles [1], 

the three main dynamical descriptions of physical events in classical physics, namely Newton 

mechanics, Maxwell electromagnetism and Einstein gravitation, can be formulated in the 

same general covariant form and they can be represented by the general equation 
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where   is a mathematical object that represents the corresponding physical system and   is 

a covariant derivative. For Newton mechanics, we have     
 

 
            

      

and    . For Maxwell electromagnetism,                 with the four-vector 

potential          and   can be identified with the electric and magnetic currents. And for 

Einstein gravitation,       and   can be defined in terms of a metric     and the Ricci 

scalar curvature. It is shown in differential geometry that the Ricci tensor     satisfies the 

Bianchi identities 

   
   

 

 
                                                                                                                                         

where          is the Ricci scalar curvature [2]. Even though Equation (2) is purely 

geometrical, it has a covariant form similar to the electromagnetic tensor    
       

defined in Euclidean space. If the quantity 
 

 
       can be identified as a physical entity, 

such as a four-current of gravitational matter, then Equation (2) has the status of a dynamical 

law of a physical theory. In this case a four-current           can be defined purely 

geometrical as 

   
 

 
                                                                                                                                                 

If we use the Bianchi identities as field equations for the gravitational field then Einstein field 

equations, as in the case of the electromagnetic field, can be regarded as a definition for the 

energy-momentum tensor     for the gravitational field [3] 

    
 

 
                                                                                                                              

For a purely gravitational field in which 
 

 
        , the proposed field equations given in 

Equation (2) also give rise to the same results as those obtained from Einstein formulation of 

the gravitational field given in Equation (4). For a purely gravitational field, Equation (2) 

reduces to the equation 

   
                                                                                                                                                       

From Equation (5), we can obtain solutions found from the original Einstein field equations, 

such as Schwarzschild solution, by observing that since    
    , Equation (5) implies 

                                                                                                                                                        

where   is an undetermined constant. Furthermore, the intrinsic geometric Ricci flow that 

was introduced by Hamilton can also be derived from Equation (5) and given as follows 

    

  
                                                                                                                                                   



where   is a scaling factor. Mathematically, the Ricci flow is a geometric process that can be 

employed to smooth out irregularities of a Riemannian manifold [4]. There is an interesting 

feature that can be derived from the definition of the four-current           given in 

Equation (3). By comparing Equation (3) with the Poisson equation for a potential   in 

classical physics        , we can identify the scalar potential   with the Ricci scalar 

curvature   and then obtain a diffusion equation  

      
                                                                                                                                                  

where   is an undetermined dimensional constant. Solutions to Equation (8) can be found to 

take the form [5] 

           
 

       
  

 
        

                                                                                                       

Equation (9) determines the probabilistic distribution of an amount of geometrical substance 

  which is defined via the Ricci scalar curvature   and manifests as observable matter. It is 

interesting to note that in fact it is shown that a similar diffusion equation to Equation (8) can 

also be derived from the Ricci flow given in Equation (7) as follows [6] 

  

  
                                                                                                                                             

where   is the Laplacian defined as           and       is a shorthand for a mathematical 

expression. Therefore, the Bianchi field equations of general relativity in the covariant form 

given in Equation (2) can be used to formulate quantum particles as differentiable manifolds, 

in particular 3D differentiable manifolds. 

On the other hand, we have also shown that Maxwell field equations of electromagnetism and 

Dirac relativistic equation of quantum mechanics can be formulated covariantly from a 

general system of linear first order partial differential equations [7,8,9]. An explicit form of a 

system of linear first order partial differential equations can be written as follows [10]  

     
 
   
   

 

   

 

   

      
 

 

   

      
                                                                                  

The system of equations given in Equation (11) can be rewritten in a matrix form as 

    
 

   

 

   

                                                                                                                          

where               
 ,                                    ,   ,   and   

are matrices representing the quantities    
 ,   

  and   , and    and    are undetermined 

constants. Now, if we apply the operator    
 

   

 
    on the left on both sides of Equation (12) 

then we obtain 



    
 

   

 

   

     
 

   

 

   

       
 

   

 

   

                                                                    

If we assume further that the coefficients    
  and   

  are constants and        , then 

Equation (13) can be rewritten in the following form 

    
  

 

   
 

 

   

              
  

      

 

   

 

   

     
                 

  

   

 

   

         

In order for the above systems of partial differential equations to be used to describe physical 

phenomena, the matrices    must be determined. We have shown that for both Dirac and 

Maxwell field equations, the matrices    must take a form so that Equation (14) reduces to 

the following equation 

    
  

 

   
 

 

   

     
                 

  

   

 

   

                                                                    

Therefore, the general system of linear first order partial differential equations can be used to 

formulate the dynamics of quantum fields that include the electromagnetic field and matter 

field of quantum particles. In Sections 3 and 5 we will give explicit forms for the matrices    

for both Dirac and Maxwell field equations and show that these two systems of differential 

equations can be applied to classify quantum particles as fermions of half-integer spin and 

bosons of integer spin. 

 

2. On the dimensionality of the spatiotemporal manifold 

In classical physics, in order to formulate the dynamics of natural events that are observable 

we assume that spacetime is a continuum which consists of three spatial dimensions and one 

temporal dimension. At the macroscopic scale on which information about physical objects 

can be established with certainty the assumption seems to be reasonable because it can 

adequately be used for all dynamical formulations of physical theories. However, at the 

microscopic scale quantum responses of physical events have revealed that such simple 

picture of a four-dimensional spacetime continuum is in fact not adequate for physical 

descriptions, especially those that can be accounted for by observations that can only be set 

up within our perception of physical existence. This leads to a more fundamental problem in 

physical investigation of how we can justify the merit of a physical theory. From the 

perspective of scientific investigation, physical theories can only be evaluated on the subject 

of the accuracy to experimental results of their mathematical formulations that can be applied 

into the dynamical description of physical objects. But as far as we are concerned, the setup 

of a physical experiment is within the limit of three-dimensional domain, therefore, the 

dimensionality of the spatiotemporal manifold in fact still remains the most fundamental 

problem that needs to be addressed before any attempt to formulate physical theory can be 



justified. In our previous works on spacetime structures of quantum particles and geometric 

interactions we showed that it is possible to formulate quantum particles as three-dimensional 

differentiable manifolds which have further geometric and topological structure of a CW 

complex whose decomposed n-cells can be associated with physical fields that form the 

fundamental physical interactions between physical objects [11,12 ,13]. We also showed that 

it is possible to suggest that spacetime as a whole is a fiber bundle which admits different 

types of fibers for the same base space of spacetime and what we are able to observe are the 

dynamics of the fibers but not that of the base space itself [14]. Even though the fiber bundle 

formulation of the spatiotemporal manifold may provide a more feasible framework to deal 

with the dynamics of physical existence, the questions about the nature of the base space of 

the spatiotemporal fiber bundle, whether it can be observable and whether matter are physical 

entities or they are simply geometric and topological structures of the spacetime manifold 

still remain unanswered. We may also ask the question of how many dimensions the universe 

really has then even though the answer to this type of question will depend on our 

epistemological approach to the physical existence, within our geometric and topological 

formulation of spacetime we would say that it would depend on what is the highest 

dimension of the n-cells that are decomposed from the spacetime bundle that we can 

perceive. However, it seems natural that being apparently three-dimensional we perceive the 

physical existence in three spatial dimensions. It is also natural that due to our perception of 

the progress of physical events that occur in sequence that we recognise time as one-

dimensional. In physics, practically, we describe the physical existence in terms of those that 

can be observed and measured. In classical physics, what we are observing are physical 

objects that move in a three-dimensional Euclidean space and the motion occurs in sequence 

that changes spatial position with respect to time, which itself can be measured by using the 

displacement of the physical objects. However, in quantum physics, the observation of 

physical objects itself is a new epistemological problem. The fundamental issue that is related 

to this epistemological problem of observation is the difficulty in knowing how quantum 

particles exist. In Einstein theory of special relativity the dimensionality of spacetime is 

assumed to be that of one-dimensional time and three-dimensional Euclidean space   , 

together they form a four-dimensional spacetime which has the Minkowski mathematical 

structure of pseudo-Euclidean geometry. This mathematical structure seems to be complete in 

itself if spacetime is not curved. However, in Einstein theory of general relativity, spacetime 

is assumed to be curved by matter and energy. As a consequence from the assumption of the 

Minkowski mathematical structure of a four-dimensional spacetime, the mathematical objects 

that are used to describe physical objects can only be described as two-dimensional manifolds 

embedded in the three-dimensional Euclidean space   . In fact, as shown in Section 3 below, 

this may be true for the case of massive quantum particles of half-integer spin. On the other 

hand, in order to describe physical objects that are assumed to possess the mathematical 

structures of three-dimensional manifolds an extra dimension of space must be used. For 

example, with Einstein field equations given as     
 

 
               and the 

cosmological model that uses the Robertson-Walker metric of the form           

                                   , in order to derive the Robertson-Walker 

metric from Einstein field equations we assume that the quantity      is the radius of a 3-



sphere embedded in a four-dimensional Euclidean space   . This raises the question of 

whether this extra spatial dimension is real or just for convenience. Furthermore, we may ask 

whether there are any other physical formulations of physics that also require an extra 

dimension of space. This is in fact also the case when we discussed the wave-particle duality 

in quantum mechanics in which quantum particles can be assumed to possess the geometric 

and topological structures of a three-dimensional differentiable manifold [15]. As a matter of 

fact, the anthropic cognition of spacetime with higher dimensions is a subject of scientific 

investigation and with open-mindedness there is no reason why we should avoid any attempt 

to formulate a physical theory that requires such perception with reasoning thinking. Even 

though the CW complex and fiber bundle formulations give a general description of the 

geometric structures of both quantum particles and the spatiotemporal manifold, the more 

important question that still remains is how to determine the specific structure of each 

quantum particle. For example, if quantum particles are considered as three-dimensional 

differentiable manifolds then it is reasonable to suggest that generally their geometric 

structures should be classified according to Thurston geometries [16]. However, even with a 

correct classification of quantum particles according to their intrinsic geometric structures, 

this type of geometric classification lacks the more important aspects of physical descriptions 

that are required for a physical theory which encompasses the dynamics and the interactions 

between them. With the assumption that quantum particles possess the intrinsic geometric 

structures of a CW complex and each geometric structure manifests a particular type of 

physical interactions, it is reasonable to assume that there is a close relationship between 

geometric structures in terms of decomposed n-cells from a CW complex and physical 

interactions. In general, we may consider physical objects of any scale as differentiable 

manifolds of dimension   which can emit submanifolds of dimension     by 

decomposition. In order to formulate a physical theory we would need to devise a 

mathematical framework that allows us to account for the amount of subspaces that are 

emitted or absorbed by a differentiable manifold. This is the evolution of a geometric process 

that manifests as a physical interaction. We assume that an assembly of cells of a specified 

dimension will give rise to a certain form of physical interactions and the intermediate 

particles, which are the force carriers of physical fields decomposed during a geometric 

evolution, may possess a specified geometric structure, such as that of the n-spheres and the 

 -tori. Therefore, for observable physical phenomena, the study of physical dynamics 

reduces to the study of the geometric evolution of differentiable manifolds. In particular, if a 

physical object is considered to be a three-dimensional manifold then there are four different 

types of physical interactions that are resulted from the decomposition of 0-cells, 1-cells, 2-

cells and 3-cells and these cells can be associated with the corresponding spatial forces 

      
  and temporal forces       

  with       . In the case of    , for a 

definite perception of a physical existence, we assume that space is occupied by mass points 

which interact with each other through the decomposition of 0-cells. However, since 0-cells 

have dimension zero therefore there are only contact forces between the mass points,     . 

When the mass points join together through the contact forces they form elementary particles. 

The 0-cells with contact forces can be arranged to form a particular topological structure [17]. 

Therefore, we can assume that a general spatiotemporal force which is a combination of the 



spatial and temporal forces resulted from the decomposition of spatiotemporal n-cells of all 

dimensions can take the form 

       
     

  

 

    

                                                                                                                        

where    and    are constants which can be determined from physical considerations. Using 

equations of motion from both the spatial and temporal Newton’s second laws of motion 

 
   

   
                                                                                                                                                    

 
   

   
                                                                                                                                                     

it is seen that a complete geometric structure would be the structure that is resulted from the 

relationship between space and time that satisfies the most general equation in the form 

 
   

   
  

   

   
      

        
     

 

    

                                                                                   

The above discussions suggest that the apparent geometric and topological structures of the 

total spatiotemporal manifold are due to the dynamics and the geometric interactions of the 

decomposed cells from the base space of the total spatiotemporal manifold, and the 

decomposed cells form different types of fibers which may also geometrically interact with 

each other and manifest as physical interactions. In this case we can only perceive the 

appearance of the intrinsic geometric structures that emerge on the base space of the total 

spatiotemporal manifold and the base space itself may not be observable with the reasonable 

assumption that a physical object is not observable if it does not have any form of geometric 

interactions. It could be that the base space of the spatiotemporal manifold at the beginning 

was only a six-dimensional Euclidean spatiotemporal continuum    which had no non-trivial 

geometric structures therefore contained no physical objects. How could physical objects be 

formed from such a plain spacetime continuum? Even though we could suggest that physical 

objects could be formed as three-dimensional differentiable manifolds from mass points with 

contact forces associated with the decomposed 0-cells, it is hard to imagine how they can be 

formed from a plain continuum without assuming that there must be some form of 

spontaneous symmetry breaking of the vacuum. Since the apparent spacetime structures are 

formed by decomposed cells from the base spacetime and since there are many different 

relationships that arise from the geometric interactions of the decomposed cells of different 

dimensions, therefore there are different spactime structures each of which can represent a 

particular spacetime structure and all apparent spacetime structures can be viewed as parallel 

universes of a multiverse. If we assume that the spatiotemporal manifold is described by a 

six-dimensional differentiable manifold   which is composed of a three-dimensional spatial 

manifold and a three-dimensional temporal manifold, in which all physical objects are 

embedded,  then the manifold   can be decomposed in the form       
    

 , where   
  



and   
  are spatial and temporal 3-spheres, respectively. Despite this form of decomposition 

can be used to describe gravity as a global structure it cannot be used as a medium for any 

other physical fields which possess a wave character. Therefore we would need to devise 

different types of decomposition to account for these physical fields that require a local 

geometric structure. For example, we may assume that n-cells can be decomposed from the 

spatiotemporal manifold at each point of the spatiotemporal continuum. This is equivalent to 

considering the spatiotemporal manifold as a fiber bundle      , where   is the base 

space, which is the spatiotemporal continuum, and the fiber  , which is the n-cells. We will 

discuss in more details in Section 4 the local geometric and topological structure of the 

spatiotemporal manifold when we discuss the possibility to formulate a medium for the 

electromagnetic field in terms of geometric structures. From the above discussions on the 

dimensionality of spacetime it is clear that the observation of natural events needs to be 

addressed. It seems that due to our physical existence we do not have the ability to observe a 

complete picture of a physical object. We can only observe part of a physical object due to 

the fact that it may exist in a higher spatial dimension than ours. For example, if quantum 

particles exist as three-dimensional differentiable manifold embedded into a four-dimensional 

Euclidean space then we are unable to observe the physical object as a whole but only the 

cross-section of it. We can use mathematics to determine the whole structure of the object but 

we cannot measure what we can calculate. The seemingly strange behaviour of quantum 

particles may also be caused by bringing over their classical model into the quantum domain. 

For example, when interacting with a magnetic field an elementary particle shows that it has 

some form of dynamics that can only be represented by intrinsic angular momentum that is 

different from the angular momentum encountered in classical physics in which elementary 

particles are assumed to be simply mass points without any internal geometric structure. In 

the next section we will show that half-integer values of the intrinsic angular momentum of 

an elementary particle can be obtained by taking into account its possible internal geometric 

and topological structures. 

 

3. Quantum particles with half integer spin 

In this section we will discuss a possible physical structure possessed by a quantum particle 

of half-integer spin that exists in three-dimensional space. If quantum particles are considered 

as differentiable manifolds then they should have intrinsic geometric structures, therefore, in 

terms of physical formulations they are composite physical objects. As suggested in Section 2 

on the geometric interactions, a composite physical object can be formed from mass points by 

contact forces associated with the 0-cells decomposed from the CW complex that represents 

the quantum particle. The intrinsic geometric structure can be subjected to a geometric 

evolutionary process which manifests as the dynamics of the mass points that form the 

quantum particle. The manifested physical process may be described as that of a fluid 

dynamics that can be formulated in terms of a potential, like the Coulomb potential of the 

electrostatic interaction in classical electrodynamics. Also discussed in Section 3 on the 

dimensionality of spacetime and the observability of quantum particles, physical objects can 

be observed completely if they can be described by a two-dimensional wave equation in 



which the solutions of the wave equation gives the description of the geometric structures of 

the physical object in a third spatial dimension. We now show how they can be obtained from 

a general two-dimensional wave equation, from two-dimensional Schrödinger wave equation 

and from Dirac equation in relativistic quantum mechanics. In particular, we will show that 

the two-dimensional Schrodinger wave equation does describe quantum particles with half-

integer spin. Consider a quantum particle whose mass distribution is mainly on a two-

dimensional membrane and whose charge is related to the vibration of a homotopy class of 2-

spheres in which the charge can be described topologically in terms of surface density. The 

circular membrane is assumed to be made up of mass points that join together by contact 

forces which allow vibration. Without vibrating the membrane is a perfect two dimensional 

physical object, however when it vibrates it becomes a three dimensional physical object 

described as a two-dimensional manifold embedded in three-dimensional Euclidean space 

  .  In this section we discuss the geometric structure of the quantum particle with regard to 

its distribution of mass and in the next section we will discuss the topological structure with 

regard to its distribution of charge density in terms of the homotopy fundamental group of 

surfaces. In this section we assume that a spacetime has three spatial dimensions and one 

temporal dimension. In general, the wave dynamics of a physical system in a two-

dimensional space can be described by a wave equation written in the Cartesian coordinates 

      as 

 

  
   

   
 
   

   
 
   

   
                                                                                                                        

In particular, Equation (20) can be used to describe the dynamics of a vibrating membrane in 

the      -plane. If the membrane is a circular membrane of radius   then the domain   is 

given as             . In the polar coordinates given in terms of the Cartesian 

coordinates       as        ,        , the two-dimensional wave equation given in 

Equation (20) is rewritten as 

 

  
   

   
 
   

   
 
 

 

  

  
 
 

  
   

   
                                                                                                    

The general solution to Equation (21) for the vibrating circular membrane with the condition 

    on the boundary of   can be found as [5] 

                                              

 

   

                    

 

     

                                                                               

where           is the Bessel function of order   and the quantities    ,    ,     and 

    can be specified by the initial and boundary conditions. It is also observed that at each 

moment of time the vibrating membrane appears as a 2D differentiable manifold which is a 



geometric object whose geometric structure can be constructed using the wavefunction given 

in Equation (22). We now show that the curvature of the surfaces obtained from the vibrating 

membrane at each moment of time can also be expressed in terms of the derivatives of the 

wavefunction given in Equation (22). In differential geometry, the Ricci scalar curvature   is 

shown to be related to the Gaussian curvature   by the relation     , where   is 

expressed in terms of the principal radii    and    of the surface as         . Consider a 

surface defined by the relation          in Cartesian coordinates        . The Ricci 

scalar curvature   can be found as [18] 

  
              

 

     
    

   
                                                                                                                        

where           and               . It is seen that the wavefunction          

that is obtained from the wave equation given in Equation (22) can be used to determine the 

Ricci scalar curvature of a surface, which shows that the geometric structure of the vibrating 

membrane can be described by a classical wavefunction. In other words, wavefunctions that 

describe the wave motion of a vibrating membrane can be considered as a representation of 

physical objects. For the benefit of representation in the next section we now give a brief 

discussion on the geometric formation of quantum particles from a wave equation. We 

assumed that the circular membrane is made up of particles which are connected with each 

other by an elastic force. This assumption leads to a more general hypothesis that a vibrating 

object is made up of mass points that join together by contact forces. When the membrane 

vibrates it takes different shapes at each moment of time. Each shape is a 2D differentiable 

manifold that is embedded in the three-dimensional Euclidean space. Now, if we consider the 

whole vibrating membrane as a particle then its geometric structure is described by the 

wavefunction  . It is a time-dependent hypersurface embedded in a three-dimensional 

Euclidean space. Now imagine an observer who is a two-dimensional object living in the 

plane       and who wants to investigate the geometric structure of the vibrating membrane. 

Even though he or she would not be able to observe the shapes of the embedded 2D 

differentiable manifolds in the three-dimensional Euclidean space, he or she would still be 

able to calculate the value of the wavefunction   at each point       that belongs to the 

domain         . What would the observer think of the nature of the wavefunction  ? 

Does it represent a mathematical object, such as a third dimension, or a physical one, such as 

fluid pressure? Firstly, because the wavefunction   is a solution of a wave equation therefore 

it must be a wave. Secondly, if the observer who is a 2D physical object and who does not 

believe in higher dimensions then he or she would conclude that the wavefunction   should 

only be used to describe events of physical existence other than space and time. In the next 

section we will show that this situation may in fact be that of the wave-particle duality that 

we are encountering in quantum physics when our view of the physical existence is restricted 

to that of a 3D observer. It is also observed that according to the 2D observer who is living on 

the      -plane, the vibrating membrane appears as an oscillating motion of a single string. If 

the vibrating string is set in motion in space then it can be seen as a particle. With a suitable 

experimental setup, the moving vibrating membrane may be detected as a wave. And 

furthermore, it can also generate a physical wave if the space is a medium. In fact, as shown 



in the following, a two-dimensional wave equation can be applied into quantum mechanics to 

describe the dynamics of a quantum system which is restricted to a two-dimensional space. 

This can be formulated either by the Schrödinger non-relativistic wave equation or Dirac 

relativistic wave equation. However, in order to obtain a classical picture of a quantum 

particle in two-dimensional space, let consider the classical dynamics of a particle moving in 

two spatial dimensions. In classical mechanics, expressed in plane polar coordinates, the 

Lagrangian of a particle of mass   under the influence of a conservative force with potential 

     is given as follows [19] 

  
 

 
   

  

  
 
 

    
  

  
 
 

                                                                                                       

With the Lagrangian given in Equation (24), the canonical momentum    is found as 

   
  

        
    

  

  
                                                                                                                    

The canonical momentum given in Equation (25) is the angular momentum of the system. By 

applying the Lagrange equation of motion 

 

  

  

         
 
  

   
                                                                                                            

where    are the generalised coordinates, we obtain 

   
  

 
 

  
    

  

  
                                                                                                                           

The areal velocity      , which is the area swept out by the position vector of the particle 

per unit time, is found as 

  

  
 
         

 
                                                                                                                                     

On the other hand, in classical dynamics, the angular momentum of the particle is defined by 

the relation 

                                                                                                                                                 

From Equations (28) and (29), we obtain the following relationship between the angular 

momentum   of a particle and the areal velocity       

    
  

  
                                                                                                                                                

It is seen from these results that the use of conservation of angular momentum for the 

description of the dynamics of a particle can be replaced by the conservation of areal 

velocity. For example, consider the circular motion of a particle under an inverse square field 

        . Applying Newton’s second law, we obtain 



   

 
 
   

  
                                                                                                                                                

Using Equations (30) and (31) and the relation      , we obtain 

  
  

   
 
  

  
 
 

                                                                                                                                         

The total energy   of the particle is 

  
 

 
    

   

 
  

   

  
                                                                                                                   

Using Equations (32) and (33), the total energy can be rewritten as 

   
    

   
  
  
 
                                                                                                                                      

It is seen from Equation (34) that the total energy of the particle depends on the rate of 

change of the area      . In the case of Bohr model of a hydrogen-like atom, from the 

quantisation condition          , we have 

  

  
   

 

   
                                                                                                                                          

Equation (35) shows that the rate of change of the area swept out by the electron is quantised 

in unit of      . The two-dimensional Bohr model of a hydrogen atom has a classical 

configuration that provides a clear picture of the motion of the electron around a nucleus. As 

shown in our work on the quantization of angular momentum, the Schrödinger wave 

mechanics when applied to the two-dimensional model of the hydrogen atom also predicts 

that an intrinsic angular momentum of the electron must take half-integral values for the Bohr 

spectrum of energy to be retained [20]. Using the two-dimensional model of the hydrogen 

atom, in the following we will describe an elementary particle of half-integer spin as a 

differentiable manifold whose physical configuration is similar to that of a rotating membrane 

whose dynamics can be described in terms of the two-dimensional motion using the 

Schrödinger wave mechanics and Dirac relativistic quantum mechanics. First, if elementary 

particles are assumed to possess an internal structure that has the topological structure of a 

rotating membrane then it is possible to apply the Schrödinger wave equation to show that 

they can have spin of half-integral values. Consider an elementary particle whose physical 

arrangement can be viewed as a planar system whose configuration space is multiply 

connected. Since the system is invariant under rotations therefore we can invoke the 

Schrödinger wave equation for an analysis of the dynamics of a rotating membrane. In wave 

mechanics the time-independent Schrödinger wave equation is given as [21] 

 
 
 

  
                                                                                                                          



If we also assume that the overall potential      that holds the membrane together has the 

form         , where   is a physical constant that is needed to be determined, then using 

the planar polar coordinates in two-dimensional space, the Schrödinger wave equation takes 

the form [22] 

 
 
 

  
 
 

 

 

  
  

 

  
  

 

  
  

   
        

 

 
                                                                  

Solutions of the form                 reduce Equation (37) to two separate equations 

for the functions      and      as follows 

   

   
                                                                                                                                             

   

   
 
 

 

  

  
 
  

  
  

  

 
  
 

 
                                                                                                

where   is identified as the intrinsic angular momentum of the membrane. Equation (38) has 

solutions of the form 

                                                                                                                                                

Normally, the intrinsic angular momentum   must take integral values for the single-

valuedness condition to be satisfied. However, if we consider the configuration space of the 

membrane to be multiply connected and the polar coordinates have singularity at the origin 

then the use of multivalued wavefunctions is allowable. As shown below, in this case, the 

intrinsic angular momentum   can take half-integral values. If we define, for the case    , 

   
      

 
  

   

              
  

       
 

   

                                                                                  

then Equation (39) can be re-written in the following form 

   

   
 
 

 

  

  
 
  

  
  

 

 
  

 

 
                                                                                                    

If we seek solutions for      in the form                      then we obtain the 

following differential equation for the function      

   

   
  

    

 
   

  

  
  

     
 

 
                                                                                    

Equation (43) can be solved by a series expansion of      as          
  

   , with the 

coefficients    satisfying the recursion relation 

     
     

 
  

             
                                                                                                           



Then the energy spectrum can be written explicitly in the form 

  
   

         
 
 
                                                                                                                             

It is seen that if the result given in Equation (45) can also be applied elementary particles 

which are assumed to behave like a hydrogen-like atom, which is viewed as a two-

dimensional physical system, then the intrinsic angular momentum   must take half-integral 

values.  

Now, we show that the wave equation for two-dimensional space given in Equation (20) can 

also be derived from Dirac equation that describes a quantum particle of half-integer spin. In 

our previous works [7,8,9], we have shown that both Dirac equation and Maxwell field 

equations can be formulated from a system of linear first order partial differential equations. 

Except for the dimensions that involve with the field equations, the formulations of Dirac and 

Maxwell field equations are remarkably similar and a prominent feature that arises from the 

formulations is that the equations are formed so that the components of the wavefunctions 

satisfy a wave equation. However, there are essential differences between the physical 

interpretations of Dirac and Maxwell physical fields. On the one hand, Maxwell 

electromagnetic field is a classical field which is composed of two different fields that have 

different physical properties even though they can be converted into each other. On the other 

hand, despite Dirac field was originally formulated to describe the dynamics of a single 

particle, such as the electron, it turned out that a solution to Dirac equation describes not only 

the dynamics of the electron with positive energy but it also describes the dynamics of the 

same electron with negative energy. The difficulty that is related to the negative energy can 

be resolved if the negative energy solutions can be identified as positive energy solutions that 

can be used to describe the dynamics of a positron. The seemingly confusing situation 

suggests that Dirac field of massive particles may actually be composed of two physical 

fields, similar to the case of the electromagnetic field which is composed of the electric field 

and the magnetic field. Dirac equation can be derived from Equation (12) by imposing the 

following conditions on the matrices    

  
                                                                                                                                                          

                                                                                                                                          

For the case of    , the matrices    can be shown to take the form 

    

    
    
     
     

         

    
    
     
     

          

     
    
    
     

          

    
     
     
    

              

With     ,     and     , the system of linear first order partial differential equations 

given in Equation (12) reduces to Dirac equation [23] 

 
   
  

       
 

  
  

 

  
    

   
  

                                                                                          



 
   
  

       
 

  
  

 

  
    

   
  

                                                                                          

   
  

        
 

  
  

 

  
    

   
  

                                                                                          

   
  

        
 

  
  

 

  
    

   
  

                                                                                          

With the form of the field equations given in Equations (49-52), we may interpret that the 

change of the field         with respect to time generates the field        , similar to the 

case of Maxwell field equations in which the change of the electric field generates the 

magnetic field. With this observation it may be suggested that, like the Maxwell 

electromagnetic field which is composed of two essentially different physical fields, the 

Dirac field of massive particles may also be viewed as being composed of two different 

physical fields, namely the field        , which plays the role of the electric field in 

Maxwell field equations, and the field        , which plays the role of the magnetic field. 

The similarity between Maxwell field equations and Dirac field equations can be carried 

further by showing that it is possible to reformulate Dirac equation as a system of real 

equations. When we formulate Maxwell field equations from a system of linear first order 

partial differential equations we rewrite the original Maxwell field equations from a vector 

form to a system of first order partial differential equations by equating the corresponding 

terms of the vectorial equations. Now, since, in principle, a complex quantity is equivalent to 

a vector quantity therefore in order to form a system of real equations from Dirac complex 

field equations we equate the real parts with the real parts and the imaginary parts with the 

imaginary parts. In this case Dirac equation given in Equations (49-52) can be rewritten as a 

system of real equations as follows 

   
  

 
   
  

 
   
  

                                                                                                                              

   
  

 
   
  

 
   
  

                                                                                                                              

   
  

 
   
  

 
   
  

                                                                                                                              

   
  

 
   
  

 
   
  

                                                                                                                              

   
  

                                                                                                                                                    

 
   
  

                                                                                                                                               

 
   
  

                                                                                                                                               



   
  

                                                                                                                                                    

The system of Dirac field equations given in Equations (53-60) can be considered as a 

particular case of a more general system of field equations written in the matrix form  

   
 

  
   

 

  
   

 

  
   

 

  
                                                                                            

where                
  and the real matrices    are given as 

    

    
    
    
    

        

    
    
    
    

       

    
     
     
    

       

    
     
    
     

            

The matrices    satisfy the following commutation relations 

  
                                                                                                                                            

                                                                                                                                 

            

    
     
     
    

                                                                                               

                                                                                                                                                

            

     
     
    
    

                                                                                               

By applying    
 

  
   

 

  
   

 

  
   

 

  
  to Equation (61) and using the commutation 

relations given in Equations (63-67), then it can be shown that all components of the 

wavefunction                
  satisfy the following equation 

    
   

 
    
   

 
    
   

 
    
   

                                                                                     

If the wavefunction   satisfies Dirac field equations given in Equations (53-60) then we 

obtain the following system of equations for all components 

    
   

                                                                                                                                            

    
   

 
    
   

 
    
   

                                                                                                                         

Solutions to Equation (69) are  



           
           

                                                                                                           

where    and    are undetermined functions of      , which may be assumed to be constant. 

The solutions given in Equation (71) give a distribution of a physical quantity, such as the 

mass of a quantum particle, along the y-axis. On the other hand, Equation (70) can be used to 

describe the dynamics, for example, of a vibrating membrane in the      -plane. Solutions to 

Equation (70) can also be found in the form given in Equation (20). Even though elementary 

particles may have the geometric and topological structures of a 3D differentiable manifold, it 

is seen from the above descriptions via the Schrödinger wave equation and Dirac equation 

that they appear as 3D physical objects that embedded in three-dimensional Euclidean space. 

In Section 5 we will show that this may not be the case for elementary particles of integer 

spin, such as photons. However, in the next section we will show that the appearance of 

elementary particles of half-integer spin as 3D physical objects can be justified further by 

considering other physical properties that are associated with them, such as charge and 

magnetic monopole. 

 

4. On the electric charge and magnetic monopole 

In Section 3 we show that massive quantum particles of half-integer spin can be described as 

2D differentiable manifolds which are endowed with the geometric and topological structure 

similar to that of a gyroscope whose main component is a rotating and vibrating membrane 

that can be described by the solutions of a two-dimensional wave equation, in particular a 2D 

wave equation that is derived from the Dirac equation of relativistic quantum mechanics. 

However, the dynamics of the quantum particle is associated only with the distribution of 

mass of the particle but not other equally important physical matter, such as charge and 

magnetic monopole. In this section we will discuss further these physical properties of a 

quantum particle and show that they may be associated with the topological structure of the 

particle rather than physical quantities that form or are contained inside the particle. As 

shown in our works on the principle of least action and spacetime structures of quantum 

particles, the charge of a physical system may depend on the topological structure of the 

system and is classified by the homotopy group of closed surfaces [24]. In quantum 

mechanics, the Feynman’s method of sum over random paths can be extended to higher-

dimensional spaces to formulate physical theories in which the transition amplitude between 

states of a quantum mechanical system is the sum over random hypersurfaces [25]. This 

generalisation of the path integral method in quantum mechanics has been developed and 

applied to other areas of physics, such as condensed matter physics, quantum field theories 

and quantum gravity theories, mainly for the purpose of field quantisation. In the following, 

however, we focus attention on the general idea of a sum over random surfaces. This 

formulation is based on surface integral methods by generalising the differential formulation 

as discussed for the Bohr’s model of a hydrogen-like atom. Consider a surface in    defined 

by the relation            . The Gaussian curvature   is given by the relation   

             
       

    
    , where           and                [18]. Let   

be a three-dimensional physical quantity which plays the role of the momentum   in the two-



dimensional space action integral. The quantity   can be identified with the surface density of 

a physical quantity, such as charge. Since the momentum   is proportional to the curvature  , 

which determines the planar path of a particle, it is seen that in the three-dimensional space 

the quantity   should be proportional to the Gaussian curvature  , which is used to 

characterise a surface. If we consider a surface action integral of the form        

           , where    is a universal constant, which plays the role of Planck’s constant, 

then we have 

  
  
  
 

            
 

     
    

     
                                                                                                          

According to the calculus of variations, similar to the case of path integral, to extremise the 

action integral                
        , the functional             

   must satisfy the 

differential equations [26] 

  

  
 

 

   
  

   
 

  

      
  

    
                                                                                                         

It can be verified that with the functional   of the form given in Equation (72) the differential 

equation given by Equation (73) is satisfied by any surface. Hence, we can generalise 

Feynman’s postulate of random path to formulate a quantum theory in which  the transition 

amplitude between states of a quantum mechanical system is a sum over random surfaces, 

provided the functional   in the action integral        is taken to be proportional to the 

Gaussian curvature   of a surface. Consider a closed surface and assume that we have many 

such different surfaces which are described by the higher dimensional homotopy groups. As 

in the case of the fundamental homotopy group of paths, we choose from among the 

homotopy class a representative spherical surface, in which case we can write 

     
  
  
                                                                                                                                      

where    is an element of solid angle. Since     depends on the homotopy class of the 

spheres that it represents, we have        , where   is the topological winding number 

of the higher dimensional homotopy group. From this result we obtain a generalised Bohr 

quantum condition 

                                                                                                                                                     

From the result obtained in Equation (75), as in the case of Bohr’s theory of quantum 

mechanics, we may consider a quantum process in which a physical entity transits from one 

surface to another with some radiation-like quantum created in the process. Since this kind of 

physical process can be considered as a transition from one homotopy class to another, the 

radiation-like quantum may be the result of a change of the topological structure of the 

physical system, and so it can be regarded as a topological effect. Furthermore, it is 

interesting to note that the action integral             is identical to Gauss’s law in 



electrodynamics [27]. In this case the constant   can be identified with the charge of a 

particle, which represents the topological structure of a physical system and the charge of a 

physical system must exist in multiples of   . Hence, the charge of a physical system may 

depend on the topological structure of the system and is classified by the homotopy group of 

closed surfaces. This result may shed some light on why charge is quantised even in classical 

physics. As a further remark, we want to mention here that in differential geometry, the 

Gaussian   is related to the Ricci scalar curvature   by the relation     . And it has been 

shown that the Ricci scalar curvature can be identified with the potential of a physical system, 

therefore our assumption of the existence of a relationship between the Gaussian curvature 

and the surface density of a physical quantity can be justified [1]. Now, in order to establish a 

relationship between the electric charge    and the magnetic monopole    associated with a 

quantum particle, similar to Dirac relation          , we need to extend Feynman’s 

method of sum over random surfaces to temporal dynamics in which the magnetic monopole 

can also be considered as a topological structure of a temporal continuum. Even though the 

following results are similar to those obtained for the spatial Euclidean continuum, for clarity, 

we will give an abbreviated version by first defining a temporal Gaussian curvature in the 

temporal Euclidean continuum    and then deriving a quantised magnetic charge from 

Feynman integral method. As in spatial dimensions, we consider a temporal surface defined 

by the relation            . Then, as shown in differential geometry, the temporal 

Gaussian curvature denoted by    can be determined by          and given as    

             
       

    
    , where           and      

         . Let    be a 

3-dimensional physical quantity which will be identified with the surface density of a 

magnetic substance, such as magnetic charge of an elementary particle. We therefore assume 

that an elementary particle is assigned not only with an electric charge    but also a magnetic 

charge   . We further assume that the quantity    is proportional to the temporal Gaussian 

curvature   . Now, as in the case with spatial dimensions, if we consider a surface action 

integral of the form                       , then we have 

  
  
  

 
            

 

     
    

     
                                                                                                           

Similar to the case of the spatial integral, to extremise the action integral given in Equation 

(76),  the functional             
   must satisfy the differential equation given in Equation 

(73). Hence, we can also generalise Feynman’s postulate of random surfaces to formulate a 

quantum theory in which  the transition amplitude between states of a quantum mechanical 

system is a sum over random surfaces, provided the functional    in the action integral 

         is taken to be proportional to the temporal Gaussian curvature    of a temporal 

surface. Similar to the random spatial surfaces, we obtain the following result 

       
  
  

                                                                                                                      

The action integral               is similar to Gauss’s law in electrodynamics. In this 

case the constant    can be identified with the magnetic charge of a particle. In particular, 



the magnetic charge    represents the topological structure of a physical system must exist in 

multiples of   . Hence, the magnetic charge of a physical system, such as an elementary 

particle, may depend on the topological structure of the system and is classified by the 

homotopy group of closed surfaces. We are now in the position to show that it is possible to 

obtain the relationship between the electric charge    and the magnetic charge    derived by 

Dirac by considering a spatiotemporal Gaussian curvature   which is defined as a product of 

the temporal Gaussian curvature    and the spatial Gaussian curvature    as follows 

                                                                                                                                                     

The spatiotemporal submanifold that gives rise to this form of curvature is homeomorphic to 

     . If    and    are independent from each other then we can write 

                                                                                              

If we assume further that       , where   is an undetermined constant, then using the 

results                      and                     , we obtain a general 

relationship between the electric charge    and the magnetic charge     

 

    
                                                                                                                                                  

In particular, if     ,      and     , or     ,      and     , then we recover 

the relationship obtained by Dirac,          . 

In the classical electromagnetic field, Maxwell field equations describe a conversion between 

the electric and magnetic field. If the electric field is associated with the electric charge, 

which is in turn associated with the spatial continuum, and the magnetic field with the 

magnetic charge, which is in turn associated with the spatial continuum, then we may 

speculate that the electromagnetic field is a manifestation of a conversion between the spatial 

and temporal manifolds. In the following we show that if we consider the spatiotemporal 

manifold as a spherical fiber bundle then it is possible to describe the electromagnetic field as 

a wave through a medium of fibers that are composed of 3-spheres [28,29]. In classical 

physics, the formation of a wave requires a medium which is a collection of physical objects 

therefore with this classical picture in mind we may assume that the medium for the 

electromagnetic and matter waves is composed of quantum particles which have the 

geometric and topological structures of spatiotemporal n-cells that are decomposed from the 

spatiotemporal manifold at each point of the spatiotemporal continuum. This is equivalent to 

considering the spatiotemporal manifold as a fiber bundle      , where   is the base 

space, which is the spatiotemporal continuum, and the fiber  , which is the n-cells. In the 

following we will only consider an n-cell as an n-sphere    and the total spatiotemporal 

manifold   will be regarded as an n-sphere bundle. It is reasonable to suggest that there may 

exist physical fields that are associated with different dimensions of the n-spheres, however, 

as an illustration, we will consider only the case with     so that    is homeomorphic to 

  
    

 , hence the medium of the electromagnetic and matter waves will be assumed to be 



composed of   
    

  cells at each point of the spatiotemporal manifold. In other words, the 

6-sphere fibers form the required medium for the electromagnetic and matter waves. 

Consequently, the problem that we want to address reduces to the problem of the conversion 

between the spatial and temporal manifolds   
  and   

 . It is expected that the formulation of 

such conversion should be derived from a general line element          
    . As 

examples, we will show in the following that the conversion of between the spatial and 

temporal manifolds   
  and   

  can be described by assuming the general line element to take 

the form of either a centrally symmetric metric or the Robertson-Walker metric [30]. A 

general six-dimensional centrally symmetric metric can be written as 

                    
           

               
           

                

If we rearrange the       directions of both the spatial and the temporal cells so that they 

coincide,                    , then we have 

                                                                                                  

There are profound differences in the structure of the spatiotemporal manifold that arise from 

the line element given in Equation (82). The line element in Equation (82) can be rewritten in 

the form 

                       
  

  
                                                                      

where we have defined the new quantity that has the dimension of speed as      . It is 

seen that if     then the line element given in Equation (83) can lead to the conventional 

structure of spacetime in which, effectively, space has three dimensions and time has one 

dimension, and that if     then the line element given in Equation (83) can lead to the 

conventional structure of spacetime in which time has three dimensions and space has one. 

However, for the purpose of discussing a conversion between the temporal manifold and the 

spatial manifold of spacetime we would need to consider possible relationship between space 

and time and how they change with respect to each other continuously. In order to fulfil this 

task we need to utilise the results obtained in our works on geometric interactions that show 

that there are various forces associated with the decomposed n-cells from which, by applying 

Newton’s law of dynamics, different possible relationships between space and time could be 

derived [12,13]. For example, by applying the temporal Newton’s second law for radial 

motion to the force that is associated with decomposed 1-cells we obtain 

 
   

   
                                                                                                                                                   

General solutions to the equation given in Equation (84) are 

     
          

                                                                                                                        

If      and      then the following solution can be obtained 



                                                                                                                                                       

where        . By differentiation we have 

  

  
                                                                                                                                                

If we assume a linear approximation between space and time for the values of    , i.e., 

           , then Equation (83) becomes 

                                                                                  

It is seen from Equation (88) that if                    then effectively spacetime 

appears as a spatial manifold in which there are three spatial dimensions and one temporal 

dimension. Therefore it is expected that for                    spacetime would 

appear as a temporal manifold. This is in fact the case as can be shown as follows. Instead of 

the metric form given in Equation (83), the line element given in Equation (82) can also be 

re-written in a different form as follows 

                         
  

  
                                                                  

Using Equation (87) we obtain 

                   
 

              
                                             

Therefore, if the condition                    is satisfied then Equation (90) is 

reduced to a line element for the spatiotemporal manifold which effectively has three 

temporal dimensions and one spatial dimension. For the case           the line element 

given in Equation (82) can be determined by applying Einstein field equations of general 

relativity 

       
   

   
          

   

   
 
  

                                             

It should also be mentioned here that for the case          , the line element given in 

Equation (82) reduces to the simple form 

                                                                                                                                         

and as discussed in our previous works that spacetime that is endowed with this particular 

metric appears to behave as a wave where the functions   and   satisfy the wave equation 

   

     
 
   

   
                                                                                                                                        



We can also obtain a conversion between the spatial and temporal manifolds similar to those 

that have been discussed above if we use the spatial Newton’s second law instead. In this 

case the following results can be obtained 

 
   

   
                                                                                                                                                  

     
          

                                                                                                                       

If we consider the case     and      then we can obtain a simple solution 

                                                                                                                                                       

where         . By differentiation, we obtain 

  

  
                                                                                                                                                

If we also assume a linear approximation between space and time for the values of    , i.e., 

           , then the line elements become 

                       
  

            
                                               

                         
            

  
                                           

It is seen from Equations (98) and (99) that there is also a conversion between the spatial and 

temporal submanifolds of the 6-spherical cells that are decomposed from the total 

spatiotemporal manifold. 

Now, we consider the case when the decomposed   
    

  cells from the spatiotemporal 

manifold are furnished with the Robertson-Walker metric. In the spatiotemporal manifold 

which has three spatial dimensions and one temporal dimension, the Robertson-Walker 

metric is given as 

                
   

     
                                                                            

With the decomposition of   
    

  cells from the spatiotemporal manifold which has the 

mathematical structure of an n-sphere bundle, the Robertson-Walker metric is assumed to be 

extended to a six-dimensional line element of the form 

          
   

      
       

           
   

       
   

      
       

           
                                                    



If we also arrange the       directions of both spatial and the temporal manifolds so that 

                    then the general space-time metric given in Equation (101) 

becomes 

    
        

      
 
        

      
                                                                

Equation (102) can be rewritten in the following form 

    
        

      
 
        

      
        

 

  
                                                   

where we have also defined      . Now, we need to look for possible relationships 

between space and time so that they can show a conversion between the temporal component 

  
  and the spatial component   

  of the decomposed spatiotemporal cells   
    

 . Even 

though the conditions that will be imposed are rather arbitrarily they do show that the 

temporal manifold    
  and the spatial manifold   

  can actually be converted into one another. 

It should also be mentioned that these are not the only conditions that can give rise to a 

conversion between space and time and, as shown in our works on Euclidean relativity, 

Euclidean special relativity also produces such conversion [31]. Now, if we impose the 

following condition  

     

      
                                                                                                                                             

then the line element given in Equation (103) reduces to 

          
        

      
        

  

  
      

                                            

Equation (105) describes particular structures of the temporal manifold with respect to the 

change of the spatial manifold. Using a linear approximation between space and time for the 

values of    , then from the relation                  , Equation (105) becomes 

          
        

      

         
                    

  

     
                                 

If we further impose the condition 

     

      
                                                                                                                                              

then we obtain 



          
        

      
                                                          

It is seen from the line element given in Equation (108) that if                      

then effectively the spatiotemporal manifold behaves as a spatial manifold endowed with the 

Robertson-Walker metric. On the other hand, the six-dimensional Robertson-Walker metric 

can also be written as 

    
        

      
 
        

      
                                                                

If we impose the following condition   

     

      
   

                                                                                                                                         

then we obtain 

    
        

      
   

             
    

       
  

     
                               

From the linear approximation                  , Equation (111) becomes 

    
        

      
   

    

         
  

       
  

                 
                                               

If we further impose the condition 

     

      
   

                                                                                                                                      

then we obtain 

    
        

      
   

             
 

              
                               

Therefore if                      then effectively the spatiotemporal manifold 

behaves as a temporal manifold endowed with the temporal Robertson-Walker metric 

          
   

      
                     

                                                           

It is also noted from the line element given in Equation (102) that when space and time 

satisfy the condition                   then we have 



    
        

      
 
        

      
                                                                                                               

The metric given in Equation (116) is a particular form of the general line element given in 

Equation (92) with            
         and            

      , therefore the 

wave motion of spacetime which is endowed with the Roberson-Walker metric also occurs at 

the position of conversion between the temporal and spatial manifolds. 

 

5. Quantum particles with integer spin 

In Sections 3 and 4 we show that a complete picture of quantum particles can be visualised in 

the three-dimensional Euclidean space    if their associated differentiable manifolds are 

solutions of a two-dimensional wave equation, and these massive quantum particles have 

half-integer spin therefore they can be identified with fermions. Actually, the energy 

spectrum obtained from the Schrödinger wave equation in a two-dimensional space given in 

Equation (45) also suggests that there may be massive quantum particles of integer spin 

associated with differentiable manifolds that are solutions of a two-dimensional wave 

equation. Nonetheless, it has been shown that quantum particles with integer spin, such as the 

massless quantum particles of the electromagnetic field, are described by a three-dimensional 

wave equation, therefore it is reasonable to suggest that the differentiable manifolds that are 

associated with these quantum particles, called bosons, not only should have different 

geometric and topological structures but also render different perceptions with regard to our 

observation of their physical behaviour. In classical physics, the dynamics of physical 

phenomena can be formulated based on the notion of elementary particles that exist as 3D 

solid balls containing all physical entities that are needed for physical formulations, such as 

mass and charge. It is then simply assumed that in order to interact these solid balls somehow 

generate physical fields, such as the gravitational field and the electromagnetic field, which 

can be derived from a three-dimensional wave equation. Despite with the fact that the 

existence of these physical fields is self-evident and they are widely applied their true natures 

are very much still unknown. However, in quantum physics bosons are quantum particles 

therefore as in the case of fermions considered in the previous sections we may suggest that 

bosons also possess the geometric and topological structures of differentiable manifolds 

which are solutions of a wave equation. Along the line of Einstein’s perception of physical 

existence in which a 3-sphere can be constructed from a four-dimensional Euclidean space 

  , in this section we will discuss the possibility to extend the notion of wave motion into a 

fourth spatial dimension so that we can have a unified dynamical description in terms of 

wave equations for quantum particles of any spin. With this in mind, in this section we 

discuss a spacetime in which space has four dimensions and time has one dimension. Despite 

a spatial space with four dimensions is simply a mathematical extension of the concept of a 

spatial space with three dimensions it is still considered to be rather speculative in contrast to 

the three-dimensional space which is a direct application from the observation from physical 

existence that we can perceive. In classical physics, the three-dimensional wave equation 

written in Cartesian coordinates         of the form 



 

  
   

   
 
   

   
 
   

   
 
   

   
                                                                                                         

can be used to describe the wave motion of different physical fields. However, if we want to 

generalise the above discussions for 2D wave equations that describe a vibrating membrane 

then what geometrical characteristic should we assign to the wavefunction  ? Since in 2D 

wave equations, the wavefunction   are the actual height of the particles that form the 

medium which can be viewed in the third spatial dimension of the space in which they are 

embedded, therefore we may suggest that the wavefunction   which is a solution to the wave 

equation given in Equation (117) should also be given the meaning of the height of the 

particles that form the medium. However, if we want to give the meaning of the height to the 

3D wavefunction then the space in which the 3D vibrating object is embedded must be 

extended to a four-dimensional Euclidean space. Whether such extension can be justified is a 

subject that requires further investigation and in fact this can be shown to be related to the 

fundamental question of why we exist as 3D physical objects. Now, consider a region   

which is embedded in a three-dimensional Euclidean space and bounded by a closed surface. 

As in the case of the membrane considered above, we assume that the region   is a physical 

object that is made up of mass points joined together by contact forces so that it can vibrate. 

In general, the region   can be any shape, however, as an illustration, we consider a simple 

case of which the region   is a solid ball embedded in the        -space defined by the 

relation                 with the condition     on the boundary of  . In a 

three-dimensional Euclidean space, such physical objects can only be assumed to vibrate 

internally inside the solid ball and the mathematical object represented by the function   can 

only be assumed to be a physical entity, such as fluids and acoustics. However, as in the case 

of the membrane considered in Section 3 in which the mass points of the membrane can 

vibrate into the third dimension of the three-dimensional Euclidean space, we may assume 

that the mass points that form the physical object contained in the three-dimensional region 

                can vibrate into the fourth dimension of a four-dimensional 

Euclidean space, therefore the mathematical object   represents a spatial dimension. When 

vibrating, at each moment of time, the solid ball becomes a three-dimensional differentiable 

manifold that is embedded in a four-dimensional Euclidean space. In this case, an observer 

which is a 3D physical object can only observe the cross-section which is the intersection of 

the time-dependent differentiable manifold and the three-dimensional Euclidean space into 

which that the observer in embedded. And the cross-section appears as a 3D wave to the 3D 

observer. Written in the spherical polar coordinates, which are defined in terms of the 

Cartesian coordinates         as            ,            ,        , the three-

dimensional wave equation given in Equation (117) becomes 

 

  
   

   
 
   

   
 
 

 

  

  
 

 

      

 

  
     

  

  
  

 

       

   

   
                                            

The general solution to Equation (118) for the vibrating solid ball with a given initial 

condition can be found by separating the variables in the form                         



                   
      

    
 
       

  

 

    

  
       

 

   

    
 

   

                                      

where   
        is the associated Legendre function and     

 
        is the Bessel function. 

The wavefunction given in Equation (119) is the general time-dependent shape of the 

vibrating solid ball embedded in the four-dimensional Euclidean space. Similar to the 

vibrating membrane, at each moment of time the vibrating solid ball appears as a 3D 

differentiable manifold which is a geometric object whose geometric structure can be 

constructed using the wavefunction given in Equation (119) and can be identified with a 

quantum particle. Therefore, what we observe as a wave may in fact be a particle and this 

kind of dual existence may be related to the problem of wave-particle duality we encounter in 

quantum mechanics. A simpler case is that of a quantum particle that appears as a spherical 

wave. In this case the wave equation given in Equation (119) reduces to 

 

  
   

   
 
   

   
 
 

 

  

  
                                                                                                                     

The general solution to Equation (120) can be found as 

       
                   

 
                                                                                                

The above wavefunctions describe the geometric structures of quantum particles as 

differentiable manifolds embedded in a four-dimensional Euclidean space, therefore, if the 

Ricci scalar curvature of the vibrating solid ball can be formulated in terms of the 

wavefunction   then the geometric structure of the vibrating solid ball can be determined. 

Actually we can show how such relation can be realised for the case of the hydrogen atom 

when the Ricci scalar curvature can be constructed from the Schrödinger wavefunctions in 

wave machanics [1]. We showed that the scalar potential   can be identified with the Ricci 

scalar curvature as 

                                                                                                                                                           

where   is an undetermined dimensional constant. Using the relation between the scalar 

potential and the Ricci scalar curvature given in Equation (122), we can show that the Ricci 

scalar curvature   can be constructed from the wavefunctions obtained from the Schrödinger 

wave equation in wave mechanics. In his original works, Schrödinger introduced a new 

function  , which is real, single-valued and twice differentiable, through the relation 

      , where the action   is defined by        and   is the Lagrangian defined by 

      with   is the kinetic energy and   is the potential energy [21]. By applying the 

principle of least action defined in classical dynamics, Schrödinger arrived at the wave 

equation to describe the stationary state of the hydrogen atom 

    
  

 
    

   

 
                                                                                                                   



Now we show that Schrödinger wavefunction   can be used to construct the Ricci scalar 

curvature associated with the spacetime structures of the quantum states of the hydrogen 

atom. By using the defined relations        ,                  
      

   , 

              
    and      , the following relation can be obtained 

              
 

   

  
           

      
   

 
                                                                 

Using the relations      and      , we obtain the following relationship between the 

Schrödinger wavefunction   and the Ricci scalar curvature   

  
 

 
           

 

   

 
 

 

           
      

   

 
                                                             

Finally, we would like to give more details how to formulate Maxwell field equations from 

the general system of linear first order partial differential equations given in Equation (12). In 

order to derive Maxwell field equations from Equation (12) we would need to identify the 

matrices   . For the case of Dirac equation, we simply impose the condition             

for     and   
   . However, as shown below, for Maxwell field equations the 

identification of the matrices    is almost impossible without relying on the form of Maxwell 

field equations that have been established in classical electrodynamics. With the notation 

                     
 
                     

 , and     , the most symmetric 

form of Maxwell field equations of the electromagnetic field that are derived from Faraday’s 

law and Ampere’s law can be written as 

   
  

     
   
  

 
   
  

                                                                                                                      

   
  

     
   
  

 
   
  

                                                                                                                      

   
  

     
   
  

 
   
  

                                                                                                                      

   
  

    
   
  

 
   
  

                                                                                                                         

   
  

    
   
  

 
   
  

                                                                                                                        

   
  

    
   
  

 
   
  

                                                                                                                        



where                       
  is the electromagnetic current in which the electric current is 

              and the magnetic current is              . The system of equations given in 

Equations (126-131) can be written the following matrix form  

   
 

  
   

 

  
   

 

  
   

 

  
                                                                                           

with the matrices    are given as 

   

 

  
 

       
       
       
      
      
       

  
 
        

 

  
 

      
       
      
      
       
       

  
 
     

 

  
 

      
      
       
      
      
        

  
 
       

    

 

  
 

       
      
      
       
      
       

  
 
              

 

 
 
 

      
      
      
      
      
       

 
 
 
                                                                 

Furthermore, if an additional condition that imposes on the function   that requires that it 

also satisfies the wave equation given by Equation (15) then Gauss’s laws will be recovered. 

From Equation (133) we obtain 

  
  

 

  
 

      
      
      
      
      
       

  
 
                        

  

 

  
 

      
       
       
      
       
        

  
 
                     

  

 

  
 

       
      
       
       
      
        

  
 
                     

  
  

 

  
 

       
       
      
       
       
       

  
 
                           

  

 

 
 
 

       

       

       
      
      
       

 
 
 
                                                                                                    

          

 

  
 

      
      
      
      
      
       

  
 
                     

 

  
 

      
      
      
      
      
       

  
 
                      

 

  
 

      
      
      
      
      
       

  
 
      

                                                                                                                                  

Now, if we apply the differential operator                               to 

Equation (132) then we arrive at 



 

 
 
 
 

 

  
 

      
      
      
      
      
       

  
   

   
 

 

  
 

      
       
       
      
       
        

  
   

   
 

 

  
 

       
      
       
       
      
        

  
   

   

 

 

  
 

       
       
      
       
       
       

  
   

   
 

 

  
 

      
      
      
      
      
       

  
   

    
 

 

  
 

      
      
      
      
      
       

  
   

    

 

 

  
 

      
      
      
      
      
       

  
   

    

 

 
 
 
 

   

 

 
 
 
 

 

 
 
 

      
      
      
      
      
       

 
 
  

  

 

 
 
 
 

                                            

From the equation given in Equation (135), using Gauss’s law          we obtain the 

following wave equations for the components of the electric field              

           

    
   

 
    
   

 
    
   

 
    
   

   
   
  
                                                                              

Similarly for the magnetic field                         we can also obtain the 

following wave equations for the components of the magnetic field              

           

    
   

 
    
   

 
    
   

 
    
   

  
   
  
                                                                                 

 

References 

[1] Vu B Ho, Spacetime Structures of Quantum Particles (Preprint, ResearchGate, 2017), 

viXra 1708.0192v2, Int. J. Phys. vol 6, no 4 (2018): 105-115. doi: 10.12691/ijp-6-4-2. 

[2] Ray D’Inverno, Introducing Einstein’s Relativity (Clarendon Press, Oxford, 1992). 

[3] A. Einstein, The Principle of Relativity (Dover Publications, New York, 1952). 

[4] Richard S. Hamilton, Three-Manifolds with Positive Ricci Curvature, J. Diff. Geo., 17 

(1982) 255-306. 

[5] Walter A. Strauss, Partial Differential Equation (John Wiley & Sons, Inc., New York, 

1992). 

[6] Huai-Dong Cao and Xi-Ping Zhu, A Complete Proof of the Poincaré and Geometrization 

Conjectures-Application of the Hamilton-Perelman Theory of the Ricci Flow, Asian J. Math., 

Vol 10, No. 2, 165-492, June 2006. 



[7] Vu B Ho, Formulation of Maxwell Field Equations from a General System of Linear First 

Order Partial Differential Equations (Preprint, ResearchGate, 2018), viXra 1802.0055v1. 

[8] Vu B Ho, Formulation of Dirac Equation for an Arbitrary Field from a System of Linear 

First Order Partial Differential Equations (Preprint, ResearchGate, 2018), viXra 

1803.0645v1. 

[9] Vu B Ho, On Dirac Negative Mass and Magnetic Monopole (Preprint, ResearchGate, 

2018), viXra 1806.0319v1. 

[10] S. V. Melshko, Methods for Constructing Exact Solutions of Partial Differential 

Equations, Springer Science & Business Media, Inc, 2005. 

[11] Allen Hatcher, Algebraic Topology, 2001. 

[12] Vu B Ho, A Classification of Geometric Interactions (Preprint, ResearchGate, 2018), 

viXra 1805.0329v1. 

[13] Vu B Ho, Temporal Geometric Interactions  (Preprint, ResearchGate, 2018), viXra 

1807.0134v1. 

[14] Vu B Ho, On the Geometric Structure of the Spatiotemporal Manifold  (Preprint, 

ResearchGate, 2018), viXra 1808.0144v1. 

[15] Vu B Ho, Quantum Particles as 3D Differentiable Manifolds   (Preprint, ResearchGate, 

2018), viXra 1808.0586v1. 

[16] J. Milnor, Towards the Poincare Conjecture and the Classification of 3-Manifolds, 

AMS, Vol 50, No. 10, 2003. 

[17] Allen Hatcher and William Thurston, Moduli Spaces of Circle Packings, 2015. 

[18] E. Kreyszig, Introduction to Differential Geometry and Riemannian Geometry 

(University of Toronto Press, 1975). 

[19] H. Goldstein, Classical Mechanics (Addison-Wesley Inc., Sydney, 1980). 

[20] Vu B Ho, On the quantization of angular momentum, J. Phys. A: Math. Gen. 27 (1994) 

6237-6241. 

[21] Erwin Schrödinger, Collected Papers on Wave Mechanics (AMS Chelsea Publishing, 

New York, 1982). 

[22] B. H. Bransden and C. J. Joachain, Introduction to Quantum Mechanics (Longman 

Scientific & Technical, New York, 1989). 

[23] P. A. M. Dirac, The Quantum Theory of the Electron, Proceedings of the Royal Society 

A: Mathematical, Physical and Engineering Sciences, 117 (1928). 



[24] Vu B Ho, On the Principle of Least Action, ResearchGate (2016), viXra 1708.0226v2, 

Int. J. Phys, vol. 6, no. 2 (2018): 47-52. doi: 10.12691/ijp-6-4-2. 

[25] R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948). 

[26] C. Lanczos, The Variational Principles of Mechanics (Dover Publications, New York, 

1970). 

[27] J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1975). 

 [28] Vu B Ho, Spacetime Structures of Electromagnetic and Matter Waves (Preprint, 

ResearchGate, 2018), viXra 1807.0419v1. 

[29] Vu B Ho, On the geometric Structures of the Spatiotemporal Manifold (Preprint, 

ResearchGate, 2018), viXra 1807.0144v1. 

[30] Lewis Ryder, Introduction to General Relativity (Cambridge University Press, 

Melbourne, 2009). 

[31] Vu B Ho, Euclidean Relativity (Preprint, ResearchGate, 2017), viXra 1710.0302v1. 

 


