A PROOF FOR BEAL’S CONJECTURE

ABSTRACT. In the first part of this paper, we show how a” — b¥Y can be ex-
pressed as a binomial expansion (to an indeterminate power, z). In the second
part we will show how this leads to a proof for the Beal Conjecture.

Introduction In 1993, a Texan number theory enthusiast named Andrew Beal

conjectured that co-prime bases for the equation A* = BY 4+ C* might be impossi-
ble for values of z,y, z greater than 2, where A, B, C' are co-prime integers. This is
commonly known as Beal’s Conjecture (BC)! or sometimes the Mauldin Conjecture
or the Tijdeman-Zagier Conjecture. It states that if A* = BY 4+ C?, where A, B, C,
are positive co-prime integers and x,y, z are all positive co-prime integers greater
than 2, then A, B, C', must have a common prime factor.
Here, we rearrange the equation as a” — bY = ¢* without loss of integrity to demon-
strate how a® — bY can be reconfigured and expressed as a binomial expansion,
containing not only the standard factors for a single power but also an additional
non-standard factor. We then give a simple proof for Beal’s Conjecture.

Definition 0.1. For the equation a® — bY = ¢*, we define a,b, ¢, as square-free
positive integers (of which one at most must be even); and x,y,z are positive
integers (of which one at most may be even), and ged(z,y, z) = 1,

Lemma 0.2. To demonstrate that a® —bY can be expressed as a binomial formula.

We first observe that by adding [ab(z®~2 — b¥~2) — bY] to a® and bY respectively,
and then rearranging, it is possible to reconfigure the expression such that:

(0.1) a® —b¥ = (a+b)(a® =) —ab(a® % —bY2).

Now, since a* —b? = (a+b)(a® 1 —b¥~1)—ab(a®2—b¥~2), we can repeat the process
in the same way by reconfiguring the components (a*~! —b¥~1) and (a*~2 — b¥=2)
respectively, and expanding it as follows:

(0.2)

(a+b)[(a+b) (a® 2 =bY~2)—ab(a® > —b¥ =) —ab[(a+b) (a® > —b¥ =) —ab(a® 1 =bv~Y)]

(0.3) =(a+ b)Q(al_2 — by_z) — 2ab(a + b)(aw_?’ — by_?’) + (ab)Q(a””_4 — by_4).

Repeating the process for (a*=2 — bW =2), (a3 — b¥=3) and (a®~* — b¥~%), we get:
(0.4)
(a+b)3(a” 2 —b¥=3)—3ab(a+b)?(a”*—bY~*)+3(ab)?(a+b)(a® =¥ ~")—(ab)3(a” 0 —bv75).

We can continue to expand (a® —b¥) ad infinitum, and using the binomial formula
we can generalise it, for all z € Z, in a non-standard binomial formula:
(0.5) a® —b = Z (Z) (a+b)*F(—ab)F(a® =7k —pv=27F).

k=0
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For comparison, the standard form of the binomial theorem (also in z) is:

z
(p—a)° =) (Z)pz"“(—q)’“~
k=0
Remark 0.3. This new non-standard binomial formula in (0.5) is strange in two
respects. First, the z-power is indeterminate. That is to say, is value is not deter-
mined by a® —bY, so that regardless of the value we give to z, the value of (a®* — bY)
never changes. It is this property that allows us to compare the two sides of the
Beal equation more easily.
Secondly, the first three factors of the sum in (0.5), i.e. (), (a+b)*~", and (—ab)*
all obviously conform to the conventional forms of a standard binomial formula.
But the last factor, (a®~*~% — b¥=*7%), does not, obviously conform, but may do.
Let us now turn to the main theorem and proof by contradiction.

Theorem 0.4. To prove that, for the equation a® — bY = ¢, integer solutions only
exist for the values of x ory or z = 1,2, but not for values of x,y,z > 2.

Proof. We first assume that there exists a solution for the equation a® — bY = ¢*
for values of z,y,z > 2. So if ¢* = a® — bY then it follows, from (0.5), that:

(0.6) =2 <k> (a4 )" F(=ab)(a" =k —pv ==k,
k=0

Now let |s| = <He and let [¢| = <=0l for all s,¢ € Q, such that, for all

(a+b) (—ab)
possible values of c:
(0.7) [(a+Db)|s| —ablt]] = ¢,
(0.8) = [(a +b)|s| — ab|t]]* = .

Remark 0.5. Note that a) we are using absolute values of s and ¢ in order to preserve
the minus sign in (0.8), which is necessary if we are to have comparable forms in
(0.10), and b) although |s| and |¢| could, in theory, introduce unwelcome fractions,
they will soon drop from the proof.

For now, using the standard binomial theorem, it follows from (0.8) that;
“ [z
0.9 ¢ = a+ b)s]*F[(—ab)t]".
(09) > (sl ey
Rearranging this slightly we can say, from (0.6) and (0.9), that:

(0.10)
Z (Z) (a4 b7 F(—ab)*(a®**7F —pv=27F) = Z (Z) (a4 b)*=*(—ab)¥|s|**|t|*.

k=0 k=0

Remark 0.6. According to the normal rules of binomial expansion, the common
factors on both sides of the equation (i.e. (), (a + b)*~* and (—ab)*) will exactly
correspond in each and every k" term. So for this equation to have solutions it
is also necessary that the remaining factors on both sides, (a®~*=% — p¥=*%) and
(]s|>=*|¢*¥), must also correspond exactly in each counterpart (k') term, for any
given value of z. If it does, then the whole of the left hand side will be a power to
z (as we know the right hand side is), and the Beal equation will have solutions.
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But if just one term of the corresponding binomials exists where (a®~*—F — py=2=F)
does not equal (|s|*7%|t|*), then not only will the integrity of that particular k"
term be compromised as a valid binomial term, but also the whole expression as an
expansion of a power to z. In the latter scenario, no solutions will exist.

What we will now proceed to show is that when z > 2 an inequality arises in at
least one of the corresponding k*" terms (for all k terms of the sum simultaneously
from k = 0 to k = 2), but that when z = 1,2 every corresponding k*" term will be
equal. Without testing for every value of z one by one ad infinitum we will test for
all values of z > 2 in one go by using the generalised equation:

z z
(0.11) S Il = D@ e
k=0

k=0

Lemma 0.7. To prove that when z > 2 an inequality arises in at least one of the
corresponding k" terms, but that when z = 1,2 every corresponding k" term will
be equal.

Continuing our initial assumption that ¢* = a® — bY we can now say that:
z z
(0.12) D IsPEEER = (et R — bR,
k=0 k=0
But how can we do this for all values of z and k (ad infinitum)? In three steps. First,
from the first and last terms (where s and ¢ occur on their own) we will establish the
respective values of |s|, |s|?, |s|*~1, |¢], [t|?, and |t|*~! (in terms of a and b). Secondly
we will use these results to evaluate what the second and penultimate terms are,
and compare them with the second and penultimate terms directly derived from
(a®=*~F—pv=2=F). Thirdly, we will substitute like-terms to reveal the contradictions
when they occur. [We will not need to look beyond the second and penultimate
terms (even if z is very large) since this is where we find the contradiction in all
cases of z > 2.]
STEP 1
Using the equation in (0.12), we can establish the respective values of |s|, |s|?,
|s|*=1, |t|, |t|*, and [t|*~!, using first and last terms (i.e. k = 0 and k = z). So
when k = 0, the first term in the binomial series is |s|?, such that:

(0.13) |s|” = £(a®% = b¥77),

from which it follows that:

(0.14) |s| = £(a® % — b¥—)V/=,

and

(0.15) |77 = +(a®F — pv—F)ED/2,

Likewise, when k = z, the last term in the binomial series is |t|*, such that:
(0.16) [t = +(a®"% — bv—2%),

from which it follows that:

(0.17) t] = £(a® 2% — pv=2)V/2,

and

(018) |t|z71 _ i(aw72z 7 by72z)(z71)/z.
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STEP 2

Using these different values of |s| and [¢|, we are now in a position to work out what
the second and penultimate terms (in terms of a and b). Thus, from (0.15) and
(0.17), it follows that the second term, |s|*~1|t], is:

(0.19) +(a® % — bny)(zfl)/z(azfzz _ by72z)1/z'

And since we know, from the right hand side of the equation in (0.12), that the
second term in the binomial expansion is +(a®*~! — p¥=*71) ie. when k =1, it
follows that:

(020) :I:(amfz o byfz)(zfl)/z(arf2z . by72z)1/z _ i(azfzfl . byfzfl).
Dividing both sides by #+(a® % — b¥=%)*=2)/* we get:
i(ax—z—l _ by—z—l)
:l:(awfz _ byfz)(272)/z :
t follows from (0. an . that the penultimate term, |s||t|*™ ", is:
It foll f 0.14) and (0.18) that th l ==L
(0.22) i(aac—z _ by—z)l/z(am—Zz _ by_QZ)(Z_l)/z.

And since we know, from the right hand side of the equation in (0.12), that the
penultimate term in the binomial expansion is +(a®~2*+1 — p¥=22+1) je. when
k =z —1, it follows that:

(023) i(amfz _ byfz)l/z(aa:72z o by72z)(z71)/z _ :l:(aa:72z+1 o by72z+1).
Dividing both sides by (a®=2* — b¥=2%)(*=2)/% we get:

i(am—22+1 _ by—22+1)
i(aw—2z _ by—2z)(z—2)/z ’

(0.21) (a7 — BYF) /2 (g7 _ 22y o

(024) i(ar—z _ by—z)l/z(al'—QZ _ by—QZ)l/z _

STEP 3
Thirdly, we are in a position to substitute like-terms. For the left hand sides of
the equations in (0.21) and (0.24) are exactly the same. Therefore by substituting
like-terms we get:

:l:<ax7z71 _ byfzfl) i(az72z+1 _ by72z+1)

(025) i(az—z _ by—z)(z—Q)/z = :l:(az—Qz _ by—2z)(z—2)/z

We raise both sides by the power of z and rearrange to get:

CLr—z—l _ by—z—l z atF — py—*= (2—2)
(0.26) i( ) = i()

amf2z+1 _ by72z+1 a172z _ by72z

We will return shortly to the case of z = 1,2, but for now (still assuming that

x,y,z > 2) we can say that solutions will exist either a) if the large bracketed factors
on each side of the equation in (0.26) have a value of 1 (since the main outer expo-
nents are not equal), or b) if the numerators in (0.26) are equal and simultaneously

if the denominators are equal, and in both cases, of course, if the polarity of signs
in front of the brackets are the same on both sides. Taking these two options in turn:

a) since (a71 — WoE1) £ (qF-2HL _ o2 and (a2 _ %) 4
(a®~% — b¥~#), neither side in (0.26) has a value of 1, eliminating this option;

b) even without exponents (a®~2*+1 — p¥=22+1) is greater than (a®=2% — p¥=2%);
but with a higher exponent, z (i.e. which is greater than z — 2), the inequality is
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even greater. So it follows that (a®=2*F1 — py=2241)z £ (q2=22 _ py=22)(3-2),
Having now eliminated the options it follows that, for all values of z,y, z > 2:

(0.27) SoIsFEE £ D (0 e,
k=0 k=0

But this contradicts our second equation in (0.12), thus proving Lemma 0.7. And
so our assumption that for any value of x,y, z > 2 solutions exist for the equation
c® = a” — bY is also false. Thus, Beal’s Conjecture is true. (]

Remark 0.8. We have now proved BC, but the question remains about the cases
of z = 1,2. Well, these cases resolve neatly, if unpredictably. From (0.26), when
z =1 (and again when there is equal polarity of pre-bracket signs) it follows that:

ax—2 _ by—2 1 aa:—l _ by—l -1
(028) (aml _ byl) = (am2 _ by2)
(0.29) =1=1.

Thus, when the signs are equal on both sides, there is no contradiction. And again
from (0.26), when z = 2 (and there is equal polarity of pre-bracket signs), it follows
that:

aaz—3 _ by—S 2 am—2 _ by—2 0
(030) <aw3 _ by3> = (aa:4 _ by4)
(0.31) =1=1.

Again, no contradiction. So in both cases, when z = 1 and when z = 2, the
standard rules of binomial expansion can be applied to our non-standard binomial
expression without contradiction such that (a®~*~% —bp¥=2=*%) is equal to |s|*~*|t|¥,
and therefore that in these cases solutions to the original equation exist.

Finally, it is worth mentioning the obvious point that we can apply the same
method to Fermat’s Last Theorem with the same result.
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