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With the use of the even/odd number analysis it was found that there is no non-Goldbach even
integer > 4 number possible.

INTRODUCTION

In this paper we look at Goldbach’s binary conjecture,every even number > 4 is the sum of two > 1 odd prime
numbers [1]. This is one of the eldest and best known unsolved problems in mathematics. This conjecture is also
called the strong conjecture. We will only be concerned in this paper with the strong conjecture. The approach to
the conjecture such as described below also touches upon aspects of philosophy of mathematics.

In the paper the postulate is the existence of, at least one, even integer number that is not the sum of two prime
numbers. This is called the non-Goldbach even integer number. The point raised in this paper is that if one postulates
the possibility that there exists a non Goldbach even number, then where can we find it.

Many have worked along different lines of thought on Goldbach’s strong, or binary, conjecture. The paper refers
to additive prime number theory [1], the work of Vinogradov [2] and van der Corput [3]. Van der Corput’s approach
seems to partly build on Landau’s work [4]. The latter work from 1909 holds a wealth of history of prime number
theory. Furthermore, in 1938 Pipping [5] verified the conjecture for even numbers n ≤ 105. This is long before the
existence of a desk computer. The even numbers > 4 that obey Goldbach’s definition of being the sum of two odd,
> 1, prime numbers, are called Goldbach numbers. If Goldbach’s conjecture is not true, there will be at least one
non-Goldbach number.

The present paper is in a certain sense the extension of the work of S. Marhall [6]. It is demonstrated here that a
non-Goldbach number cannot be construed without running into a contradiction.

THE SEARCH: WHERE IS THE NON-GOLDBACH NUMBER

In our paper we will look at the problem from the viewpoint of even - odd partitioning of integer numbers. Let us,
therefore at the start of the paper define two subsets, E and O, of the positive integer numbers, N ≡ {0, 1, 2, 3, . . . }.
Therefore,

E = {ξ ∈ N | ξ = 2n, &n ∈ N} = {0, 2, 4, 6, . . . } = 2N
O = {ξ ∈ N | ξ = 2n+ 1, &n ∈ N} = {1, 3, 5, . . . } = E + 1 (1)

The Nx = N\{0, 1, , . . . [x]} containss the positive integer numbers greater than x. Here, [x] is the first integer number
≤ x. E.g. [3.54] = 3 ∈ N and [3] = 3. Notation convention of [9] is employed.

Furthermore, P is the set of prime numbers in O, excluding p = 1. Our set P contains prime numbers that are by
definition a natural number greater than 2 and can not be divided, leaving rest zero, by all integer numbers that are
> 1 and < p, [4]. In [4] we also find a simple proof that there are (countably) infinite many prime numbers, P ⊂ O.

Preliminary definition of crucial sets.

Subsequently, let us define the following set, for arbitrary, n ∈ N3 = {4, 5, 6, . . . }

A2n = {α ∈ O | p ∈ P, 2 < p ≤ 2n, n ∈ N3, α = 2n− p} (2)

Note that A2n ⊂ O. This is true because an E number minus an O number gives an O number. The next set to
be defined is one in which a second prime number p∗ ∈ P is used in the definition. The * indicator is to make the
difference between the (generating) prime numbers in the set and an arbitrary prime outside the set.

So we can derive from (2) a set for arbitrary p∗ ∈ P

A2n−p∗ = {α ∈ E | p ∈ P, p∗ ∈ P, n ∈ N3, (α = 2n− p∗ − p) & (2 < p ≤ 2n− p∗)} (3)
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This set A2n−p∗ is a subset of E. Hence k ∈ N such that 2k ∈ A2n−p∗ is possible. Note also that for a given set
A2n−p∗ , n and p∗ are fixed and p ≤ 2n − p∗ varies. The right hand side of the requirement in (3), i.e. 2n − p∗ is
an O number. We then have, 2k = 2n − p∗ − p. The (n, p∗) are in a sense the coordinates of the set. The (n, p∗)
coordinates are not unique. We have, e.g. A60−59 = A6−5. So, the coordinates (60, 59) and (6, 5) refer to the same
set. We note in advance that when 2n− p∗ < 0 then A2n−p∗ = ∅.

As an example let us look at 2n = 46 and p∗ = 23. We have (p ≤ 2n−p∗ = 46−23)⇒ p ∈ {23, 19, 17, 13, 11, 7, 5, 3},
hence, A46−23 = {0, 4, 6, 10, 12, 16, 18, 20}. The role of p∗ and p can be interchanged. Let us briefly look at A46−19.
Here p∗ = 19 and we can have p = 23 for 2 < 23 ≤ 46− 19 = 27, leading to 2k = 46− 19− 23 = 4.

Two other examples are A60−23 = {0, 6, 8, 14, 18, 20, 24, 26, 30, 32, 34} and A38−31 = {0, 2, 4}. If we join A46−23
with A60−23 and e.g. A38−31 , we obtain the first, 11, E numbers, or, {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20} ∪ {...}.

Note that the lowest value of n is 4 in N3. We are in that case looking at 2 < p ≤ 8−p∗. Hence, because 8 > p∗, we
have p∗ ∈ {7, 5, 3}. Hence, when p∗ = 7 the A is empty. For p∗ = 3, we find, 2k = 8−3−5 = 0, or, 2k = 8−3−3 = 2,
i.e. A8−3 = {0, 2}. For p∗ = 5 we find, p = 3 as the only possibility. Hence, A8−5 = {0}.

Let us subsequently define an integer number N(n, k | p∗, p) > 2. Then we can derive from 2k ∈ A2n−p∗ that
2N(n, k | p∗, p) = 2(n − k) = p∗ + p. The idea is to have arbitrary n ∈ N3 and to match a k ∈ N such that
2N(n, k | p∗, p) is a Goldbach even number. Such a number can be written as the sum of two primes. Let us call
the k ∈ N, i.e. 0 ≤ k ∈ N and k < ∞, the (finite) Goldbach number generator. In the subsequent sections we will
concentrate on k to investigate if there is a k as part of a non-Goldbach number, i.e. 2N(n, k) not the sum of any
two prime numbers from P.

The Goldbach & non-Goldbach numbers

Let us for clarity repeat the definitions. A Goldbach number is a positive even integer that can be expressed as
the sum of two odd primes. The set of Goldbachs is denoted with G. A non-Goldbach number is a positive even
integer that cannot be expressed as the sum of two odd primes. The demonstration of the existence of non-Goldbach
numbers would invalidate the Goldbach conjecture. The set of non-Goldbachs is denoted with G¬

If we want to prove that all even numbers are Goldbach numbers, we must demonstrate that the generators k
exhaust the join of all A... sets into E. I.e.

E ≡ ∪n∈N3
∪p∗∈P A2n−p∗ (4)

and E = E. Below we will prove that E = E. This entails that G¬ = ∅.
There are infinite prime numbers in P. There are unknown primes. When E = E, the expression in (4) embraces

all the Goldbach numbers. Any pair of (n, k)|n>k, with 2k ∈ ∪n∈N3
∪p∗∈P A2n−p∗ = E , gives k ∈ {0, 1, 2, 3, . . . } = N.

Moreover, (n, k)|n>k then has associated to it at least one proper pair of (p∗, p) ∈ P2. In turn, (n, k)|n>k can be
associated to N(n, k|p∗, p) = n − k ∈ N. This number can then be employed for constructing 2N(n, k | p∗, p) =
2(n− k) = p∗ + p > 0. E.g. 7 + 3 = 2(5− 0) = 2(6− 1) = 2(7− 2) = . . . and 5 ∈ N3. With 0 = (2× 5)− 7− 3, for
A10−7, (2× 1) = (2× 6)− 7− 3, for A12−7, (2× 2) = (2× 7)− 7− 3, for A14−7, etc. Here p∗ = 7 with p = 3.

Moreover, it is noted that the occurence of empty A... sets is unavoidable. This is true for 2n > p∗ cases. One can
e.g. have 2n = 60 and p∗ = 59. The set A60−59 = ∅, i.e. there are no p ∈ P such that, 2 < p ≤ 1. In addition we
have empty A... sets where 2n < p∗ ⇔ 2n− p∗ < 0, i.e. there are no p ∈ P such that, 2 < p < 0. Note that the upper
bound, 2n− p∗, of p in an A... set is an O number.

Because p∗ + p is even, it is obvious that, A2n−p∗ ⊆ E. Hence, it can already be concluded that,

E = ∪n∈N3
∪p∗∈P A2n−p∗ ⊆ E (5)

If there are non-Goldbach numbers, i.e. even numbers that cannot be composed out of the sum of two prime numbers,
there is a non empty residue set for the generators

R = E\ ∪n∈N3 ∪p∗∈PA2n−p∗ (6)

This is so because then we can have (n, k) pairs where it is not possible to have (p∗, p) ∈ P2 with 2 < p ≤ 2n − p∗
and, for n > k, to have 2(n − k) = p∗ + p. Suppose, (one of) the number(s) is 2k ∈ E. Then, we have 2k ∈ R.
This is ⇔ with 2k /∈ ∪n∈N3 ∪p∗∈P A2n−p∗ . For arbitrary (n, p∗) we, in a non trivial way, cannot find a p ∈ P with
2 < p ≤ 2n− p∗ such that 2k can be written with the use of n as 2n− p∗ − p. Or

2k 6= 2n− p∗ − p (7)
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Of course there has to be a value attached to 2k ∈ R. This value can be considered yet unknown. For another value
of n, another appropriate value of k applies but the impossibility 2k = 2n − p∗ − p for any (p∗, p) ∈ P2 remains.
From the examples one can see that there is an incidental way that 2k is not in A.... For instance 2k = 8 /∈ A46−23.
However, finally we also have 2k = 8 ∈ A60−23 or 8 ∈ A46−19. Therefore 2k = 8 ∈ E . The required absence of any
(p∗, p) ∈ P2 for 2k ∈ R makes this impossibility not incidental.

According to the result of Pipping [5], the non-Goldbach is at its least 2(n− k) > 1× 105. It is noted too that the
argumentation below shows some traits of Lorenzen his proponent-opponent dialogic [7]. Here in (7), to have a G¬
number, it is required not to have 2k in any A....

If we note, 2k /∈ ∪n∈N3
∪p∗∈P A2n−p∗ , we are allowed to select a pair (n, p∗) with a set A2n−p∗ 6= ∅. Because not

any of the A... sets may contain 2k, an A... 6= ∅ set, with (n, p∗), can be selected such that there are predecessors of
2k that do reside in A2n−p∗ 6= ∅. Hence, given k, we subsequently may have a finite m ∈ N > 0, i.e. finite m ∈ N0

such that

2(k −m) = 2n− p∗ − p > 0 (8)

despite the truth of (7). Note that (7) should also apply for (n, p∗, p) used in (8). The m ∈ N > 0, with
k > m, is a genuine possibility because we already established that the potential 2k ∈ E does not reside in
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20} ⊆ ∪n∈N3 ∪p∗∈P A2n−p∗ . Suppose for illustration we are looking at e.g. E =
{0, 2, 4, . . . , 20, . . . 2(k − s)}. 2k /∈ E and s proper integer number.

To return to the main line of the argument, equation (8) implies that 2k = 2(n + m) − p∗ − p, or equivalently,
2k ∈ A2(n+m)−p∗ . Here 0 < k−m ≤ k− s. This set is, via selection of m, a ”6= ∅” set. Note now that A2(n+m)−p∗ ⊆
∪n∈N3∪p∗∈P A2n−p∗ with, of course, (n+m) ∈ N3. This runs contrary to the assumption that 2k ∈ R, or equivalently,
2k /∈ ∪n∈N3 ∪p∗∈P A2n−p∗ .

Therefore, R = ∅ and E , defined in equation (4), is E. For 0 < k −m ≤ k − s we have found that 2k ∈ E . But we
assumed 2k ∈ R = E\E .

If one wants to have 2(n− k) ∈ G¬, then 2k must, exclusively, be in R = E\E if n is allowed to vary along with k.
So, R must be nonempty . However, R not empty is contradictory. Therefore G¬ is empty.

DISCUSSION & CONCLUSION

When, ∪n∈N3
∪p∗∈P A2n−p∗ = E, then for each n ∈ N3 ⊂ N there is a k ∈ N, k < n, with 2k ∈ ∪n∈N3

∪p∗∈P A2n−p∗ ,
such that we can always find a p∗ ∈ P and a p ∈ P. This (p∗, p) ∈ P2 pair has 2 < p ≤ 2n−p∗ such that 2(n−k) = p∗+p.

If we represent the first sentences of this section in a formula, we have

∀n∈N3∀k∈N;n>k∃(p∗,p)∈P2; 2<p≤2n−p∗ [2(n− k) = p∗ + p] ≡ true (9)

The assumption of the existence of non-Goldbach even numbers

∃n∈N3
∃k∈N@(p∗,p)∈P2; 2<p≤2n−p∗ [2(n− k) = p∗ + p] ≡ true (10)

gives a contradiction. Note that we are looking for one or more 2k that occur in none of the A2n−p∗ . In that case the
∀k∈N of (9) must be replaced by ∃k∈N. This replacement would allow (10). It was demonstrated that the assumption
of a non-Goldbach number is contradictory.

Let us define the set S ≡ {(n, k) |n > k, n ∈ N3, k ∈ N}. Hence, the set

U ≡ {x ∈ N |x = n− k, x > 3, (n, k) ∈ S} (11)

is ∼ to N3 [8].
Although, there are infinite many (n, k) ∈ S associated to x = n−k in (11), e.g. x = 5 = 5−0 = 6−1 = 7−2 = . . . ,

the value of x occurs only once in U . Hence, U ∼ N3.
Therefore, when firstly, (n, k) ∈ S is connected to (p∗, p) ∈ P2, with 2 < p ≤ 2n − p∗, see (9). Secondly, the

connection (n, k) and (p∗, p) is not 1-1. Thirdly there are no (n, k) ∈ S not associated to some (p∗, p). In other words
we only have incidental 2k /∈ A2n−p∗ . The latter is true because it is impossible to find any k such that for each
n ∈ N3 we are able to establish that 2k /∈ A2n−p∗ for all possible feasible p∗ ∈ P, i.e. those p∗ for which A2n−p∗ 6= ∅.
The example is, for instance, that (46, 8) is not based on p∗ = 23, i.e. 8 /∈ A46−23. However, (46, 8) is related to
p∗ = 19 and p = 19, i.e. (46, 8) associated to (19, 19), i.e. 2 < p ≤ 46− 19 = 27, such that 8 ∈ A46−19 .
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It then follows from the defnitions of S and U sets that, all α ∈ 2N3 are represented in 2U [9]. Each 2(n − k) in
2U is, therefore, associated to a pair (p∗, p). Hence, referring to equation (9), each α ∈ E can, at its least, be written
as the sum of some particular p∗ ∈ P and some particular p ∈ P, such as represented in (9).

We have demonstrated that a set of possible non-Goldbach even numbers must be empty, G¬ = ∅. This means
there are no non-Goldbach even numbers. We have discussed why the employed criterium for generators is correct.
Therefore the conjecture of Goldbach is true.
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