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Abstract: Data clustering is an important field in pattern recognition and machine learning. Fuzzy1

c-means is considered as a useful tool in data clustering. Neutrosophic set, which is extension of fuzzy2

set, has received extensive attention in solving many real life problems of uncertainty, inaccuracy,3

incompleteness, inconsistency and uncertainty. In this paper, we propose a new clustering algorithm,4

single valued neutrosophic clustering algorithm, which is inspired from fuzzy c-means, picture fuzzy5

clustering and the single valued neutrosophic set. A novel suitable objective function, which is6

depicted as a constrained minimization problem based on single valued neutrosophic set, is built and7

the Lagrange multiplier method is used to solve the objective function. We do several experiments8

with some benchmark data sets, and we also apply the method to image segmentation by Lena image.9

The experimental results show that the given algorithm can be considered as a promising tool for10

data clustering and image processing.11

Keywords: single valued neutrosophic set; fuzzy c-means; picture fuzzy clustering; Tsallis entropy12

1. Introduction13

Data clustering is one of the most important topics in pattern recognition, machine learning and14

data mining. Generally, data clustering is the task of grouping a set of objects in such a way that objects15

in the same group ( cluster) are more similar to each other than to those in other groups (clusters).16

In the past decades, lots of clustering algorithms have been proposed, such as k-means clustering[1],17

hierarchical clustering[2], spectral clustering[3], etc. The clustering technique has been used in many18

fields, including image analysis, bioinformatics, data compression, computer graphics, and so on[4–6].19

The k-means algorithm is one of the typical hard clustering algorithms that widely used in real20

applications due to its simplicity and efficiency. Unlike the hard clustering, the fuzzy c-means (FCM)21

algorithm[7] is one of the most popular soft clustering algorithms, that is each data point belongs22

to a cluster to some degree that is specified by a membership degrees in [0, 1], and the sum of over23

the clusters for each data be equal to 1. In recent years, many improved algorithms for FCM are24

proposed. There are three main ways to build the clustering algorithm. First, extensions of the25

traditional fuzzy sets. In this way, numerous fuzzy clustering algorithms based on the extension fuzzy26

sets, such as intuitionistic fuzzy set, type-2 fuzzy set, etc., are built. By replacing traditional fuzzy27

sets to intuitionistic fuzzy set, Chaira introduced the intuitionistic fuzzy c-means clustering method28

(IFCM) in [8], which integrated the intuitionistic fuzzy entropy with the objective function. Hwang29

and Rhee proposed Type-2 fuzzy sets (T2FS) in [9], which aim to design and manage uncertainty for30

fuzzifier m. Thong and Son proposed picture fuzzy clustering based on picture fuzzy set (PFS) in [10].31

Second, Kernel-based method is applied to improve the fuzzy clustering quality. For example, Graves32

and Pedrycz present a kernel version of the FCM algorithm namely KFCM in[11]. Ramathilagam etl.33
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analysis the Lung Cancer database by incorporating hyper tangent kernel function[12]. Third, Adding34

regularization terms to the objective function is used to improve the clustering quality. For example,35

Yasuda proposed an approach to FCM based on entropy maximization in [13]. Of course, we can use36

them together to obtain more clustering quality.37

Neutrosophic set is proposed by Smarandache [14] in order to deal with real-world problems.38

Now, neutrosophic set is gaining significant attention in solving many real life problems that involve39

uncertainty, impreciseness, incompleteness, inconsistent, and indeterminacy. A neutrosophic set has40

three membership functions and each membership degree is a real standard or non-standard subset of41

the nonstandard unit interval ]0−, 1+[ . Wang et al. [15] introduced single valued neutrosophic sets42

(SVNSs) which is a extension of intuitionistic fuzzy sets. Moreover, the three membership functions are43

independent and their values belong to the unit interval [0, 1]. In recent years, the studies of the SVNSs44

have been developed rapidly. Such as, Majumdar and Samanta [16] studied similarity and entropy of45

SVNSs. Ye [17]proposed correlation coefficients of SVNSs, and applied it to single valued neutrosophic46

decision-making problems, etc. Zhang etl. in [18] propose a new definition of inclusion relation of47

neutrosophic sets (call it type-3 inclusion relation), and a new method of ranking of neutrosophic sets48

is given. Zhang etl. in [19] study neutrosophic duplet sets, neutrosophic duplet semi-groups, and49

cancellable neutrosophic triplet groups.50

The clustering methods by neutrosophic set have some studies. In paper [20], Ye propose a51

single-valued neutrosophic minimum spanning tree (SVNMST) clustering algorithm, and he also52

introduce single-valued neutrosophic clustering methods based on similarity measures between SVNSs53

[21]. Guo and Sengur give neutrosophic c-means clustering algorithm[22], which is inspired from FCM54

and the neutrosophic set framework. Thong and Son did significant work for the clustering based on55

PFS. In [10], a picture fuzzy clustering algorithm, called FC-PFS is proposed. In order to determine56

the number of clusters, they built an automatically determined the most suitable number of clusters57

based on particle swarm optimization and picture composite cardinality for a dataset[23]. They also58

extend the picture fuzzy clustering algorithm for complex data[24]. Unlike the method in[10], Son59

present a novel distributed picture fuzzy clustering method on picture fuzzy set [25]. We can note that60

the basic ideas of the fuzzy set, the intuitionistic fuzzy set and the SVNS are consistent in the data61

clustering, but there are differences in the representation of the objects, so that the clustering objective62

functions are different. Thus, the more adequate description can be better used for clustering. Inspired63

from FCM, FC-PFS, SVNS and maximization entropy method, we propose a new clustering algorithm,64

single valued neutrosophic clustering algorithm based on Tsallis entropy maximization(SVNCA-TEM)65

in this paper, and the experimental results show that the proposed algorithm can be considered as a66

promising tool for data clustering and image processing.67

The rest of paper is organized as follows. Section 2 shows the related work on FCM, IFC and68

FC-PFS. Section 3 introduces the proposed method and using the Lagrange multiplier method to solve69

the objective function. The experiments on some benchmark UCI data set indicate that the proposed70

algorithm can be considered as a useful tool for data clustering and image processing in Section 4. The71

last section draws the conclusions .72

2. Related works73

In general, suppose data set D = {X1, X2, · · · , Xn} include n data points, each data Xi =74

{xi1; xi2; · · · ; xid} ∈ Rd is a d-dim feature vector. The aim of clustering is get k disjoint clusters75

{Cj|, j = 1, 2, · · · , k}, and satisfies Cj′ ∩j′ 6=j Cj = ∅ and D = ∪k
j=1Cj. In the following, we will briefly76

introduce three fuzzy clustering methods, which are FCM, IFC and FC-PFS.77

2.1. Fuzzy c-means78

The FCM was proposed in 1984 [7] . FCM is a data clustering technique wherein each data point79

belongs to a cluster to some degree that is specified by a membership grade. A data point Xi to cluster80

Cj denoted by the term µij, which shows the fuzzy membership degree of the i-th data point in the j-th81
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cluster. We use V = {V1, V2, · · · , Vk} to describe the cluster centroids of the clusters and Vj ∈ Rd is the82

cluster centroid of Cj. The FCM is based on minimization of the following objective function83

J =
n

∑
i=1

k

∑
j=1

um
ij ‖xi −Vj‖2 (1)

where m represents the fuzzy parameter and m ≥ 1. The constraints for (1) are,84

k

∑
l=1

µil = 1, µij ∈ [0, 1], i = 1, 2, · · · , n, j = 1, 2, · · · , k. (2)

Using the Lagrangian method, the iteration scheme to calculate cluster centroids Vj and the fuzzy85

membership degrees µij of the objective function (1) as follows.86

Vj =
∑n

i=1 µm
ij Xi

∑n
i=1 µm

ij
, j = 1, 2, · · · , k. (3)

µij = (
k

∑
l=1

(
‖Xi −Vj‖
‖Xi −Vl‖

)
2

m−1 )−1. i = 1, 2, · · · , n. j = 1, 2, · · · , k. (4)

The iteration will not stop until reach the maximum iterations or |J(t) − J(t−1)| < ε, where J(t)87

and J(t−1) are the objection function value at (t)-th and (t− 1)-th iterations, and ε is a termination88

criterion between 0 and 0.1. This procedure converges to a local minimum or a saddle point of J.89

Finally, each data point is assigned into different cluster according to the fuzzy membership value,90

that is Xi belongs to Cl if µil = max(µi1, µi2, · · · , µik).91

2.2. Intuitionistic fuzzy clustering92

The intuitionistic fuzzy set is an extension of fuzzy sets. Chaira proposed intuitionistic fuzzy93

clustering (IFC)[8], which is integrated the intuitionistic fuzzy entropy with the objective function of94

FCM. The objective function of IFS is:95

J =
n

∑
i=1

k

∑
j=1

µm
ij ‖Xi −Vj‖2 +

k

∑
j=1

π∗j e1−π∗j . (5)

where π∗j = 1
n ∑n

i=1 πij, and πij is hesitation degree of Xi for Cj. The constraints of IFC are similar to96

(2). Hesitation degree πik is initially calculated using the following form:97

πij = 1− µij − (1− uα
ij)

1/α, where α ∈ [0, 1], (6)

and the intuitionistic fuzzy membership values are obtained as follows98

µ∗ij = µij + πij, (7)

where µ∗ij(µij) denotes the intuitionistic (conventional) fuzzy membership of the i-th data in j-th class.99

The modified cluster centroid is:100

Vj =
∑n

i=1 µ∗mij Xi

∑n
i=1 µ∗mij

, j = 1, 2, · · · , k. (8)

The iteration will not stop until reach the maximum iterations or the difference between µ
∗(t)
ij and101

µ
∗(t−1)
ij is not larger than a pre-defined threshold ε, that is maxi,j |µ

∗(t)
ij − µ

∗(t−1)
ij | < ε.102



Version July 10, 2018 submitted to Journal Not Specified 4 of 12

2.3. Picture fuzzy clustering103

In [26] Cuong introduced the picture fuzzy set (is also called standard neutrosophic set [27] ),104

which is defined on a non-empty set S, Ȧ = {〈x, µȦ(x), ηȦ(x), γȦ(x)〉|x ∈ S}, where µȦ(x) is the105

positive degree of each element x ∈ X, ηȦ(x) is the neutral degree and γȦ(x) is the negative degree106

satisfying the constraints,107 {
µȦ(x), ηȦ(x), γȦ(x) ∈ [0, 1], ∀x ∈ S
µȦ(x) + ηȦ(x) + γȦ(x) ≤ 1, ∀x ∈ S

(9)

The refusal degree of an element is calculated as108

ξ Ȧ(x) = 1− (µȦ(x) + ηȦ(x) + γȦ(x)), ∀x ∈ S. (10)

In paper [10] Thong and Son propose picture fuzzy clustering(FC-PFS), which is related to109

neutrosophic clustering. The objective function is:110

J =
n

∑
i=1

k

∑
j=1

(µij(2− ξij))
m‖Xi −Vj‖2 +

n

∑
i=1

k

∑
j=1

ηij(log ηij + ξij). (11)

where i = 1, · · · , n, j = 1, · · · , k. µij, ηij and ξij are the positive, neutral and refusal degrees respectively111

that each data point Xi belongs to cluster Cj. Denote µ, η and ξ being the matrices whose elements are112

µij, ηij and ξij respectively. The constraints for FC-PFS are defined as follows:113 
uij, ηij, ξij ∈ [0, 1],
uij + ηij + ξij ≤ 1,
∑k

l=1(uil(2− ξil)) = 1,
∑k

l=1(ηil + ξil/k) = 1.

(12)

Using the Lagranian multiplier method, the iteration scheme to calculate µij, ηij, ξij and Vj for the114

model (11,12) as the following equations:115

ξij = 1− (µij + ηij)− (1− (µij + ηij)
α)1/α, where α ∈ [0, 1], (i = 1, · · · , n, j = 1, · · · , k), (13)

µij =
1

∑k
l=1(2− ξij)(

‖Xi−Vj‖
‖Xi−Vl‖

)
2

m−1

, (i = 1, · · · , n, j = 1, · · · , k), (14)

ηij =
e−ξij

∑k
l=1 e−ξil

(1− 1
k

k

∑
l=1

ξil), (i = 1, · · · , n, j = 1, · · · , k), (15)

Vj =
∑n

i=1(µij(2− ξij))
mXi

∑n
i=1(µij(2− ξij))m , (j = 1, · · · , k). (16)

The iteration will not stop until reach the maximum iterations or ‖µ(t)−µ(t−1)‖+ ‖η(t)− η(t−1)‖+116

‖ξ(t) − ξ(t−1)‖ < ε.117

3. The proposed model and solutions118

Definition 1. [15] Set U be a space of points (objects), with a generic element in U denoted by u. A SVNS119

A in U is characterized by three membership functions, a truth membership function TA, an indeterminacy120

membership function IA and a falsity-membership function FA, where ∀u ∈ U, TA(u), IA(u), FA(u) ∈ [0, 1].121

That is TA : U → [0, 1], IA : U → [0, 1] and FA : U → [0, 1]. There is no restriction on the sum of122

TA(u), IA(u) and FA(u), thus 0 ≤ TA(u) + IA(u) + FA(u) ≤ 3.123
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Moreover, the hesitate membership function is defined as HA : U → [0, 3], and ∀u ∈ U, TA(u) +124

IA(u) + FA(u) + HA(u) = 3.125

Entropy is a key concept in the uncertainty field. It is a measure of the uncertainty of a system or126

a piece of information. It is an improvement of information entropy. The Tsallis entropy [28], which is127

a generalization of the standard Boltzmann-Gibbs entropy, is defined as follows.128

Definition 2. [28] Let X be a finite set, X be a a random variable taking values x ∈ X , with distribution p(x).129

The Tsallis entropy is defines as Sm(X) = 1
m−1 (1−∑x∈X p(x)m). where m > 0 and m 6= 1.130

For FCM, µij denotes the fuzzy membership degree of Xi to Cj, and sanctifies ∑k
j=1 µij = 1. From131

Definition 2, the Tsallis entropy of µ can be described Sm(µ) = ∑n
i=1

1
m−1 (1− ∑k

j=1 µm
ij ). Being n is132

fixed number, Yasuda [13] use the following formulary to describe the the Tsallis entropy of µ:133

Sm(µ) = −
1

m− 1
(

n

∑
i=1

k

∑
j=1

µm
ij − 1). (17)

The maximum entropy principle has been widely applied in many fields, such as spectral estimation,134

image restoration, error handling of measurement theory, and so on. In the following, the maximum135

entropy principle is applied to the single valued neutrosophic set clustering. After the objection136

function of clustering is built, the maximum fuzzy entropy is used to regularized variables.137

Supposing that there is a data set D consisting of n data points in d dimensions. Let µij, γij, ηij138

and ξij are the truth membership degree, falsity-membership degree, indeterminacy membership139

degree and hesitate membership degree respectively that each data point Xi belongs to cluster Cj.140

Denote µ, γ, η and ξ being the matrices whose elements are µij, γij, ηij and ξij respectively, where ξij =141

3− µij − γij − ηij. The single valued neutrosophic clustering based on Tsallis entropy Maximization142

(SVNC-TEM) is minimization of the following objective function:143

J = ∑n
i=1 ∑k

j=1(µij(4− ξij − γij))
m‖Xi −Vj‖2 + ρ

m−1 (∑
n
i=1 ∑k

j=1(uij(4− γij − ξij))
m − 1)

+∑n
i=1 ∑k

j=1 ηij(log ηij + ξij/3),
(18)

The constraints are given as follows:144

µij, γij, ηij ∈ [0, 1], ξij ∈ [0, 3], (i = 1, 2, · · · , n, j = 1, 2, · · · , k) (19)

k

∑
l=1

(uil(4− γil − ξil)) = 1, (i = 1, 2, · · · , n), (20)

k

∑
l=1

(ηil + ξil/(3 ∗ k)) = 1, (i = 1, 2, · · · , n) (21)

The proposed model in Formulary (18-21) is applied the maximum entropy principle on the SVNS.145

Now, let us summarize the major points of this model as follows.146

• The first term of objection function (18) describes the weighted distance sum of each data point147

Xi to the cluster center Vj. Being µij from the positive aspect and (4− ξij − γij) (The 4 is selected148

in order to guarantee µij ∈ [0, 1] in the iterative calculation) from the negative aspect denote149

the membership degree for Xi to Vj, we use µij(4− ξij − γij) represents the “integrated true”150

membership of the i-th data point in the j-th cluster. From the maximum entropy principle, the151

best represents the current state of knowledge is the one with largest entropy, so the second term152

of objection function (18) describes the negative Tsallis entropy of µ(4− γ− ξ), which means that153
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minimization of (18) is maximum Tsallis entropy. ρ is regularization parameter. If γ = η = ξ = 0,154

the proposed model returns to the FCM model.155

• Formulary (19) guarantees the definition of the SVNS (Definition 1).156

• Formulary (20) implies that the “integrated true” membership of a data point Xi to the cluster157

center Vj satisfies the sum-row constraint of memberships. For convenience, we set Tij =158

µij(4− ξij − γij) and Xi belongs to class Cl if Til = max(Ti1, Ti2, · · · , Tik).159

• Equation (21) guarantees the working on the SVNS since at least one of two uncertain factors,160

namely indeterminacy membership degree and hesitate membership degree, always exist in the161

model.162

Theorem 1. The optimal solutions of the systems (18-21) are:

Vj =
∑n

i=1(µij(4− γij − ξij))
mXi

∑n
i=1(µij(4− γij − ξij))m , (22)

µij =
1

∑k
l=1(4− γij − ξij)(

‖Xi−Vj‖2+
ρ

m−1
‖Xi−Vl‖2+

ρ
m−1

)
1

m−1

, (23)

γij = 4− ξij −
1

uij ∑k
l=1(

‖Xi−Vj‖2+
ρ

m−1
‖Xi−Vl‖2+

ρ
m−1

)
1

m−1

, (24)

ηij = (1− 1
3k

k

∑
l=1

ξil)
e−ξij

∑k
l=1 e−ξil

, (25)

ξij = 3− µij − γij − ηij. (26)

Proof. The Lagrangain multiplier of optimization model (18-21) is:163

J = ∑n
i=1 ∑k

j=1(uij(4− γij − ξij))
m‖Xi −Vj‖2 + ρ

m−1 (∑
n
i=1 ∑k

j=1(uij(4− γij − ξij))
m − 1)

+∑n
i=1 ∑k

j=1 ηij(log ηij + ξij/3) + ∑n
i=1 λi(∑C

j=1 µij(4− γij − ξij)
m)− 1)

+∑n
i=1 χi(∑k

j=1(ηij + ξij/(3k))− 1).
(27)

Where λi and χi are Lagrangain multipliers.164

In order to get Vj, taking the derivative of objective function with respect to Vj, we have ∂J
∂Vj

=165

∑n
i=1(µij(4− γij − ξij))

m(−2Xi + 2Vj). Being ∂J
∂Vj

= 0, so ∑n
i=1(µij(4− ηij − ξij))

m(−2Xi + 2Vj) = 0166

⇔ ∑n
i=1(µij(4− ηij − ξij))

mXi = ∑n
i=1(µij(4− ηij − ξij))

mVj ⇔ Vj =
∑n

i=1(µij(4−ηij−ξij))
mXi

∑N
i=1(µij(4−ηij−ξij))m167

Similarly, ∂J
∂µij

= mµm−1
ij (4− ξij− ηij)

m‖Xi−Vj‖2 + ρm
m−1 µm−1

ij (4− ξij− ηij)
m)+λi(4− ξij− ηij) =168

0 ⇔ µm−1
ij (4 − γij − ξij)

m−1(m‖Xi − Vj‖2 + ρm
m−1 ) + λi = 0 ⇔ µij = 1

4−γij−ξij
( λi

m‖Xk−Vj‖2+
ρm

m−1
)

1
m−1 .169

From (20), we can get ∑k
l=1(

λi
m‖Xi−Vl‖2+

mρ
m−1

)
1

m−1 = 1, that is λi = ( 1
∑k

l=1
1

(m‖Xi−Vl‖2+
mρ

m−1 )
1

m−1

)m−1, so170

µij =
1

∑k
l=1(4−ξij−ηij)(

‖Xi−Vj‖2+
ρ

m−1
‖Xi−Vl‖2+

ρ
m−1

)
1

m−1

, thus (23) holds.171

From (23), we can also get µij(4 − γij − ξij) = 1

∑k
l=1(

‖Xi−Vj‖2+
ρ

m−1
‖Xi−Vl‖2+

ρ
m−1

)
1

m−1

. so γij = 4 − ξij −172

1

uij ∑C
i=1(

‖Xi−Vj‖2+
ρ

m−1
‖Xi−Vk‖2+

ρ
m−1

)
1

m−1

, thus (24) holds.173
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Similarly, ∂L
∂ηij

= log ηij + 1 − χi + ξij = 0 ⇔ ηij = e(χi − 1 − ξij), From (21), we have,174

∑k
l=1 eχi−1−ξil + 1

3k ∑k
l=1 ξil = 1 ⇔ eχi−1 ∑k

l=1 e−ξil = 1− 1
3k ∑k

l=1 ξil ⇔ eχi−1 =
1− 1

3k ∑k
l=1 ξil

∑k
l=1 e−ξil

. So we175

have, ηij = (1− 1
3k ∑k

l=1 ξil)
e−ξij

∑k
l=1 e−ξil

.176

Finally, from Definition 1, we can get ξij = 3− µij − γij − ηij. Thus (26) holds.177

178

The Theorem 1 guarantee the convergence of the proposed method and the detail descriptions of179

SVNC-TEM algorithm is presented in the following:180

Algorithm: SVNC-TEM
Input: Data set D = {X1, X2, · · · , Xn} (n elements, d dimensions), number of clusters k,
Maximal number of iteration Max-Iter, Parameters: m, ε, ρ

Output: Cluster result
1: t = 0;
2: Initialize µ, γ, ξ, satisfy constraints (19,20);
3: Repeat
4: t = t + 1;

5: Update V(t)
j , (j = 1, 2, · · · , k) using Eq. (22);

6: Update µ
(t)
ij , (i = 1, 2, · · · , n, j = 1, 2, · · · , k) using Eq. (23);

7: Update γ
(t)
ij , (i = 1, 2, · · · , n, j = 1, 2, · · · , k) using Eq. (24);

8: Update η
(t)
ij , (i = 1, 2, · · · , n, j = 1, 2, · · · , k) using Eq. (25);

9: Update ξ
(t)
ij , (i = 1, 2, · · · , n, j = 1, 2, · · · , k) using Eq. (26);

10: Update T(t)
ij = µ

(t)
ij (4− γ

(t)
ij − ξ

(t)
ij ), (i = 1, 2, · · · , n, j = 1, 2, · · · , k);

11: Update J(t) using Eq. (18);
12: Until |J(t) − J(t−1)| < ε or Max-Iter has reached.
13: Assign Xi(i = 1, 2, · · · , n) into the l-th class if Til = max(Ti1, Ti2, · · · , Tik).

181

Compared with FCM, the proposed algorithm needs additional time to calculate µ, γ, η and ξ182

in order to more precisely precise describe the object and get better performance. If the dimension183

of the given data set is d, the number of objects is n, the number of clusters is c and the number of184

iterations is t, then the computational complexity of the proposed algorithm is O(dnct). We can see185

that the computational complexity is very high if d and n are large.186

4. Experimental results187

In the section, some experiments have intended to validate the effectiveness of proposed algorithm188

SVNC-TEM for data clustering. Firstly, we use an artificial data set to show SVNC-TEM can cluster189

well. Secondly, the proposed clustering method is used in image segmentation by an example. Lastly,190

we select five benchmark data sets and SVNC-TEM is compared with four state-of-the-art clustering191

algorithms, which are: k-means, FCM, IFC and FS-PFS.192

In the experiments, the parameter m is selected as 2 and ε = 10−5. Maximum iterations Max-Iter=193

100. The selected data sets have class labels, so the number of cluster k is known in advance. All the194

codes in the experiments are implemented in MATLAB R2015b.195

4.1. An artificial data to cluster by SVNC-TEM algorithm196

The activities of the SVNC-TEM algorithm will be illustrated to cluster on an artificial data, which197

is 2-dimensional data and has 100 data points, four classes. We use the example to show the clustering198

process of the proposed algorithm. The distribution of data points is illustrated in Figure1(a). Figures199

1(b-e) show the clusters results when the number of iterations is t =1, 5, 10, 20 respectively. We can see200

that the clustering result is obtained when t = 20. Figure 1(f) show the final results of the clustering,201
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the number of iterations is 32. We can see that the proposed algorithm gives right clustering results202

from Figure 1.203

4.2. Image segmentation by SVNC-TEM algorithm204

In this subsection, we use the proposed algorithm to image segmentation. As a simple example,205

the Lena image is used to test the proposed algorithm for image segmentation. Through this example,206

we wish to show that the proposed algorithm can be applied to image segmentation. Figure 2(a) is the207

original Lena image. Figure 2(b) shows the segmentation images when the number of clustering is208

k = 2, and we can see that the quality of the image has been greatly reduced. Figure 2(c-f) show the209

segmentation images when the number of clustering is k = 5, 8 , 11 and 20 respectively. We can see210

that the quality of segmentation image has been improved very well with the increase of clustering211

number.212

The above two examples demonstrate that the proposed algorithm can be effectively applied to213

the clustering and image processing. Next, we will further compare the given algorithm with other214

state-of-art clustering algorithms on benchmark data sets.215

4.3. Compare analysis experiments216

In order to verify the clustering performance, in the subsection, we experiment with five217

benchmark data sets of UCI Machine Learning Repository, which are IRIS, CMC, GLASS, BALANCE218

and BREAST. These data sets are used to test the performance of the clustering algorithm. Table 1219

shows the details characteristic of the data sets.220
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(f) t = 32

Figure 1. The demonstration figure of clustering process for an artificial data. (a) the original data (b-e)
the clustering figures when the number of iterations t =1, 5, 10, 20 respectively. (f) The final clustering
result.
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(a) Lena image (b) k = 2 (c) k = 5

(d) k = 8 (e) k = 11 (f) k = 20

Figure 2. The image segmentation for Lena image. (a) the original Lena image (b-f) the clustering
images when the number of clustering k =2, 5, 8, 11 and 20 respectively.

Table 1. description of experimental data sets

Dataset No. of elements No. of attributes No. of classes Elements in each classes

IRIS 150 4 3 [50, 50, 50]
CMC 1473 9 3 [629, 333, 511]

GLASS 214 9 6 [29, 76, 70, 17, 13, 9]
BALANCE 625 4 3 [49, 288, 288]

BREAST 277 9 2 [81, 196]

In order to compare the performance of the clustering algorithms, three evaluation criteria are221

introduced as following.222

Given one data point Xi, denote pi be the truth class and qi be the predicted clustering class. The223

accuracy(ACC) measure is evaluated as follows:224

ACC =
∑n

i=1 δ(pi, map(qi))

n
, (28)

where n is the total number of data points, δ(x, y) = 1 if x = y; otherwise δ(x, y) = 0. map(•) is the225

best permutation mapping function that matches the obtained clustering label to the equivalent label226

of the data set. One of the best mapping functions is the Kuhn-Munkres algorithm [29]. The higher the227

ACC is, the better the clustering performance is.228

Given two random variables X and Y, MI(X; Y) is the mutual information of X and Y. H(X) and229

H(Y) are the entropies of P and Q, respectively. We use the normalized mutual information (NMI) as230

follows231

NMI(X; Y) =
MI(X; Y)√
H(X)H(Y)

. (29)
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The clustering results Ĉ = {Ĉj}k̂
j=1 and the ground truth classes C = {Cj}k

j=1 are regarded as two232

discrete random variables. So, NMI is specified as the following:233

NMI(C; Ĉ) =
∑k̂

i=1 ∑k
j=1 |Ĉi ∩ Cj| log

n|Ĉi∩Cj |
|Ĉi ||Cj |√

(∑k̂
i=1 |Ĉi log |Ĉi |

n |)(∑
k
j=1 |Cj| log

|Cj |
n )

. (30)

The higher the NMI is, the better the clustering performance is.234

The Rand index is defined as,235

RI =
2(a + d)
n(n− 1)

. (31)

where a is the number of pairs of data points belonging to the same class in C and to the same cluster236

in Ĉ. d is the number of pairs of data points belonging to the different class and to the different cluster.237

n is the number of data points. The larger the Rand index is, the better the clustering performance is.238

We do a series of experiments to indicate the performance of the proposed method for239

data clustering. In the experiments, we set parameters of all approaches in same way to240

make the experimenters fair enough, that is, for parameter ρ, we set ρ = {0.01, 0.05, 0.07,241

0.1, 0.15, 0.5, 1, 2, 5, 8, 9, 15, 20, 50}. For α, we set α = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. For each242

parameter, we run the given method 50 times and select the best mean value to report. Tables 2-4 show243

the results with different evaluation measures respectively. In these tables, we use bold font to indicate244

the best performance.245

We analyze the results from data set firstly. For IRIS data set, the proposed method gets the best246

performance for ACC, NMI and RI. For CMC data set, the proposed method has the best performance247

for ACC and RI. For GLASS and BREAST data sets, the proposed method gets the best performance248

for ACC and NMI. For BALANCE data set, the proposed method has the best performance for NMI249

and RI. On the other hand, from the three evaluation criteria, for ACC and NMI, the proposed method250

wins the other methods in four data sets. For RI, SVNC-TEM wins the other methods in three data sets.251

From the experimental results, we can see that the proposed method has better clustering performance252

than other algorithms.253

Table 2. The ACC for different algorithms on different data sets

Data Set k-means FCM IFC FC-PFC SVNC-TEM

IRIS 0.8803 0.8933 0.9000 0.8933 0.9000
CMC 0.3965 0.3917 0.3958 0.3917 0.3985

GLASS 0.3219 0.2570 0.3636 0.2935 0.3681
BALANCE 0.5300 0.5260 0.5413 0.5206 0.5149

BREAST 0.6676 0.5765 0.6595 0.6585 0.6686

Table 3. The NMI for different algorithms on different data sets

Data Set k-means FCM IFC FC-PFC SVNC-TEM

IRIS 0.7514 0.7496 0.7102 0.7501 0.7578
CMC 0.0320 0.0330 0.0322 0.0334 0.0266

GLASS 0.0488 0.0387 0.0673 0.0419 0.0682
BALANCE 0.1356 0.1336 0.1232 0.1213 0.1437

BREAST 0.0623 0.0309 0.0285 0.0610 0.0797
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Table 4. The RI for different algorithms on different data sets

Data Set k-means FCM IFC FC-PFC SVNC-TEM

IRIS 0.8733 0.8797 0.8827 0.8797 0.8859
CMC 0.5576 0.5582 0.5589 0.5582 0.5605

GLASS 0.5373 0.6294 0.4617 0.5874 0.4590
BALANCE 0.5940 0.5928 0.5899 0.5904 0.5999

BREAST 0.5708 0.5159 0.5732 0.5656 0.5567

5. Conclusions254

In the paper, we consider the truth membership degree, the falsity-membership degree, the255

indeterminacy membership degree and hesitate membership degree in a comprehensive way to data256

clustering by single valued neutrosophic set. We propose a novel data clustering algorithm SVNC-TEM257

and the experimental results show that the proposed algorithm can be considered as a promising tool258

for data clustering and image processing. The proposed algorithm has better clustering performance259

than other algorithms such as k-means, FCM, IFC and FC-PFS. Next, we will consider the proposed260

method to deal with outliers. Moreover, we will consider the clustering algorithm combines with261

spectral clustering and other clustering methods.262
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