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Abstract

Historically as well as mathematically, the octonions were derived from the quaternions, 
and the quaternions from the complex numbers.  A proper C++ implementation of these 
numerical types should reflect these relationships.  This brief note describes how the 
author's previously published C++ Quaternion class serves as the natural foundation for 
a C++ Octonion class.   
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A complex number is simply an ordered pair of ordinary numbers:

class complex
{
private:

double re, im;

A quaternion, in turn, is a pair of complex numbers:

class quatern
{
private:

            complex re, im;

Notice that re and im are just names for the members of the ordered pair.  The next step is the 
octonion, an ordered pair of quaternions:

class octon
{
private:

            quatern re, im;

One advantage of this way of proceeding is that each subsequent class can rely on the code of the prior 
ones, as for example, in “real” and “imaginary” parts:

inline double real( const complex& z)
{

return z.re;
}

inline double imag( const complex& z)
{

return z.im;
}

Even though for the quaternions, there are two additional “imaginary” flavors:

inline double real( const quatern& q)
{

return real( q.re );
}

inline double imag( const quatern& q)
{
    return imag( q.re );
}

inline double jmag( const quatern& q)



{
    return real( q.im );
}

inline double kmag( const quatern& q)
{

return imag( q.im );
}

You get the point.  For the octonions, there are 7 “imaginary” flavors, best illustrated by the format for 
printing out the contents of a given octonion:

ostream& operator<<(ostream& s, octon& o)
{

s <<   "["   << real(o.re) << "," << imag(o.re) << ","
 << jmag(o.re) << "," << kmag(o.re) << ","
 << real(o.im) << "," << imag(o.im) << ","
 << jmag(o.im) << "," << kmag(o.im) << "]\n";

return s;
}

This works because o.re and o.im are quaternions.

All three classes contain a conjugate function, which simply negates the “imaginary” parts.  The 
scheme is:

inline complex conj( const complex& z)
{

return complex( z.re, -z.im );
}

inline quatern conj( const quatern& q)
{

return quatern( real(q), -imag(q), -jmag(q), -kmag(q));
}

inline octon conj( const octon& o)
{

return octon( real(o.re), -imag(o.re), -jmag(o.re), -kmag(o.re),
 -real(o.im), -imag(o.im), -jmag(o.im), -kmag(o.im));

}

All three classes contain a norm function, which is the product of a number with its conjugate; but we 
implement it as a sum of squares:

inline double norm( const complex& z)
{

return z.re*z.re + z.im*z.im;
}

inline double norm( const quatern& q)
{

return norm( q.re ) + norm( q.im );
}



inline double norm( const octon& o)
{

return norm( o.re ) + norm( o.im );
}

Some authors define the norm as the square-root of the function shown here; but then they need to 
square it in order to use it.  Consider, for example, the inverse of a quaternion:

inline quatern inv( const quatern& q)
{

return (conj(q) /= norm(q));
}

and an octonion:

inline octon inv(const octon& o)
{
      return (conj(o) /= norm(o));
}

We stop at octonions because the higher-dimensioned sedonions (16) and  trigintaduonions (32) do not 
possess inverses.

The formula for multiplying two complex numbers is familiar:

inline complex operator*( const complex& z1, const complex& z2)
{

return complex( z1.re*z2.re - z1.im*z2.im,
z1.re*z2.im + z1.im*z2.re );

}

Quaternion multiplication is more complicated but exploits the fact that a quaternion is a pair of 
complex numbers:

inline quatern operator*( const quatern& q1, const quatern& q2)
{

return quatern( q1.re*q2.re - q1.im*conj(q2.im),
q1.re*q2.im + q1.im*conj(q2.re));

}

You will have guessed that octonion multiplication depends in turn upon quaternion multiplication:

inline octon operator*( const octon& o1, const octon& o2)
{

return octon( o1.re*o2.re - conj(o2.im)*o1.im,
  o2.im*o1.re + o1.im*conj(o2.re));

}

Multiplication of quaternions does not commute: in general, the product depends upon the order of the 
two factors.   Octonion multiplication likewise does not commute, and furthermore it is nonassociative:

a×(b×c)≠(a×b)×c .

A type of multiplication called a cross-product can be defined for octonions.  We denote this operation 



with a caret (^) symbol:

inline octon operator^(const octon& o1, const octon& o2)
{

return ( o1*o2 - o2*o1 ) *= 0.5;
}

This simple expression makes it obvious that reversing the order of the operands reverses the sign of 
the result.  

As a check on all this machinery, I computed the cross-product multiplication table shown below.  The 
nonzero entries are identical to the corresponding entries in the octonionic multiplication table shown 
in Ref. 1.  The table below is, of course, perfectly antisymmetrical.  

Cross-Product Multiplication Table

 T = L ^ R

↓L∖ R→ e0 e1 e2 e3 e4 e5 e6 e7

e0 0 0 0 0 0 0 0 0

e1 0 0 e3 −e2 e5 −e4 −e7 e6

e2 0 −e3 0 e1 e6 e7 −e4 −e5

e3 0 e2 −e1 0 e7 −e6 e5 −e4

e4 0 −e5 −e6 −e7 0 e1 e2 e3

e5 0 e4 −e7 e6 −e1 0 −e3 e2

e6 0 e7 e4 −e5 −e2 e3 0 −e1

e7 0 −e6 e5 e4 −e3 −e2 e1 0

An octonion with zero real part represents a vector in seven-dimensional space.  The cross-product of 
two such octonions represents a vector perpendicular to both of them and proportional to the sine of the 
angle between them.  So for example, this code:

     double ang = atan2(4.,3.);
   octon R(0.,0.,0.,0.,0.,sin(ang),cos(ang),0.);  cout << R;
   octon L(0.,0.,0.,0.,0.,cos(ang),-sin(ang),0.); cout << L;
   octon T = L^R;                                 cout << T;

yields:

   [0,0,0,0,0,0.8,0.6,0]
   [0,0,0,0,0,0.6,-0.8,0]
   [0,0,0,-1,0,0,0,0]

R and L represent vectors of length 1 perpendicular to each other in the (e5 , e6) plane.  The result T is 
a vector of length 1 in the −e3 direction.  The reader can verify this result algebraically, referring to 
the above Table.
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