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ABSTRACT 

A well-designed battery management system 

along with a set of voltage and current sensors is 

required to properly measure and control the battery 

cell operational variables for Hybrid Electric 

Aircrafts (HEAs). Some critical functions of the 

battery including State-Of-Charge (SOC) and State-

Of-Health (SOH) estimations, over-current, and 

over-/under-voltage protections are mainly related to 

current and voltage sensor measurements. Therefore, 

in case of battery faults occur in HEA, designing a 

reliable and robust diagnostic procedure is essential. 

In this study, for Li-ion batteries, a new and fast fault 

diagnosis technique via collecting data is proposed. 

Finally, the effectiveness of the proposed diagnostic 

method is validated, and the results show how over-

charge, over-discharge and sensor faults can be 

accurately detected. 

 
INTRODUCTION 

 At present, Lithium-Ion Batteries (LIBs) 

gained wide application in electronic devices; due to 

having high energy density, high power density and 

long life compared with other commonly used 

batteries [1-7]. However, there may be limitations on 

the wide application of lithium-ion battery in Electric 

Vehicles (EVs), because of some issues like safety, 

durability and cost in large capacity of batteries [8-

12]. Many countries increased investments on 

investigating and utilizing lithium batteries in the 

EVs and Hybrid Electric Vehicles (HEVs), although 

some battery faults resulted in some EV accidents in 

latest years [13, 14]. Lithium-ion batteries  must  

operate  within a defined  temperature  and  voltage 

range which is  the  safe  and  reliable  operating 

area; rising above the  restrictions  of  these  ranges  

will  result in safety issue or  improper  performance 

of batteries [15-18] which need to be addressed using 

new cooling approaches [19]. 

In order to guarantee the performance and 

safety of batteries, the battery management system 

(BMS) is needed to monitor the battery properties by 

measuring the voltage, current and temperature 

values of battery cells [20, 21]. Main functions of 

BMS include: estimation of parameters and state-of-

charge (SOC), fault diagnosis and prognosis; safety 

control in improper conditions by disconnecting the 
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battery pack electrically; cell-balancing by 

decreasing the cell-to-cell imbalance in voltage and 

SOC; over-charge or over-discharge prevention by 

battery protection from over-current, and under-

/over-voltage.  

Researches have shown the voltage and 

current measurement are the most essential elements 

for battery safety due to the quick response and high 

sensitivity to some main electric faults such as 

external short circuit, internal short circuit, over 

charge and over discharge. Since some faults 

occurring in the battery can result in irreversible and 

catastrophic damages, it is essential to detect and 

diagnose any fault occurring in the battery quickly to 

avoid such conditions [22]. Regarding the fault 

characteristics, faults can be usually divided into two 

groups: 1- the serious sudden fault; 2- the gradually 

increasing fault. Health monitoring and prognosis are 

the general methods used for the gradually increasing 

fault [23]. 

Fault diagnosis methods have been used in 

the industry in the past, can be categorized in two 

groups: data-driven and model-based fault diagnosis 

methods [24-26]. Data-driven method is based on the 

extensive measurements and the most common 

drawback of this method is the uncertainty inherent 

in the system [27]. If uncertainties are not carefully 

managed during the various steps of the algorithm, 

they get compounded at each processing step and can 

raise beyond control in predictions. On the other 

hand, the  application  of  model  based  fault  

diagnosis  techniques  have  been  widely utilized  

for  accurate  fault  diagnosis  in  LIBs  because of  

their  inherent  advantages  of  lower  cost  and  high 

flexibility [28]. 

Among many battery modeling techniques 

published so far, Equivalent Circuit Model (ECM) is 

popularly applied by circuit designers since  it  can  

be  easily  utilized  in  circuit  simulator  [29-31]. An 

accurate and intuitive equivalent circuit model for 

lithium-ion battery with two resistor-capacitor (RC) 

parallel networks has been proposed by [30], as 

shown in Fig. 1. This ECM model is proven to be 

accurate and able for predicting current-voltage 

performance of lithium-ion battery [30]. 

A multiple-model based fault diagnosis 

approach was implemented for the lithium-ion  

battery  to  diagnose the  over-charge  and  over-

discharge  with  the  application  of  a  bank  of  

extended Kalman filters (EKFs) in [32]. The 

identification of a healthy model, over-charge model 

and over-discharge model is necessary for this 

approach, and in each model an EKF is used for state 

variable estimation. In this method, the major 

drawback is the large computational demands 

required for required for running a bank of EKFs. 

In this study, a new and fast model-based 

(FMB) fault diagnosis scheme is proposed for a 

lithium-ion battery cell to detect over-charge, over-

discharge and sensors faults in HEA. Moreover, 

Impedance Spectroscopy (IS) is used to estimate 

state and parameters of a Li-ion battery in healthy, 

Over-Discharged (OD) and Over-Charged (OC) 

conditions, and then verify the cell model with 

experiment. In contrast to the scheme proposed in 

[24], the scheme proposed in this paper needs less 

computational time and is less complicated. 

Moreover, a generated signal named FMB factor (K) 

is generated and evaluated by the new method to 

determines the fault presence.  Finally, results show 

the proposed diagnostic method is effective to detect 

OC, OD and sensors faults accurately. 

 

BATTERY MODEL 

Variant techniques for modeling a lithium-ion 

battery have been proposed such as electrochemical, 

experimental, neutral networks, and equivalent 

circuit modeling [33]. Among these techniques, the 

ECMs are used mostly because of properly 

representing the battery dynamics and less 

computational demands. The third order ECM is 

applied for this study to balance the model accuracy 

and computational demands. As shown in Fig. 1, this 

model contains a battery cell Open Circuit Voltage 

(OCV), a resistance R, and two parallel Resistance-

Capacitor (RC) networks.  
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Figure 1. Battery cell electrical model 

 

The interfacial impedance of the battery and 

the local properties of the electrode are represented 

by the R1-C1 and R2-C2 network, respectively. In this 

paper, the assumptions include: the temperature is 

constant; the system ageing is not considered in the 

battery model; and only the voltage source is a 

function of SOC. The equations applied to illustrate 

the voltage across the RC networks, and to estimate 

the SOC and terminal voltage are as following, 
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Where, I is the battery cell current in Ampere, 

V is the cell terminal voltage, R represents the ohmic 

resistance, V1 and V2 are the voltage across the two 

RC parallel network. In eq. (5), SOC(0) is the initial 

SOC, η representing the coulomb efficiency is 

assumed to be 1 at charging and 0.98 at discharging,  

and  Cn  is  the battery  cell  capacity  in  Ampere  

hour.  

Therefore, the discrete time form of battery 

equations using the zero-order hold discretization 

method will be [34]: 
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where, k represents the time index; and Δt is the time 

interval. And the cell dynamics in discrete time as a 

nonlinear time invariant system are as following: 
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here, h(xk, I) and g(xk, I) are nonlinear discrete-time 

state-space model; wk and vk are an independent, zero 

mean, Gaussian process and measurement noise of 

covariance Qk and Vk, respectively. The state 

variables of one battery cell is xk = [V1(k) V2(k) 

SOC(k)]. 

Impedance Spectroscopy (IS) results for the 

selected electrical circuit parameters fitted to the 

impedance curve for the battery cell in healthy and 

also under OC and OD condition is shown in Table. 

1.  

 
Table 1. DATA of IS 

 R  R1 C1 R2 C2 

Healthy 0.127 0.014 0.018 0.008 0.575 

OC 0.215 0.530 0.001 0.247 0.009 

OD 0.081 0.011 0.191 0.006 3.211 

 

FAST MODEL BASED DIAGNOSIS SCHEME 
The block diagram of the proposed diagnostic 

scheme for the battery is shown in Fig. 2. The basic 

idea of FMB is that the residuals can be generated 
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through comparing the estimated FMB factor (KE) of 

the battery cell in healthy, OC and OD condition with 

the corresponding measured FMB factor (KM). To 

evaluate and extract the fault information from the 

residual signals, an evaluation algorithm should 

continuously monitor the residual signal variations. 

If the output of any KE matches the output of KM and 

makes the mean value of the residual signal zero, 

then the covariance of that signal evaluated at each 

sample can be given by [24, 34]. 

 

 
Figure 2. Proposed fault diagnosis method 

 

As shown in Fig. 2, the inputs of the residual 

generators include KM calculated by the measured 

signals (Voltage-Current) and KE defined by battery 

model outputs. To detect the fault, the generated 

residuals will be sent to the diagnosis decision block. 

In this block, if the corresponding residual cross the 

predefined threshold, the fault can be isolated based 

on the detection signals. As depicted in Fig. 3, in this 

study, there are three residuals for three different 

conditions considered for the cell (healthy, OC and 

OD). In order to validate the effectiveness of the 

proposed fault diagnosis method under different fault 

scenarios, its simulation is implemented in the 

Matlab/Simulink.  

 

RESULTS AND DISCUSSION 
This paper mainly concentrates on OC, OD 

and sensors faults in a battery cell through a new 

method. These faults in a battery cell can be 

diagnosed by a considerable variation in some 

parameters that cause sensible changes   in   the 

performance of the battery cell.  Each of the cell 

parameters shown in Fig. 1 will illustrate a 

particular variation when OC and OD fault happens 

as illustrated in the Table. 1.  

A lithium-ion battery cell with the rated 

capacity of 20 Ah and nominal voltage of 4.2 V has 

been selected for this study. Using Hardware in the 

Loop (HIL) simulation test the data analysis of the 

battery can be done in almost real conditions [35-38]. 

The battery test setup contains a data acquisition 

system (NI USB-6343), a computer with Labview 

software for controlling and monitoring, and battery 

cycler (BioLogic) as shown in Fig. 4. The OCV-SOC 

of the cell captured from experiment is depicted in 

Fig. 5. 

 

 

 
Figure. 3. Simulink Model of FBM Method in 

MATLAB/Simulink 
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Figure 4. The battery test set up. 

 

In order to simulate the actual driving cycles 

of electric vehicles, a scaled typical driving cycle, 

Fig. 6, is applied for the battery as the input current 

profile. Fig. 7 shows the model validation results 

under the selected driving cycle; and the battery cell 

model results in different conditions are depicted in 

Fig. 8. 

 
 

Figure 5. OCV-SOC. 

 
 

Figure 6. Current profile as input. 

 

The FMB factor KE results obtained from all 

models of the battery cell run in healthy and also 

under OC and OD condition has the value of 0.2609, 

0.17, and 0.3131, respectively. In this case study, the 

impacts of temperature and ageing on spectroscopy 

results are neglected.   

 The residuals r(k) can be generated through 

comparing the estimated KE factors with the 

corresponding measured KE factor.  According to the 

generated residuals, the batteries mode under 

different condition is determined in Table 2.  

 
 

EM KkKkr  )()(  (14) 

here r represents the  generated  residual. If there is 

no noise in the measuring system, from the three 

generated residuals (r-healthy, r-OD and r-OC) can 

be determined in the fault decision section. 
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Figure 7. Simulated battery cell terminal voltage 

 
Table 2. Fault index 

 Current 

sensor 

Fault 

Voltage 

sensor 

Fault 

Over-

charge 

fault 

Over-

discharge 

fault 

Healthy 

RH 1 1 0 0 1 

ROC 1 1 1 0 0 

ROD 1 1 0 1 0 

 

 
 

Figure 8. The battery cell model results in different conditions 

 

The residual generator outputs are depicted in 

Fig. 9-11. As shown in these figures, from 90 (s) to 

100 (s),  a OC  fault  happened; between  290 (s) to  

310 (s),  the  OD fault is  detected;  from  490 (s) to 

510 (s), the current sensor fault occurred and 

between 690 (s) to 710 (s), voltage sensor fault 

happened. It is clear that using the generated 

residuals, in the fault decision section, these faults 

can be detected and isolated. The validation results 

present the effectiveness of the FMB fault diagnosis 

method.  

 

 
Figure 9. Residual r-OC 

 

 

CONCLUSIONS AND FUTURE WORK  
In this study, a new and fast method is 

proposed to detect and isolate the OC and OD faults 

and sensors faults occur in LIBs pack based on some 

predefined factors which gained from the battery 

models in healthy, over-charged and over-discharged 

conditions.  

The effectiveness of the proposed method is 

confirmed by validation results. In contrast to the 

method proposed in [24], this scheme needs less 

computational time and is less complicated.  

In HEAs application in which more than 

10000 battery cells may be used, the processing time 

allocated to fault diagnosis of each battery cell is 

important. Therefore, FBM is effective method in 

order to reduce the processing time.  

 

 
Figure 10. Residual r-OD 
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Figure 11. Residual r-Healthy 
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