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Abstract. In this paper, an algorithm for searching the minimum spanning tree
(MST) in a network having trapezoidal fuzzy neutrosophic edge weight is
presented. The network is an undirected neutrosophic weighted connected graph
(UNWCG). The proposed algorithm is based on matrix approach to design the
MST of UNWCG. A numerical example is provided to check the validity of the
proposed algorithm. Next, a comparison example is made with Mullai’s algorithm
in neutrosophic graphs.
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1 Introduction

In 1998, Smarandache [1] proposed the concept of neutrosophic set (NS) from the phil‐
osophical point of view, to represent uncertain, imprecise, incomplete, inconsistent, and
indeterminate information that are exist in the real world. The concept of neutrosophic
set generalizes the concept of the classic set, fuzzy set, and intuitionistic fuzzy set (IFS).
The major differences between the IFS and neutrosophic set (NS) are the structure of
the membership functions, the dependence of the membership functions, and the
constraints in the values of the membership functions. A NS has a triple-membership
structure which consists of three components, namely the truth, falsity and indetermi‐
nacy membership functions, as opposed to the IFS in which information is described by
a membership and non-membership function only. Another major difference is the
constraint between these membership functions. In a NS, the three membership func‐
tions are independent of one another and the only constraint is that the sum of these
membership functions must not exceed three. This is different from the IFS where the
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values of the membership and non-membership functions are dependent on one another,
and the sum of these must not exceed one. To apply the concept of neutrosophic sets
(NS) in science and engineering applications, Smarandache [1] initiated the concept of
single-valued neutrosophic set (SVNS). In a subsequent paper, Wang et al. [2], studied
some properties related to SVNSs. We refer the readers to [3, 11, 13–15] for more
information related to the extensions of NSs and the advances that have been made in
the application of NSs and its extensions in various fields. The minimum spanning tree
problem is one of well–known problems in combinatorial optimization. When the edge
weights assigned to a graph are crisp numbers, the minimum spanning tree problem can
be solved by some well-known algorithms such as Prim and Kruskal algorithm. By
combining single valued neutrosophic sets theory [1, 2] with graph theory, references
[6–9] introduced single valued neutrosophic graph theory (SVNGT for short). The
SVNGT is generation of graph theory. In the literature some scholars have studied the
minimum spanning tree problem in neutrosophic environment. In [4], Ye introduced a
method for finding the minimum spanning tree of a single valued neutrosophic graph
where the vertices are represented in the form of SVNS. Mandal and Basu [5] proposed
an approach based on similarity measure for searching the optimum spanning tree prob‐
lems in a neutrosophic environment considering the inconsistency, incompleteness and
indeterminacy of the information. In their work, they applied the proposed approach to
a network problem with multiple criteria. In another study, Mullai et al. [10] discussed
about the minimum spanning tree problem in bipolar neutrosophic environment.

The main purpose of this paper is to propose a neutrosophic version of Kruskal
algorithm based on the matrix approach for searching the cost minimum spanning tree
in a network having trapezoidal fuzzy neutrosophic edge weight [12].

The rest of the paper is organized as follows. Section 2 briefly introduces the concepts
of neutrosophic sets, single valued neutrosophic sets and the score function of trape‐
zoidal neutrosophic number. Section 3 proposes a novel approach for searching the
minimum spanning tree in a network having trapezoidal fuzzy neutrosophic edge length.
In Sect. 4, a numerical example is presented to illustrate the proposed method. In
Sect. 5, a comparative example with other method is provided. Finally, Sect. 6 presents
the main conclusions.

2 Preliminaries and Definitions

In this section, the concept of neutrosophic sets single valued neutrosophic sets and
trapezoidal fuzzy neutrosophic sets are presented to deal with indeterminate data, which
can be defined as follows.

Definition 2.1 [1]. Let 𝜉 be an universal set. The neutrosophic set A on the universal
set 𝜉 categorized in to three membership functions called the true TA(x), indeterminate
IA(x) and false FA(x) contained in real standard or non-standard subset of ]−0, 1+[ respec‐
tively.

−0 ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3+ (1)
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Definition 2.2 [2]. Let 𝜉 be a universal set. The single valued neutrosophic sets (SVNs)
A on the universal 𝜉 is denoted as following

A =
{
< x: TA(x), IA(x), FA(x) > x ∈ 𝜉

}
(2)

The functions TA(x) ∈ [0. 1], IA(x) ∈ [0. 1] and FA(x) ∈ [0. 1] are named degree
of truth, indeterminacy and falsity membership of x in A, satisfy the following condition:

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3 (3)

Definition 2.3 [12]. Let 𝜁 be a universal set and 𝜓 [0, 1] be the sets of all trapezoidal
fuzzy numbers on [0, 1]. The trapezoidal fuzzy neutrosophic sets (In short TrFNSs) 

⌣

A

on the universal is denoted as following:

⌣

A =

{
< x:

⌣

TA(x),
⌣

IA(x),
⌣

FA(x) >, x ∈ 𝜁

}
(4)

Where 
⌣

TA(x): 𝜁 → 𝜓[0, 1], 
⌣

IA(x): 𝜁 → 𝜓[0, 1] and 
⌣

FA(x): 𝜁 → 𝜓[0, 1]. The trape‐
zoidal fuzzy numbers

⌣

TA(x) =
(
T1

A
(x), T2

A
(x), T3

A
(x), T4

A
(x)

)
(5)

⌣

IA(x) =
(
I1

A
(x), I2

A
(x), I3

A
(x), I4

A
(x)

)
(6)

and
⌣

FA(x) =
(
F1

A
(x), F2

A
(x), F3

A
(x), F4

A
(x)

)
, respectively denotes degree of truth, inde‐

terminacy and falsity membership of x in 
⌣

A∀x ∈ 𝜁.

0 ≤ T4
A
(x) + I4

A
(x) + F4

A
(x) ≤ 3 (7)

Definition 2.4. [12]. Let 
⌣

A1 be a TrFNV denoted as
⌣

A1 = ⟨(t1, t2, t3, t4), (i1, i2, i3, i4), (f1, f2, f3, f4)⟩ Hence, the score function and the
accuracy function of TrFNV are denoted as below:

(i) s(
⌣

A1) =
1

12
[
8 + (t1 + t2 + t3 + t4) − (i1 + i2 + i3 + i4) − (f1 + f2 + f3 + f4)

]
(8)

(ii) H(
⌣

A1) =
1
4
[
(t1 + t2 + t3 + t4) − (f1 + f2 + f3 + f4)

]
(9)

In order to make a comparisons between two TrFNV, Ye [12], presented the order
relations between two TrFNVs.

Definition 2.5 [12]. Let 
⌣

A1 and 
⌣

A2 be two TrFNV defined on the set of real numbers.
Hence, the ranking method is defined as follows:
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i. If s(
⌣

A1) ≻ s(
⌣

A2), then 
⌣

A1 is greater than 
⌣

A2, that is, 
⌣

A1 is superior to 
⌣

A2, denoted by
⌣

A1 ≻
⌣

A2

If s(
⌣

A1) = s(
⌣

A2), and H(
⌣

A1) ≻ H(
⌣

A2) then 
⌣

A1 is greater than 
⌣

A2, that is, 
⌣

A1 is superior
to 

⌣

A2, denoted by 
⌣

A1 ≻
⌣

A2.

3 Minimum Spannig Tree Algorithm of TrFN- Undirected Graph

In this section, a neutrosophic version of Kruskal’s algorithm is proposed to handle
Minimum spanning tree in a neutrosophic environment and a trapezoidal fuzzy neutro‐
sophic minimum spanning tree algorithm, whose steps are described below:

Algorithm:

Input: The weight matrix M =
[
Wij

]
n×n

 for which is constructed for undirected
weighted neutrosophic graph (UWNG).

Step 1: Input trapezoidal fuzzy neutrosophic adjacency matrix A.

Step 2: Construct the TrFN-matrix into a score matrix 
[
Sij

]
n×n

 by using the score func‐
tion (8).
Step 3: Repeat step 4 and step 5 up to time that all nonzero elements are marked or in
another saying all (n−1) entries matrix of S are either marked or set to zero.
Step 4: There are two ways to find out the weight matrix M that one is columns-wise
and the other is row-wise in order to determine the unmarked minimum entries Sij,
besides it determines the weight of the corresponding edge eij in M.
Step 5: Set Sij = 0 else mark Sij provided that corresponding edge eij of selected Sij

generate a cycle with the preceding marked entries of the score matrix S.
Step 6: Construct the graph T including the only marked entries from the score matrix
S which shall be the desired minimum cost spanning tree of G.
Step 7: Stop.

4 Numerical Example

In this section, a numerical example of TrFNMST is used to demonstrate of the proposed
algorithm. Consider the following graph G = (V, E) shown Fig. 1, with fives nodes and
fives edges. The various steps involved in the construction of the minimum cost spanning
tree are described as follow:
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3

5

4

1

2

Fig. 1. A neutrosophic graph with TrFN edge weights

The TrFN- adjacency matrix A is written as follows:

=

⎡
⎢
⎢
⎢
⎢
⎣

0 e12 e13 e14 0
e12 0 0 e24 0
e13 0 0 e34 e35
e14 e24 e34 0 e45
0 0 e35 e45 0

⎤
⎥
⎥
⎥
⎥
⎦

Thus, using the score function, we get the score matrix:

Fig. 2. Score matrix

We observe that the minimum record 0.458 according to Fig. 2 is selected and the
corresponding edge (3, 4) is marked with red color. Repeat the procedure until the iter‐
ation will exist (Table 1).

Table 1. The values of edge weights

eij Edge weights
e12 < (0.2, 0.3, 0.5, 0.5), (0.1, 0.4, 0.4, 0.6), (0.1, 0.2, 0.3, 0.5) >
e13 < (0.3, 0.4, 0.6, 0.7), (0.1, 0.3, 0.5, 0.6), (0.2, 0.3, 0.3, 0.6) >
e14 < (0.4, 0.5, 0.7, 0.7), (0.1, 0.4, 0.4, 0.5), (0.3, 0.4, 0.5, 0.7) >
e24 < (0.4, 0.5, 0.6, 0.7), (0.3, 0.4, 0.6, 0.7), (0.2, 0.4, 0.5, 0.6) >
e34 < (0.1, 0.3, 0.5, 0.6), (0.4, 0.5, 0.6, 0.7), (0.3, 0.4, 0.4, 0.7) >
e35 < (0.4, 0.4, 0.5, 0.6), (0.1, 0.3, 0.3, 0.6), (0.1, 0.3, 0.4, 0.6) >
e45 < (0.3, 0.5, 0.6, 0.7), (0.1, 0.3, 0.4, 0.7), (0.3, 0.4, 0.8, 0.8) >
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According to the Figs. 3 and 4, the next non zero minimum entries 0.525 is marked
and corresponding edges (4, 5) are also colored.

0.458

0.592

0.6
3

0.525 

5

0.542
4

0.575

1

2

0.583

Fig. 3. An illustration of the marked edge

Fig. 4. Score matrix

0.458

0.592

0.6
3

0.525 

5

0.542
4

0.575

1

2

0.583

Fig. 5. An illustration of the marked edge (4, 5)

According to the Fig. 6, the next minimum non zero element 0.542 is marked
(Figs. 5 and 7).
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Fig. 6. Score matrix

4580.

0.592

0.6
3

0.525

5

4
0.575

1

2

0.583

0.542

Fig. 7. An illustration of the marked edge (2, 4)

According to the Fig. 8. The next minimum non zero element 0.575 is marked, and
corresponding edges (1, 2) are also colored (Fig. 9).

Fig. 8. Score matrix

0.542

0.458

0.592

0.6
3

0.525 

5

4
0.575

1

2

0.583

Fig. 9. An illustration of the marked edge (1, 2)
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According to the Fig. 10. The next minimum non zero element 0.583 is marked. But
while drawing the edges it produces the cycle. So we delete and mark it as 0 instead of
0.583.

Fig. 10. Score matrix

The next non zero minimum entries 0.592 is marked it is shown in the Fig. 11. But
while drawing the edges it produces the cycle. So we delete and mark it as 0 instead of
0.592.

Fig. 11. Score matrix

According to the Fig. 12. The next minimum non zero element 0.6 is marked. But
while drawing the edges it produces the cycle so we delete and mark it as 0 instead of
0.6.

Fig. 12. Score matrix

After the above steps, the final path of minimum cost of spanning tree of G is
portrayed in Fig. 13.

Based on the procedure of matrix approach applied to undirected neutrosophic graph.
hence, the crisp minimum cost spanning tree is 2, 1 and the final path of minimum cost
of spanning tree is {1, 2}, {2, 4}, {4, 3}, {4, 5}.
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5 Comparative Example

To demonstrate the rationality and effectiveness of the proposed method, a comparative
example with Mullai’s algorithm [10] is provided. Following the step of Mullai’s algo‐
rithm.

Iteration 1: Let C1 = {1} and C1 = {2, 3, 4, 5}
Iteration 2: Let C2 = {1, 2} and C2 = {3, 4, 5}
Iteration 3: Let C3 = {1, 2, 4} and C3 = {3, 5}
Iteration 4: Let C4 = {1, 2, 4, 3} and C4 = {5}

From the results of the iteration processes, the TrFN minimal spanning tree is:

3

5

4

1

2

Fig. 14. TrFN minimal spanning tree obtained by Mullai’s algorithm.

From the Fig. 14, it can be observed that the TrFN minimal spanning tree {1, 2}, {2,
4}, {4, 3}, {4, 5} obtained by Mullai’s algorithm, after deneutrosophication of edges’
weight, is the same as the path obtained by the proposed algorithm.

0.54

45

0.57

0.

3

0.52

5

4

1

2

Fig. 13. Final path of minimum cost of spanning tree of G.
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The difference between the proposed algorithm and Mullai’s algorithm is that
Mullai’s algorithm is based on the comparison of edges in each iteration of the algorithm
and this leads to high computation whereas the proposed approach based on Matrix
approach can be easily implemented in Matlab.

6 Conclusion

In this paper, a new approach for searching the minimum spanning tree in a network
having trapezoidal fuzzy neutrosophic edge length is presented. The proposed algorithm
use the score function of TrFN number, then a comparative example is worked out to
illustrate the applicability of the proposed approach. In the next research paper, we can
apply the proposed approach to the case of directed neutrosophic graphs and other kinds
of neutrosophic graphs including bipolar neutrosophic graphs, and interval valued
neutrosophic graphs.
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