
1

High-Accuracy Inference in Neuromorphic Circuits
using Hardware-Aware Training

Borna Obradovic, Titash Rakshit, Ryan Hatcher, Jorge A. Kittl, and Mark S. Rodder

Abstract—Neuromorphic Multiply-And-Accumulate (MAC)
circuits utilizing synaptic weight elements based on SRAM
or novel Non-Volatile Memories (NVMs) provide a promising
approach for highly efficient hardware representations of neural
networks. NVM density and robustness requirements suggest
that off-line training is the right choice for “edge” devices,
since the requirements for synapse precision are much less
stringent. However, off-line training using ideal mathematical
weights and activations can result in significant loss of inference
accuracy when applied to non-ideal hardware. Non-idealities
such as multi-bit quantization of weights and activations, non-
linearity of weights, finite max/min ratios of NVM elements,
and asymmetry of positive and negative weight components
all result in degraded inference accuracy. In this work, it
is demonstrated that non-ideal Multi-Layer Perceptron (MLP)
architectures using low bitwidth weights and activations can be
trained with negligible loss of inference accuracy relative to their
Floating Point-trained counterparts using a proposed off-line,
continuously differentiable HW-aware training algorithm. The
proposed algorithm is applicable to a wide range of hardware
models, and uses only standard neural network training methods.
The algorithm is demonstrated on the MNIST and EMNIST
datasets, using standard MLPs.

Index Terms—Neuromorphic, FeFET, DNN, Hardware-Aware
Training, Pruning

I. INTRODUCTION

HARDWARE accelerators for Deep Neural Nets (DNNs)
based on neuromorphic approaches such as analog re-

sistive crossbar arrays are receiving significant attention due
to their potential to significantly increase computational ef-
ficiency relative to standard CMOS approaches. An impor-
tant subset are accelerators designed for inference only, i.e.
utilizing off-line training [1], [2]. The absence of on-chip
training capability results in simplified, smaller area weight
implementations, as well as a reduced complexity of the
peripheral circuitry. The converse case of on-chip training re-
quires precise weights and activations (at least 6-bit precision)
due to the small weight increments required by the gradient
descent (and related) algorithms [3], [4], [5], [6] While there
are several possible approaches to implementing high weight
precision [4], [7], all of them incur an area or programming
variability penalty relative to simple, low-precision weights
that are sufficient for the inference-only case. In this paper, the
assumption is made that near-term applications for neuromor-
phic accelerators on mobile SoCs will not benefit from on-chip

B. Obradovic, T. Rakshit, R. Hatcher, J.A. Kittl, and M.S. Rodder are with
the Samsung Advanced Logic Lab, Austin TX 78754, USA.

(e-mail: b.obradovic@samsung.com)
Manuscript received August 15th, 2018

training, which is instead relegated to the cloud. The focus is
on improved inference performance and power reduction.

The key disadvantage of the inference-only approach is that
any discrepancy of the on-chip weights and activations from
the off-line ideals results in a potentially significant loss of
inference accuracy. The most obvious example is the quanti-
zation of weights and activations, but also includes any non-
linearities of the weights (w.r.t. input signal or target weight),
as well as a finite max/min ratio and sign asymmetry. Applying
a “brute-force” algorithm which maps off-line trained weights
to HW elements can result in significant loss of inference
capability. The solution to this problem is the emulation
of the behavior of HW during the off-line training process.
Instead of training a mathematically “pure” DNN, the traning
is performed on a model of the DNN implementation in target
hardware. This process is referred to as “Hardware-Aware
Training”. The paper is organized as follows. The description
of example HW-architectures is presented in Sec. II. The
general training algorithm suitable for a wide range of HW-
architectures is presented in Sec. III. Individual applications
of the algorithm of Sec. III on the HW-architectures of Sec.
II are shown on in Sec. IV.

II. HARDWARE ARCHITECTURES

While many hardware architectures for MAC have been
considered, three specific examples are discussed in this work.
All are based on the Ferroelectric FET (FeFET) NVM for
weight storage [2]. There is no particular significance to the
choice of FeFET in the context of HW-aware training; it is
merely used here for the purpose of example. Other NVMs,
or even SRAM would have resulted in similar considerations.
Furthermore, the chosen examples are interesting in the con-
text of this work because of the different training challenges
that they represent, not necessarily because they are the best
choices for neuromorphic implementations.

A. Binary XNOR

The first architecture considered is an XNOR [9] implemen-
tation using FeFET-based dynamic logic. The array architec-
ture is shown in Fig. 1, while the FeFET-based XNOR circuit
block is illustrated in Fig. 2. XNOR-based networks could also
be realized in SRAM, with identical training considerations.
The FeFET-based approach is shown as an example here
because other cell characteristics (such as area) are more
desirable than in the SRAM case.

The cell of Fig. 2 implements the function XNOR(X,W )
where X is a logic input, applied to the sources of the FeFETs,



2

Fig. 1. The XNOR array is shown. Each XNOR cell has two inputs (X and
X̄), and an output that discharges a bitline (BL). Inference can take place in
sequential, row-by-row fashion, or with multiple rows at once. In the latter
case, the degree of BL discharge is an analog quantity (proportional to number
of “1s” in XNOR cell outputs), and an ADC is required in the readout.

Fig. 2. The XNOR cell implemented using dynamic FeFET logic is illustrated.
The circuit in the dashed red box implements the XNOR(X, W), storing the
result as a dynamic voltage on the node SN. Evaluation is performed by
enabling EVAL and partially discharging the pre-charged bitline BL. Each
XNOR cell which is activated at SN contributes to a partial discharge of the
bitline.

while W is the weight, stored as the state of polarization of
the BEOL FeCaps (connected to the gates of the underlying
FETs of the overall FeFET). The FeFETs are programmed by
applying moderately high voltage pulses to the program lines.

Write disturbs for XNOR cells which share program lines are
prevented using the selector FETs. Inference is performed by
applying input signals (X , X̄) with the PRG inputs grounded.
This causes the storage node SN to either charge up to VDD
or stay at GND. At the same time, the bitline BL is pre-
charged. This performs the binary multiply portion of the
MAC operation. The accumulate portion is performed in the
second phase of the inference; the EVAL signal is enabled, and
the driver FETs perform a partial discharge of the bitline. This
particular approach to MAC eliminates (to a great extent) the
variability problem associated with the FeCaps (which may be
significant for scaled FeCaps), since the final voltage of the SN
is either ≈ VDD or ≈ 0. Variability is nevertheless present due
to the Vt variation of the driver FETs, leading to variability in
the discharge rate of the BL. This scheme is therefore useful
when parallel accumulation is desired and FeFET variability
is much greater than that of the standard FETs.

B. Ternary Conductive Crossbar
The Ternary Conductive Crossbar (TCC) architecture is a

slightly modified resistive cross-bar array [5], [6], as shown
in Fig. 3. The individual weight cells are shown in Fig. 4. The
standard approach of using two weights to represent positive
and negative conductances is used. The modification of the
standard approach arises only in the use of dedicated program
lines (Fig. 4), one for each row of weights. The program lines
are shared across the entire row; write disturb prevention is
accomplished by activating individual select lines. In inference
mode, the program lines are grounded, and the weights behave
like two-terminal devices, forming a cross-bar between the
signal input and output lines. The weights themselves are
FeFETs; the conductance level of the FeFETs (each with a
grounded gate terminal) determines their weight value. Details
of the programming can be found in [2].

In principle, it is possible to store analog or multi-bit
weights into a single FeFET, if sufficiently accurate pro-
gramming is available, and FeCap variability is sufficiently
controlled. In this work, however, the FeFETs are assumed to
be purely digital devices, programmed into either a strongly
ON-state or strongly OFF-state. Such a scheme avoids the
complexities of multi-bit or analog programming, as well as
the challenges of variability when defining multiple program-
ming states. Since the G+/G− conductance pair is utilized,
three useful conductance states are available: (GON , GOFF ),
(GOFF , GON ), and (GOFF , GOFF ), corresponding to the
mathematical states 1, -1, 0. Since the FeFETs themselves
are acting as the weight elements, all FeFET non-idealities
impact the weight as well. While programming is similar to
that of the XNOR cell, inference must be performed with low
signal voltages which ensure that the FeFETs are in the linear
regime throughout the inference event. Larger voltages create
non-linear distortions which must be taken into account in
the network model. Due to the presence of the G+/G− pair,
the nominal value of the ternary “zero” is exactly zero (due
to G+/G− cancellation). Statistically, however, there will be
some variability of the ternary zero due to process variability.
Additionally, any imperfections of the current mirror used to
obtain the G− conductance will result in G+, G− asymmetry.



3

Fig. 3. The cross-bar array utilized in this work is illustrated. The array
consists of two sets of weights: one each for positive and negative conductance
contributions. The “positive” and “negative” weight cells are identical; the
minus sign is introduced using a current mirror on the negative output line,
just prior to the summing amplifier.

Fig. 4. A single weight cell of the Ternary crossbar array is shown. The
weight cell is based on a FeFET (shown using a FET with a ferroelectric
capacitor connected to the gate) and uses a select FET attached to the gate of
the weight FET in order to prevent write disturbs. Programming is performed
by applying high voltage pulses to P0 while sel is high. During inference,
P0 is grounded and sel is high. The conductive state of the weight FET is
determined by the stored polarization of the FeCap.

C. Multi-Bit Crossbar

A possible approach to multi-bit crossbars (two bits in this
case) is illustrated in Fig. 5 [2]. The weight cell consists of
multiple branches, each comprised of a series combination of
an FeFET and a passive resistor. The conductance values of
the resistors follow a binary ladder. The total conductance of

the weight is then given by:

Gtot =

n−1∑
k=0

bk2kGk
0 (1)

where n is the total number of branches (i.e. bits) available
(n=2 for the purposes of this work). The overall crossbar
array program and inference operation are identical to those
of the standard FeFET crossbar, as described in Sec. II-B.
However, while the latter implemented a Ternary weight, the
circuit described in this section implements a Quinary weight:
a signed two-bit weight, for a total of five possible weight
levels. As in the case of the single FeFET case, the behavior
of the weight is subject to the non-idealities of the FeFET and
the passive resistor. However, this structure is far more tolerant
to FeFET non-linearity, since the conductance is primarily
dependent on that of the passive resistors. In cases where the
FeFET conductance (in the ON state) is not multiple orders
of magnitude higher than that of the passive resistor, a non-
linear skew of weight values must be taken into account during
training for best inference accuracy.

Fig. 5. The schematic of a two-bit weight cell is illustrated. The resistance is
provided by passive resistors, while the FeFET transistors enable or disable the
individual branches. A select transistor is provided for each bit. Additional
bits require additional parallel branches of resistor-transistor combinations.
During inference, the program inputs are grounded and the weight cell acts
as a two-terminal device. The values of the passive resistors are chosen to
provide a binary ladder of overall weight conductance.

III. HARDWARE-AWARE TRAINING

As shown in previous work [2], [3], [4], direct Binary,
Ternary, and even Quinary quantization of weights described
in the previous section results in degraded inference accuracy
relative to Floating-Point (FP) implementations. This accuracy
loss is further compounded by non-idealities of the weights.
The key problem, however, is not a fundamental lack of
inference capability of the non-ideal networks. Instead, it is
the mismatch between the training model and the inference



4

model used. This is not necessarily a priori obvious, but is
demonstrated in this work and elsewhere [9], [10], [11], [12].
The standard training procedure generally assumes that the
full range of real numbers (or at least their FP representation)
is available for weights and activations. Training is typically
performed using a suitably chosen variant of Gradient Descent
with Backpropagation used to compute the gradient. The set of
weights thus obtained is then quantized, using a quantization
spacing that optimizes inference accuracy on a validation
set. Binary and Ternary quantizations thus obtained show a
significant accuracy loss [2]; Quinary quantizations are more
acceptable, but nevertheless show some accuracy degradation
relative to the pure SW case [2]. Of equal importance are
deviations from ideality that are not related to quantization,
such as asymmetries and non-linearities in the weight HW.
In order to properly take into account non-idealities of spe-
cific HW implementations, a HW-aware training algorithm is
proposed.

A. Training Algorithm

The proposed training algorithm takes into account the
appropriate HW model in a way which permits discontinuities,
such as those caused by quantization, without sacrificing
continuous differentiability of the cost function. All other non-
idealities of the weights and activations are likewise included.
As summarized in Alg. 1, the HW-aware training algorithm
starts with a pre-trained neural net, resulting from FP-based
training. Any suitable training method can be used to obtain
wFP . Regularization may or may not be performed for wFP

at this stage. As discussed in [2], regularization without the
appropriate HW model results in a loss of generalization
capability, so re-training with HW-aware regularization is
necessary. Next, the algorithm proceeds through several it-
erations of HW-aware weight refinement. At each iteration,
the weight matrices are replaced by HW-description functions
gHW (w,X, α). The g-functions represent the non-ideal, HW-
induced weights, and are therefore functions of the “ideal”
weights, as well as the input vector X . Additionally, the
g-functions depend on the variable α, which serves as a
continuation parameter. With α = 0, g(w,X, α) = w;
with α = 1, g(w,X, α) = GHW (w,X), i.e. an accurate
representation of the HW. With any intermediate value of the
α parameter, the g-functions represent an approximation of
the true HW model, becoming increasingly accurate as α is
increased. A similar approach is used for activation functions,
though these are generally functions of the pre-activation value
z only. Hyperparameter optimization forms the outer loop of
the algorithm. Hyperparameters include standard parameters
for L1, or L2 regularization, but also parameters related to
the gHW functions. The latter include parameters such as
the quantization step ∆, but not parameters related to the
physical model of the circuit such as asymmetries and non-
linearities. In general, hyperparameters should only include
variables which control the training, not those that characterize
the hardware. It should also be noted that the network model
used for validation should always contain the exact (or “best”)
model of the HW, not the HW model used for the current

training iteration. This ensures that regularization is being used
in a context most similar to the final test evaluation.

Algorithm 1: Hardware-Aware Training Algorithm

1 HWApproxTrain Input : Training set (xtrain, ytrain),
validation set (xvalid, yvalid),
hardware-approximation function
gHW (w,X, α), neural network model nnmodel,
sequence of HW-approximation parameters {α},
weights from FP-based training wFP

Output: woptim, the trained weights
2 Set witer = wFP ;
3 for λk in {Hyperparams} do
4 for αi in {αinit, ... αfinal} do
5 nniter(w, X) = nnmodel(gHW (w, X, αi), X);
6 wk

iter =
ADAM(nniter, w

k
iter, λ

k, xtrain, ytrain);
7 end
8 Costk = CrossEntropy(yvalid, nn(wfinal, xvalid))
9 end

10 opt = argmin(Costk)

11 return wopt
iter;

A key property of the g-functions is that they are con-
tinuously differentiable w.r.t. w for all values of α, except
possibly for α = 1. This ensures that the exact gradient
is available at all steps in the iteration, enabling gradient
descent-type optimizers (such as the suggested ADAM) to
perform efficiently. The weights obtained in each iteration
are used as the initial guess in the next iteration. After a
few iterations of the algorithm (often just one), the obtained
weights witer are optimized for an accurate representation of
the HW model. The algorithm can be illustrated with a simple
example: a neural network model with undistorted Ternary
weights. Discrete weight levels of the Ternary system can be
approximated as follows:

g3HW = 2∆

[
σ

(
w −∆

wsc

)
+ σ

(
w + ∆

wsc

)
− 1

]
(2)

where the superscript 3 is the number of weight categories
of the weights (3 for Ternary), w represents the mathematical
(FP) weights, ∆ is the level spacing parameter (for uniform
spacing, as used in this example), and wsc is the weight-
level transition scale parameter. The latter sets the variable
scale of the sigmoid (σ) of Eqn. 2. The scaled sigmoid
provides a smooth step function, and the conversion from
mathematical (FP) weights to discrete weight levels is then ac-
complished in a continuously differentiable fashion by adding
an appropriately scaled smooth step function (as in Eqn.
2.) As the weight scale parameter wsc is reduced, the steps
become increasingly abrupt, asymptotically approximating dis-
crete hardware. Thus, the wsc parameter is a proxy for the
α “hardware approximation parameter” of Alg. 1 (and can
be directly related to it in a number of possible ways, for
example wsc = 1 − α). For any given wsc (or equivalently
α) the hardware approximation function gnHW of Eqn. 2
is continuously differentiable, enabling the use of standard



5

gradient-driven optimizers with backpropagation. Two steps
in the iterative refinement algorithm are illustrated in Fig. 6.

Fig. 6. The g3HW weight HW-model is shown in two separate iterations. The
top figure illustrates the first iteration in which the HW-model is applied,
where the transition between weight levels is gradual. The bottom figure
represents the HW-model at the end of the training iterations. Transitions
are essentially abrupt. Gradients are large only very near weight transitions;
in the case of the near-ultimate HW-model, very few weights actually get
modified by gradient descent, and the algorithm comes to a stop.

The top figure of Fig. 6 illustrates the hardware approxi-
mation function g3HW at an early stage in the iteration; wsc is
relatively large, and the steps across discrete weight levels are
smooth. The bottom figure of Fig. 6 shows the g3HW at the
end stage of the iteration; the scale parameter wsc is small,
and the steps are nearly abrupt. Both plots also show the
derivative of g3HW w.r.t. the mathematical weight. It is apparent
that the derivative is non-zero only near value transitions.
Thus, in the late stages of the iteration, only mathematical
weights near the transition boundary are impacted by the
Gradient Descent family of algorithms (or any other gradient-
driven algorithm). Mathematical weights are therefore “forced
to choose” which side of the transition boundary they need to
be on in order to minimize the cost function. The exact value
of the mathematical weights (beyond the choice of side w.r.t.
transition boundaries) ultimately does not matter in a discrete
level system. The “choosing” effect of the algorithm on weight
distributions is illustrated in Fig. 7. A Ternary NN using the
function g3HW of Eqn. 2 is trained on MNIST, and the weight

distribution of the hidden layer is compared to that obtained
by standard FP training.

Fig. 7. The distributions of mathematical weights obtained by SW-based
training and HW-aware training for Ternary weights are illustrated. In the case
of the HW-aware training, a visible stratification has taken place, separating
weights near transition boundaries into distinct categories. When ternarization
is applied to HW-aware trained weights, all mathematical weights will be well
within a given discrete weight level, with very little uncertainty regarding
which category the weights belong to.

Two examples are shown: using a small hidden layer (50
neurons, top plot of Fig. 7), and a larger hidden layer (200
neurons, bottom plot of Fig. 7). In both cases, the effect of
HW-aware training for the ternary weights is apparent: weight
distributions show gaps near the level transition boundaries. At
each step in the iteration, weights near the transition boundary
experience a strong gradient (scaled by the derivative of the
gnHW function, >> 1 near transitions), which pushes them
away from the boundary in whichever direction minimizes the
cost function. Thus, after a few iterations of this algorithm, no
weights (or negligibly few) remain near the boundaries.

The HW-aware training process is usually completed in
two or three iterations. A typical training curve is shown in
Fig. 8. The training accuracy is shown vs. Epoch, for a two-



6

iteration training process. The “zeroth” iteration, labeled “FP”
in Fig. 8 is just the standard SGD with FP-based weights and
activations. After 10 epochs, the FP iteration reaches 9̃9%
training accuracy. The “zeroth” iteration is terminated, and
the next iteration begins. A new neural network is created
using a Ternary HW model for the weights (g3HW ), with the
initial values for the weights obtained from the final iteration
of the FP network. The Ternary step parameter ∆ is set to 0.45
(a hyperparameter), while the wsc parameter is set to 0.05.
This results in a smooth Ternary discretization that produces
a significantly different model and cost than the FP case.
This can be seen by the abrupt drop in training accuracy
at the start of epoch 11. The same set of (mathematical)
weights that produced 9̃9% training accuracy with the FP
model now only produces 9̃1% with the approximate HW
model (T1). However, after additional training with the initial
ternary model T1, the training accuracy is increased to 9̃8%.
The weight transition parameter wsc of 0.05 is not quite small
enough to adequately model discrete levels, so an additional
iteration is performed with wsc set to 0.005. This is shown
as the “T2” step, starting with epoch 15. Due to the change
of the model to a better approximation of the HW, there is
another drop in the inference accuracy, which now equals
97%. A few epochs of additional training with the final HW
model push the inference accuracy up to 98%. The transition
scale wsc of 0.005 is sufficiently abrupt that further reductions
of the parameter make no difference (as would be shown
by an additional iteration, T3, not included here), so the the
inference accuracy achieved at epoch 20 is the final training
accuracy with a realistic HW model (in this case, and ideal
Ternary). The neural net evaluated on the accurate HW model
has only a 1% loss in inference accuracy (training) relative to
the FP-based one. In Sec. IV, the test (not training) accuracy
is investigated for several HW and network examples.
The optimization of T1 is complete after 5 epochs (at epoch
15), and T2 begins. As in the case of T1, a new neural network
model is created with a new HW model for the weights (T2),
using the same ∆ as T1, but a further decreased wsc (now
set to 0.005; essentially abrupt). The degradation in training
accuracy from T1 to T2 is small, since even T1 is a reasonably
good approximation of the final HW model. A few additional
epochs of training with T2 recover the final training accuracy
to 9̃8%. Thus, the final training accuracy on a model that
represents an accurate representation of true Ternary is nearly
the same as the training accuracy in FP. It is also evident that
absent training with the g3HW functions, direct quantization
would have resulted in more than 8% accuracy loss (the
difference between the final FP and initial T1 accuracy). This
will be examined further in the context of test accuracy in the
next section.

Fig. 8. The training history of a simple NN with Ternary weights is shown
across three iterations of the HW-aware training algorithm. Initial training
(without the HW-aware model) is performed in the FP set of epochs. The
first application of the HW-aware model starts with the T1 set of epochs, and
initially shows a significant drop in training accuracy, induced by the change
in model. The weights are refined in the next set of epochs, and the final
version of the HW-model is applied in T2. The final training accuracy on the
best approximation of the HW nearly matches the FP-based accuracy.

IV. RESULTS AND ANALYSIS

The Hardware-aware training algorithm Alg. 1 is next
applied to the various architectures of section II. In each
case, the appropriate hardware model is described, and training
using Alg. 1 is performed. The results are benchmarked using
MNIST and EMNIST [8], with several different network sizes
and two topologies (Fig. 9). Two different topologies are used:
a single hidden layer, and three identically-sized hidden layers
sandwiched between fixed input and output layers. The size of
the hidden layers is varied, and the inference accuracy on each
test set is noted. The obtained SW-based test accuracies are
consistent with expectation based on literature for MLPs [2],
[3], [8], with MNIST and EMNIST yielding test accuracies in
the 98% and 85% range, respectively (as shown in Fig. 10).

Fig. 9. The benchmark neural nets used for the analysis are shown. In each
case, a neural net suitable for MNIST (m=10 output classes) or EMNIST
(m=47 output classes) is used, either with a single hidden layer, or with three
identically-sized hidden layers. In each case, the size of the hidden layer(s)
is varied for benchmarking purposes.



7

Fig. 10. The SW-based test accuracies obtained using the benchmark MLPs
are illustrated. While the simple MNIST benchmark easily approaches the
99% mark, EMNIST is considerably more challenging, and peaks near 85%
test accuracy. Both figures are consistent with a wide body of literature on
MLPs.

A. Binary XNOR

As described in section II-A, the particular choice of XNOR
circuit results in binary weights and activations, with no sig-
nificant distortions of weights due to hardware non-idealities.
This is a consequence of the dynamic logic implementation
of the signal-weight product operation, which results in either
0 or VDD if the evaluation time is sufficiently long. The
accumulation (summation) operation likewise does not have
any weight-induced distortions, although it does, of course,
suffer from errors due to FET Vt-related process variability.
Similar considerations would have resulted had SRAM-based
weights been used instead. Ignoring the variability aspect in
this analysis, the weight model can be described as follows:

g2HW = ∆ tanh

(
w

wsc

)
(3)

where the 2 superscript denotes the binary weight, ∆ is
the weight magnitude scale parameter (hyperparameter for
training), and wsc is the “hardware realism” parameter which
determines the transition scale between the “-1” and “1” states.
Note that there is no explicit bias term shown in Eqn. 3.
Instead, the signal vector X is augmented by one component
that is always set to “1” (or the appropriate maximum vector
value for the given neural network). The bias is therefore
subject to the same binarization as the standard weights. For
hardware implementations where this is not the case, a separate
g function could be used to describe the bias. The approach of
augmenting the X-vector for bias is used for all examples in
this paper. The binary weight and its derivative are illustrated
in Fig. 11.

Applying the XNOR weight model of Eqn. 3 and Fig. 11 to
a pair of simple benchmark networks shows that near-SW level
accuracy is achievable. This is in contrast to direct binarization
of SW-weights, which is shown to result in a significant loss
of inference accuracy (Fig. 12).

Fig. 11. The hardware description function for a pure binary weight is shown.
Only two weight levels are available, but no asymmetry is assumed.

Fig. 12. The error induced by binarizing SW-trained weights is shown for
direct binarization and using the HW-aware algorithm. The error is defined as
the difference of the SW-based and Binary-XNOR inference accuracy. Direct
binarization exhibits very poor performance with MNIST, with the binarization
error never less than 30%. The HW-aware algorithm has significantly smaller
error for all layer sizes, with the error falling into the 1% range for layers of
100 neurons or more. Direct binarization on EMNIST shows extremely poor
results, barely better than random classification. The situation is significantly
improved with HW-aware training, with errors in the 1% range possible.



8

The direct binarization approach is not able to do better
than 30% error on MNIST w.r.t. the SW implementation, in
spite of a certain degree of optimization of the binarization
procedure itself (the magnitude of the weights is scaled to
maximize validation accuracy separately for each network).
The situation is even more dire with EMNIST: the obtained
results are barely better than a random network. Direct bina-
rization acts as a non-linear error amplifier for weights near
the weight transition boundary. Small uncertainties for FP-
based weights (from software training) which have negligible
impact on inference accuracy become dramatically amplified
by binarization. As indicated in Fig. 12, this problem is
solved by HW-aware training, in which weights are iteratively
pushed to either side of the transition boundary in a way that
maximizes inference accuracy. As seen in Fig. 12, HW-aware
training reduces the error to the 1% range or less, for both
MNIST and EMNIST. In addition to assigning weights to the
optimal side of transition boundaries, the HW-aware algorithm
is also able to re-purpose unused weights to improve inference
accuracy. As can be seen from weight distributions shown in
Fig. 7, many (approximately 90%) of the weights are near zero,
and not contributing to inference. These “unused” weights can
be put to use by a HW-aware trained network consisting of
non-ideal weights (as in the examples in this work). Thus, a
larger number of “primitive” weights can perform at the same
level as small number of more complex weights. As long as the
network consists of a sufficient number of “unused” weights
(as is typical), this is accomplished without adding neurons
to the network; simply re-training in a HW-aware manner is
sufficient. While the training algorithms are quite different, a
similar conclusion regarding the capability of binary networks
is reached in [9].

B. Ternary Crossbar

The Ternary crossbar approach of Sec. II-B provides three
weight levels ({−2∆, 0, 2∆}, with ∆ a hyperparameter)
which are achieved by signed summation of currents through
pairs of conductances (G+, G−). The negative sign for the
G− conductances is attained by a current mirror for the entire
crossbar column, which sums G− currents. With an ideal
current mirror, the mirrored current is indeed multiplied by
−1; in practical implementations of current mirrors, however,
some degree of error is to be expected. A systematic error
in the current mirror results in an asymmetry between the
G+ and G− weights. For the purposes of this example, G−

will be assumed to be the smaller effective conductance due
to imperfect mirroring. A suitable hardware model function
g3HW is:

g3HW = 2∆

[
σ

(
w −∆

wsc

)
· β + σ

(
w + ∆

wsc

)
− β

]
(4)

where σ is the sigmoid function and β defines the degree of
asymmetry of the (G+, G−) pair (β = 1 is perfect symmetry,
β = 0 implies G− = 0). With β = 0.75, the behavior of the
hardware model is illustrated in Fig. 13.

As can be seen in Fig. 14, using HW-aware training is
of essence for this problem, although for somewhat different

Fig. 13. The hardware description function for an asymmetric Ternary weight
is shown. The weight function provides three distinct levels with smooth
transitions between them. A high degree of asymmetry was chosen for this
example, with the negative weight having only 75% of the value of the
positive weight. This is likely larger than would be expected from a practical
implementation.

reasons than in the case of the Binary XNOR. The approach
of direct quantization yields very poor performance, with the
error relative to the ideal NN never less than 30% on MNIST
(and considerably worse with EMNIST). Comparing to results
in [2], it is clear that most of the error is a result of the asym-
metry, not quantization (unlike in the Binary XNOR case).
Direct ternarization in [2] with symmetric weights was able to
show errors on the order of 10% (with MNIST), indicating the
severe penalty imposed by asymmetry in the current example.
However, it is also clear that using HW-aware training almost
completely suppresses both the asymmetry and quantization
error; the discrepancy between the ideal SW-based network
and the HW-aware trained network is well under 1% on
both benchmarks (MNIST and EMNIST). It should be noted
that HW-aware training can only re-distribute weights across
weight categories; there is no change in the hardware values
themselves. Thus, the asymmetry in weight magnitude persists
even in the HW (i.e. the current mirrors are still imperfect),
but the weight distribution has been optimized to take this
into account. With larger hidden layers, the reduction in the
HW-induced error is particularly striking, falling to less than
0.1%, even for the more challenging case of EMNIST. This is
an illustration of the weight re-purposing nature of the HW-
aware training algorithm. With a large number of weights
available, most of the weights are essentially unused in an
FP-trained net (as seen by the weight distributions of Fig. 7,
where FP-based weights cluster around zero). During HW-
aware training, these unused weights are re-purposed, helping
to overcome their more primitive nature in HW. The larger the
network, the more potential for re-purposing, and consequently
the smaller the resulting HW error.



9

Fig. 14. The error induced by applying SW-trained weights to a NN
with asymmetric ternary weights is compared to the same using the HW-
aware algorithm. The error is defined as the difference of the SW-based and
asymmetric Ternary inference accuracy. A range of layer sizes is simulated
for each topology. Direct ternarization exhibits very poor performance on both
MNIST and EMNIST, with the quantization error never less than 30%. The
HW-aware algorithm has significantly smaller error for all layer sizes on both
benchmarks, with the error falling into the 1% range for layers of 100 neurons
or more (and approaching 0.1% for larger networks)

C. Quinary Crossbar

The Quinary crossbar, with its 2-bit weights, has been
shown to be quite accurate when the non-linear distortion
of the weights is small [2], [3]. For this example, a large
non-linearity will be assumed. The large non-linearity may
result from FET and resistor properties that are less ideal
than assumed in [2]. In the context of [2], the most obvious
source of non-linearity is the finite FET conductance, which
should ideally be much larger than that of the passive series
resistor. Depending on the implementation details, that may
not be easily realizable, leading to a larger non-linearity than
is described in [2]. The effects of quantization and non-
linearity can be handled through HW-aware training, as shown
next. The g5HW function associated with a non-linear Quinary

weight is shown in Fig. 15, and expressed mathematically as:

g5HW = 2∆
∑
k=1,2

βk

[
σ

(
w − (2k − 1)∆

wsc

)
+

σ

(
w + (2k − 1)∆

wsc

)
− 1

] (5)

where βk is a discrete (k-dependent) function which defines
the deviation from linearity in the HW model of the weight.
For a linear model, βk = 1 for all k. More generally, it can
be computed using a regression fit to simulation or measured
data which characterizes the HW weight. For the purposes
of this example, a strong deviation from linearity is assumed,
sufficient to significantly degrade inference performance in the
case of direct quantization (since the latter was known to be
good in the absence of non-linearity from [2], [3].).

Fig. 15. The hardware description function for a non-linear Quinary weight
is shown. The weight values deviate from the ideal quantized version, most
visibly so for large values of weights. For this example, the non-linearity is
assumed to be symmetric.

The performance of the Quinary weight with and without
HW-aware training is shown in Fig. 15. The non-linearity
degrades the expected high accuracy of the directly-quantized
neural net. As discussed in [2], the expected inference error
of the Quinary weight is as low as 1% on this problem (on
MNIST). With the non-linearity included, the HW inference
accuracy is at best within 10% of the SW version (for MNIST,
and considerably worse with EMNIST). Using the HW-aware
training algorithm with the model of Eqn. 5 reduces the
error to the 0.1% level for both the MNIST and EMNIST
benchmarks. Much like the case of the asymmetric Ternary
weight, the network composed of non-linear Quinary weights
benefits considerably from larger layer sizes. As before, the
root cause of this behavior is the re-purposing of near-zero
weights during HW-aware training. This excess of essentially
unused weights (with FP-training) is a common feature of
MLPs.



10

Fig. 16. The error induced by applying SW-trained weights to a NN with
distorted Quinary weights is compared to the same using the HW-aware
algorithm. Direct quantization results in moderately poor performance, with
the error never below 10% on EMNIST Most of the error is due to non-linear
distortion. The HW-aware algorithm greatly improves on this, with the error
falling into the 0.1% range for both the MNIST and EMNIST benchmarks.

D. Other Applications

While all examples shown so far have highlighted the use
of Alg. 1 for cases of non-ideal weights, it is also possible
to apply the algorithm to other scenarios in which the desired
behavior of weights and activations does not match that of
the originally trained neural net. As an example, the training
algorithm can be used to prune an already trained network
in an optimal way. The pruning results in a much sparser
neural net. While the sparsity is not straightforward to exploit
in a crossbar array, it is certainly desirable if the neural net
is implemented with a digital ALU. If the network is made
to be sufficiently sparse, the number of weights may be small
enough to fit into a local cache, thereby avoiding the energy
and delay penalty associated with DRAM access of weights.
For the sake of this example, the weights are considered to
be implemented in a multi-bit digital fashion, with a sufficient
number of bits to be approximated as a continuum. The goal
of pruning is to remove as many of the near-zero weights as
possible without significantly impacting the inference accuracy
of the resulting sparse net. In order to accomplish this, the Alg.
1 is applied with the hardware function shown in Fig. 17.

The pruning hardware function of Fig. 17 exhibits two

Fig. 17. The hardware function used for pruning is illustrated. Outside of the
pruning window (shown as {-1, 1} in this example) the computed weights are
equal to the mathematical weights. Inside the pruning window (highlighted
in green), the weights are set to zero. As in all applications of Alg. 1,
at intermediate iterations the hardware function provides smooth transitions
between the pruned and un-pruned regions, eventually becoming abrupt in the
final step of the algorithm. The hardware function itself is shown in red, the
derivative is shown in blue.

distinct behaviors: in the un-pruned region, the computed
weights are equal to the mathematical weights. In the pruned
region, the computed weights are identically zero. During
the training process, the transition between the two regions
becomes increasingly abrupt. The expression for the pruning
function of Fig. 17 is given as:

gPr
HW = w ·

[
1− σ

(
w − w0

wsc

)
+ σ

(
w + w0

wsc

)]
(6)

where σ is the sigmoid function, w0 is the half-width of the
pruning window (assumed symmetric in this example), and
wsc is the transition scale parameter. The pruning function is
next applied to the same MLPs as in previous examples, but
this time using Fashion-MNIST [13] as the test case. Fashion-
MNIST is used for this example since it results in denser
synaptic matrices than either MNIST or EMNIST. Strictly
speaking, the matrices for all MLPs are dense; in this context,
“denser” simply means having a larger number of weights
which are too large to be approximated as zero. It is therefore
a more interesting case for pruning. The results of pruning are
shown in Fig. 18. The size of the pruning window was varied
to produce a range of sparsities (defined here as the fraction
of non-zero values in the synaptic matrices). Two different
approaches to pruning are illustrated: 1. The “naive” approach,
in which all weights inside the pruning window are simply set
to zero. 2. Alg. 1 using the HW-function of Eqn. 6. Several
sizes of the hidden layers are used, in order to test the effect
of the matrix sizes on the efficacy of the pruning approach.

The effect of the two pruning approaches is illustrated in
Fig. 18. As the size of the pruning window is increased,
the number of eliminated weights increases, and inference
accuracy is reduced. However, while the naive algorithm
shows a steep degradation of inference accuracy with increas-



11

Fig. 18. The tradeoff between sparsity and inference accuracy is illustrated
for the naive and HW-aware pruning algorithms. Several hidden-layer sizes
are shown. It is evident that the naive algorithm becomes infeasible with
even modest weight pruning. The HW-aware algorithm, however, is shown
to suffer only minor reductions in inference accuracy even at a 95% sparsity
level (i.e. only 5% of the weights are retained). The effect of layer size on
the performance of each algorithm is seen to be negligible.

ing sparsity, the HW-aware pruning algorithm enables high
sparsity levels with only a minimal impact to accuracy. Unlike
the naive algorithm, the HW-aware pruning is free to re-
distribute weights for each size of the pruning window. As was
the case in other HW-aware training examples of this paper,
only a very small number of weights are actually moved across
transition boundaries. However, the choice of which weights to
modify is guided by cost function optimization; this results in
superior performance to simply eliminating “small” weights.

V. SUMMARY AND CONCLUSION

Some of the challenges of off-line training of neural nets
with weight transfer to low-precision hardware were demon-
strated on several examples. The challenges of low bit-width,
weight asymmetry, and non-linear distortion were highlighted
as potential sources of loss of inference accuracy. The issue is
of particular importance for edge implementations, where the
area savings of low-precision weights and off-chip learning are
essential for improved PPA. In order to combat the mismatch
problem between the models used for off-line training and
edge inference, a new Hardware-Aware training algorithm
has been proposed. The proposed algorithm is designed to
be general; it is useable with any model of the hardware,
including the aforementioned non-idealities such as weight
asymmetry, non-linear distortion, and quantization. The latter
is particularly challenging for training, since it results in
vanishing gradients due to the discrete levels available for
weights. The proposed algorithm handles discontinuities by
applying standard training techniques to a sequence of models
approximating discontinuous hardware. At each step in the ap-
proximation, the model is continuously differentiable, but in-
troduces increasingly steep transitions between discontinuous
levels. Weights near level-transition boundaries are pushed by

the optimizer to either side, in a manner which minimizes the
overall cost function. As a result, the non-linear amplification
of optimization error, which results from direct quantization
of SW-optimized weights, is eliminated. The algorithm has
several features which make it attractive for neural network
developers:

• It is an incremental algorithm that modifies existing, FP-
trained neural nets. There is no need to re-train a complex
network from scratch.

• It is general w.r.t. the description of the hardware. Any
HW model, be it continuous or not, can be used with
the algorithm. The only requirement is an analytical
description of weights, activations, and biases.

• It works with standard neural network training tools; there
is no need for a custom optimization scheme. As such, it
is easily used within existing software frameworks.

The HW-aware training algorithm was applied to several chal-
lenging problems for weight transfer, including pure Binary-
XNOR, asymmetric Ternary Crossbars, and non-linearly dis-
torted Quinary Crossbars. Each case was shown to produce
poor results using direct weight transfer, but was improved
dramatically using HW-aware training. Additional applications
of the algorithm were also explored, specifically pruning of
FP-based networks, with very good initial success. While
further exploration of the utility of the proposed algorithm
is required, the presented results suggest it is a promising
candidate for straightforward off-line training of edge neural
nets.

REFERENCES

[1] F.M. Bayat, X. Guo, M. Klachko, N. Do, K. Likharev, D. Strukov,
“Model-based high-precision tuning of NOR flash memory cells for
analog computing applications”, Proceedings of DRC16, Newark, DE,
June 2016.

[2] B. Obradovic, T. Rakshit, R. Hatcher, J.A. Kittl, M.S. Rodder, “Multi-Bit
Neuromorphic Weight Cell Using Ferroelectric FETs, suitable for SoC
Integration”, IEEE Journal of the Electron Devices Society 2018 vol. 6,
DOI: 10.1109/JEDS.2018.2817628

[3] P. Yao, H. Wu, B. Gao, N. Deng, S. Yu, H. Qian, “Online training on
RRAM based neuromorphic network: Experimental demonstration and
operation scheme optimization”, 2017 IEEE Electron Devices Technology
and Manufacturing Conference, EDTM 2017 - Proceedings. Institute of
Electrical and Electronics Engineers Inc., p. 182-183.

[4] S.B. Eryilmaz, D. Kuzum, S. Yu, H.S.P. Wong, “Device and system level
design considerations for analog-non-volatile-memory based neuromor-
phic architectures”, Feb 16 2016 Technical Digest - International Electron
Devices Meeting, IEDM. Institute of Electrical and Electronics Engineers
Inc., Vol. 2016-February, p. 4.1.1-4.1.4.

[5] S. Kim, M. Ishii, S. Lewis, T. Perri, M. BrightSky, W. Kim, R. Jordan,
G.W. Burr, N. Sosa, A. Ray, J-P Han, C. Miller, K. Hosokawa, C. Lam,
“NVM neuromorphic core with 64k-cell (256-by-256) phase change
memory synaptic array with on-chip neuron circuits for continuous in-situ
learning” IEEE International Electron Devices Meeting (IEDM) 2015.

[6] G.W. Burr, R.M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler,
K. Virwani, M. Ishii, P. Narayanan, A. Fumarola, L.L. Sanches, I. Boybat,
M.L. Gallo, K. Moon, J. Woo, H. Hwang, Y. Leblebici, “Neuromorphic
computing using non-volatile memory” Pages 89-124 — Received 31
Aug 2016, Accepted 01 Nov 2016, Published online: 04 Dec 2016.

[7] S. Ambrogio, P. Narayanan, H. Tsai, R.M. Shelby, I. Boybat, C. Nolfo,
S. Sidler, M. Giordano, M. Bodini, N.C.P. Farinha, B. Killeen, C. Cheng,
Y. Jaoudi, G.W. Burr, “Equivalent-accuracy accelerated neural-network
training using analogue memory”, Nature vol. 558, pages 6067 (2018).

[8] G. Cohen, S. Afshar, J. Tapson, and A. Schaik “EMNIST: an extension
of MNIST to handwritten letters” , arXiv:1702.05373.

[9] M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi “XNOR-Net: Im-
ageNet Classification Using Binary Convolutional Neural Networks” ,
arXiv:1603.05279.



12

[10] L. Deng, P. Jiao, J. Pei, Z. Wu, G. Li “GXNOR-Net: Training deep neural
networks with ternary weights and activations without full-precision
memory under a unified discretization framework”, arXiv:1705.09283.

[11] F. Li, B. Zhang “Ternary weight networks” , arXiv:1605.04711v2.
[12] S. Zhou,Y. Wu,Z. Ni,X. Zhou,H. Wen,Y. Zou “DoReFa-Net: Training

Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gra-
dients”, arXiv:1606.06160v3.

[13] H. Xiao, K. Rasul, R. Vollgraf, “Fashion-MNIST: a Novel Image Dataset
for Benchmarking Machine Learning Algorithms”, arXiv:1708.07747.


