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Abstract 
The force experienced by a rotating body that lies in the G field of another rotating body 

depends both on the G field and on its own angular velocity of rotation that affects the 

magnitude and direction of the exerted force. The force is in general not central and not 

symmetric. The cases of the non rotating observer and the far away observer are 

examined for rotation with and without slippage. It is shown that the force may be 

repulsive or attractive or alternating between attractive and repulsive depending on the 

angular velocities of the rotations and distance. 

 

1   Introduction 
 

This paper is a continuation of [2] and [3]. In [2] the path of signals emanating from the 

origin of rotating frames was studied. In [3] based on the findings of [2] the field (called 

G ) created by a rotating body that emanates signals was determined for different 

observers. In this paper we go one step further to examine the force felt by a rotating 

body in a G  field. The body will in general feel a non central force and will be obliged 

to move accordingly. The magnitude of the force felt depends on the magnitude of the 

field but also on the ability of the body to receive signals, which is proportional to its 

mass. However, if the body itself rotates, the force due to the field G that is experienced 

by the rotating body is affected both in magnitude and direction by the mass and 

rotation of the receiving body because signals approaching the receiving rotating body 

are affected by its rotation. This leads us among other things to attractive and repulsive 

forces. The interaction between two rotating bodies is studied and the strength and 

direction of forces determined for the cases of the non-rotating and the far away 

observer and for the sub-cases of rotation with and without slippage. (By slippage we 

mean exponentially decreasing angular velocity of rotation).  

This paper is organized as follows: In section 2 we review previous results. In section 3 

we find the force between two rotating bodies for rotation with and without slippage and 

for different observers. In section 4 we visualize the signals’ path to understand how 

repulsive and attractive forces are formed. In section 5 we show how we can generalize 

to bodies with non parallel axes of rotation. In section 6 we conclude. 

 

2 Review of previous theory 
 

Below is a summary of the results found in [2] and [3], on which this paper stands. We 

present the transformation of cylindrical coordinates for rotating frames and for 

different kind of observers and the corresponding G  field that a rotating body at the 

origin of the rotating frame (which rotates about its z axis), emitting signals, creates. 
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The formulas for the G field differ slightly from those in [3] in that the constant 4π  is 

absorbed by the constant Gk which now becomes equal to the usual gravitational 

constant ( 116.67*10− m
3
 kg

-1
 s

-2
) 

A. Rotation without slippage (the angular velocity w  of rotation of signals is 

constant with respect to the distance from the rotating body). Precession of the 

rotating body is assumed having a very small amplitude and is thus neglected. 

 A.I    Observer O′  at the origin but not rotating with the body. (The 

transformation holds for 
c

z
w

≤ ). 

 sin ( , )c I tρ ξ ξ′ =  (1) 

 vt′Θ = Θ+  (2) 

 z z′ =  (3) 

 t t′ =  (4) 

 
2 2 2 2 2 2( , )

c t c

I tc w c w

ρ
π π π

ρ ξρ ρ
′ = =

′ + +
 (5) 

 v v′ =  (6) 

where , , , , ,z t vρ πΘ  are the radial distance in cylindrical coordinates, the angle of 

rotation as fraction of a circle (for example degrees), the z direction that coincides with 

the axis of rotation, time, the number pi, and the frequency of rotation respectively for 

observer O  , who is located at the origin and rotates with the body. And where

, , , , ,z t vρ π′ ′ ′ ′ ′ ′Θ  are the same quantities for observer O′ , who is located at the origin 

but not rotating with the body. The speed of light is c. The angle of inclination of the 

signal is the same, ξ , for both observers O and O′ . 
Further, where, 

 
0

( , ) cos

t

I t dtξ ϕ= ∫  (7) 

 
2 2 2 2 2 2

2 2 2 2 2 2

1 cos
cos

1 sin

w t c w z

w t c w

ξ
ϕ

ξ ρ
− −

= =
+ +

 (8) 

with 
2 2

cos
z

z
ξ

ρ
=

+
, 

2 2
sin

z

ρ
ξ

ρ
=

+
, sinctρ ξ= , cosz ct ξ= , ϕ  is the deflection 

angle of the field signal from the radial direction. 

From the above we can find the transformation of the angular velocity w  using the 

formula ( 2w vπ=  and 2w vπ′ ′= ) and the angle of rotation θ  measured in radians 

(using 2θ π= Θand 2θ π′ ′ ′= Θ ) as, 

 
w

w

π
π

′ ′
=  (9) 

 ( )wt
π

θ θ
π
′

′ = +  (10) 

The G field which in this case we denote as ′G  is given by 

 
2 2 22 2 4

2

2 2 2 2 2

ˆ
cos( , )

( , )( ) ( , )

Gk m

zz w U t c
z

I t z cI t c w

ρ ϕ ρρ ξ
ξ ρ ξ ρ

′
′ ′= −

 +
+ + 

 + + 

G v  (11) 
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where  

 
4

3

2 2 2 2 2 20 2

( , )

1 cos (1 sin )

t
t

U t dt

w t w t

ξ
ξ ξ

=

− +
∫  (12) 

And ˆ ′v is the unit vector in the direction of the velocity of the signals of the field. 

 ˆ ( , , ) (sin cos ,sin sin ,cos )zv v vρ θ ξ ϕ ξ ϕ ξ′ ′ ′ ′= =v  (13) 

When 0z =  the above become, 

 ]
0 2 2

0

1 1
( , ) ( , ) arcsinh arcsinh

2 1

t

z

dt w
I t I t wt

w w cw t

π ρ
ξ

=
= = = =

+
∫  (14) 

 ]
0

arcsinh
z

c w

w c

ρ
ρ

=
′ =  (15) 

And  

 ]
2 2 2

2 2 2

3 2 30

( )arcsinh
( )

ˆ ˆ
G

G

z

w
k m c w

k m c wc

cw c

ρ
ρ ρ ρ

ρ ρ=

′ + ′ ′+
′ ′ ′= − = −G v v  (16) 

 

A.II Observer O′′ is the far away observer outside the cylindrical volume 

defined by 
c

w
ρ′′ ≤ ) for which the transformation below holds. 

 
2 2 2

cos
c

c w
ρ ρ ρ ϕ

ρ
′′ ′′= =

+
 (17) 

 vt′′Θ = Θ+  (18) 

 z z′′ =  (19) 

 t t′′ =  (20) 

 π π′′ =  (21) 

 v v′′ =  (22) 

 wtθ θ′′ = +  (23) 

The angle ϕ ′′ is the angle of deflection of the field signal from the radial direction. 

 2 2 2tan (1 sin )wt w tϕ ξ′′ = +  (24) 

And the angle of inclination of the signal from the z axis is given by 

 
2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1 (1 sin ) ( )( )
tan tan tan

(1 sin ) ( )

w t w t c w z c w

w t c w

ξ ρ ρ
ξ ξ ξ

ξ ρ
+ + + + +

′′ = =
+ +

 (25) 

Where tan
z

ρ
ξ =  

The G field, which in this case we denote as ′′G , is given by 

 
( )

3

2 2 2 32

3 2 2 2 2 2 2 2 2 2 2 2

( )
ˆ ˆ

( ( ) )

Gk m c w km c

c z c c w z c w

ρ
ρ ρ ρ ρ

′ ′+
′′ ′′ ′′= − == −

+ ′′ ′′ ′′+ − −
G v v  (26) 

Where ˆ ′′v is the unit vector in the direction of the velocity of the signals of the field as 

O′′sees them, 

 ˆ ( , , ) (sin cos ,sin sin ,cos )zv v vρ θ ξ ϕ ξ ϕ ξ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′= =v  (27) 
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The field for observer O′′extends up to a cylinder defined by 
c

w
ρ′′ ≤  where it forms a 

barrier and himself lies outside that cylinder. In contrast, O′  (case A.I), who lies inside 

the above cylinder sees the field as extending to infinity in the radial direction but is 

restricted in the z direction to within 
c

z
w

≤ . 

 

B.  Rotation with slippage. (The angular velocity of rotation of signals decreases 

exponentially with respect to the distance from the rotating body). This case has 

more meaning physically and we also avoid the unnatural boundaries that appear 

at /z c w=  and at /c wρ ′′ = . The angular velocity is given by 

( ) ( sin cos )

0 0

z ctw w e w eλρ µ λ ξ µ ξ− + − += = and the frequency of rotation is 
( ) ( sin cos )

0 0

z ctv v e v eλρ µ λ ξ µ ξ− + − += =  where ,λ µ are the slippage parameters.   

B.I Observer O′  at the origin but not rotating. 

 sin ( , , , )c I tρ ξ ξ λ µ′ =  (28) 

 
( sin cos )

( sin cos ) 0
0

0

(1 )

( sin cos )

t ct
ct v e

v e dt
c

λ ξ µ ξ
λ ξ µ ξ

λ ξ µ ξ

− +
− + −

′Θ = Θ+ = Θ+
+∫  (29) 

 z z′ =  (30) 

 t t′ =  (31) 

 
2 2 2 2( )

0

z

c

c w e λρ µ

ρ
π π

ρ ρ − +
′ =

′ +
 (32) 

where 

 
0

( , , , ) cos

t

I t dtξ λ µ ϕ= ∫  (33) 

where ϕ  is the angle of deflection of the signal from the radial direction and  

 
2 2 2 ( sin cos ) 2 2 2 2 2( )

0 0

2 2 2 ( sin cos ) 2 2 2 2 2( )

0 0

1 cos
cos

1 sin

ct z

ct z

w t e c w z e

w t e c w e

λ ξ µ ξ λρ µ

λ ξ µ ξ λρ µ

ξ
ϕ

ξ ρ

− + − +

− + − +

− −
= =

+ +
 (34) 

 
w

w

π
π

′ ′
=  (35) 

and using (29) with (32) and the fact that 2θ π= Θ , 2θ π′ ′ ′= Θ , we find the 

transformation of the rotation angle in radians 

 
( sin cos )

( sin cos ) 0
0

0

(1 )
( )

( sin cos )

t ct
ct w e

w e dt
c

λ ξ µ ξ
λ ξ µ ξπ π

θ θ θ
π π λ ξ µ ξ

− +
− +′ ′  −

′ = + = + + 
∫  (36) 

The angle of inclination of the signal to the z axis is ξ  ( tan
z

ρ
ξ = ) and is the same for 

both observers O, and O′ . 

Also assume that 
0

1 ce

wµ
≤ , the condition needed for cosϕ  to be real for all ξ .    

The G field which in this case we denote as ′G  is given by 

 
2 2

1
ˆ

( )

G
k m

z Jρ
′

′ ′=
′+

G v  (37) 
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where 

 2 2

2 2 2 2( )

0

cos ( , )cos cos
cos

( , , , ) ( , , , ) z

U t c
J

cI t I t c w e λρ µ

ξ ξρ ϕ ξ
ξ

ξ λ µ ξ λ µ ρ − +

 
′ = + − 

+ 
 (38) 

and  

 
2 2 2 ( sin cos ) 2

0
2 2 2 2 ( sin cos ) 2

00

1 cos
( , )

cos 1 sin

t ct

ct

w t e
U t dt

w t e

λ ξ µ ξ

λ ξ µ ξ

ξ
ξ

ξ ξ

− +

− +

 −∂
=  

 ∂ + 
∫  (39) 

And  

 ˆ ( , , ) (sin cos ,sin sin ,cos )zv v vρ θ ξ ϕ ξ ϕ ξ′ ′ ′ ′= =v  (40) 

B.II  Observer O′′ (the far away not rotating observer) 

 
2 2 2 2( )

0

z

c

c w e λρ µ
ρ ρ

ρ − +
′′ =

+
 (41) 

 
( sin cos )

( sin cos ) 0 0
0

0

(1 ) (1 )

( sin cos )

t ct ct
ct v e v e

v e dt
c c

λ ξ µ ξ β
λ ξ µ ξ

λ ξ µ ξ β

− + −
− + − −

′′Θ = Θ+ = Θ+ = Θ+
+∫  (42) 

Where sin cosβ λ ξ µ ξ= +  

 z z′′ =  (43) 

 t t′′ =  (44) 

 π π′′ =  (45) 

 0 0w w′′ =  (46) 

 ( sin cos ) 0
0

0

(1 )
t ct

ct w e
w e dt

c

β
λ ξ µ ξθ θ θ

β

−
− + −

′′ = + = +∫  (47) 

Where ϕ ′′  is the angle of deflection of the field signal from the radial direction and is 

given by 

 

2 2

2 22 2 2 2

2 23 2 2

2

1
(1 sin )

tan
( )1 ( sin cos ) sin

1

w
w zwt w t c

w zc t w c

c

ρ
ρξ

ϕ
ρ λρ µλ ξ µ ξ ξ

+++
′′ = =

++ +
+

 (48) 

Where ( sin cos )

0 0

ct ctw w e w eλ ξ µ ξ β− + −= = ,  

The inclination of the path of the signal with  respect to the z axis is given by 

 

2 2 2 2 2 2 3 2 2 23 2 2 2

32 2 2 2 2 22 2 2
2 2 2 2

(1 sin ) (1 sin )(1 sin )
tan tan 1 tan

(1 sin )1 sin (1 sin )

w t w t c t wwt c t w

w t w tw t w t

ξ β ξβ ξ
ξ ξ ξ

ξξ ξ

+ + ++
′′ = + =

++ +
 (49) 

Where tan / zξ ρ=  . Equation (49) can also be written as 

 

2 2 2 2
2 2 2 2 2

2 2 2

32
2 2

2

(1 ) (1 ( ) )

tan tan

(1 )

z
w w z w

c c c

w
c

ρ ρ ρ
λρ µ

ξ ξ
ρ

+
+ + + +

′′ =

+

 (50) 

  

The G field, which in this case we denote as ′′G , is given by 
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3

2 2 2 2( ) 2
0

2 2 2 2 3 2( )

0

( )
ˆ

( ) ( )

z

G

z

k m c w e

z c c w e

λρ µ

λρ µ

ρ
ρ λ ρ

− +

− +

′ +
′′ ′′= −

+ +
G v  (51) 

with ˆ ( , , ) (sin cos ,sin sin ,cos )zv v vρ θ ξ ϕ ξ ϕ ξ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′= =v  

The field for O′′  forms a “barrier” like the no slippage case when 0w  is very big. By 

barrier we mean a maximum of the magnitude of the G field along with a sideway turn 

of the signals emitted by the rotating body. In this case the radial distances may be  

shrunk to sub-atomic (microcosmos) levels. 

 

3 Force between two rotating bodies with parallel axes of 

rotation 
 

We have already seen how a rotating point body A creates a G  field around it. What is 

the force felt by another point body B that is also rotating and vice versa? In what 

direction does the force point? Is it symmetrical for A and B? These are the questions to 

be dealt here. 
For  rotation without slippage, we will examine both the ′G field and ′′G field. For 

rotation with slippage we will only consider  ′′G   and only briefly comment on ′G  .     

First, we need  to clarify some matters about observers. Up till now the nearby but not 

rotating observer O′was placed at the origin, where the rotating point mass is located. 

What if another observer 2O′  stationary with respect to O′ is placed at some distance 

from the origin but not far away like observer O′′  ? Length measurements denoted by, 

s  , or angles like θ , will not be affected because he is stationary with respect to O′  . 
However, 2O′  is subject to the gravity field of body A, while O′  , being at the center of 

the rotating body A, is not. This will affect the clock of 2O′  , which will run slower. (see 

for example Møller [1]). If we denote by 
NG

t′ the time of the No Gravity observer ( O′  ) 

and by 2t′  the time of 2O′  then the rate of clock will be altered by the factor 2

NG

dt

dt

′
′

. Other 

quantities of interest such as angular velocity, w , velocity, υ , will be altered as follows: 

2 2
2

2 2

NG

NG

dtd d
w

dt dt dt

θ θ ′′ ′
′ = =

′ ′ ′
 but 2 NGθ θ′ ′=  because angles are spatial measurements, thus 

2

2 2

NG NG NG
NG

NG

d dt dt
w w

dt dt dt

θ ′ ′ ′
′ ′= =

′ ′ ′
 

Similarly, for velocity, 2
2

2 2 2

NG NG NG
NG

NG

ds dt dtds

dt dt dt dt
υ υ

′ ′ ′′
′ ′= = =

′ ′ ′ ′
. This also holds when cυ = the 

speed of light. Thus, the ratio 
w

c
, or 

c

υ
remain invariant between the two observers. 

Consequently the angle of deflection ϕ  given by (8), will remain invariant since it 

only depends on /w c  
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Further , 2
2

2 2 2

sin cos sin cosNG NG
NG

dt dd
c c

dt dt dt

ρρ
ξ ϕ ξ ϕ

′ ′′
′ ′= = =

′ ′ ′
. It follows that 2ρ ′  and NGρ′

differ by a constant. But at 2 0t′ = they are equal to each other. Therefore, 2 NGρ ρ′ ′=  and 

thus ρ ′  is invariant as expected since it is a spatial measurement. 

On account of (5) π  is also invariant between observers 2O′  and O′  . 
However,  ( , )I tξ  is not invariant and therefore, the magnitude of the field G will differ 

but not its direction, which remains invariant. 

Repeating the above exercise we see that the findings hold for case B.I, where we have 

the nearby observers but rotation with slippage. Therefore, in the following we will not 

require that observer O′ is necessarily located at the origin of the axis at A. 

Following the same reasoning for cases A.II and B.II, for the far away observer, we find 

that all the above quantities plus the magnitude of the G field remain invariant whether 

the observer is under gravity or not. 

 

3.1  The ′F  force for rotation without slippage (observer O′ , case A.I) 
 

First we need some notation. Body A has rotating mass Am′  as seen by observer O′  ( Am′  

is calculated in [3] from the stationary mass Am ), angular velocity of rotation Aw  and 

body B has Bm′  (calculated the same way as Am′  ) and Bw  respectively. Also let the 

distance between the bodies A, B as observed by observer O′ (who stands within the G

fields created by A and B) be ( , )AB A Bw wρ ′  to remind us that it is a function of Aw  and 

Bw , and let for the moment the planes of rotation of the two bodies be the same so that 

their distance in the z direction is zero ( 0z = ) for simplicity. Later we relax this 

restriction. Let also A and B be within each other’s reach of the respective G field. 

Suppose for the moment that 0Bw = . Then the signals traveling from A will reach B 

with an angle of deflection with respect to the line joining the two bodies as seen by O′ , 

equal to Aϕ .[ [Recall that from (8) ]
0 2 2 2

cos
(0,0)

A z

A AB

c

c w
ϕ

ρ=
=

′+
or 

]
0

(0,0)
tan A AB

A z

w

c

ρ
ϕ

=

′
= , where (0,0)ABρ′ is the length of the path of the signal that 

travels from A to B, which is the same as the straight line from A to B, when there is no 

rotation i.e. when 0A Bw w= = .]] 

The force AB
′F  that body B will feel as seen by observer O′ , will be defined as the 

product of the AB
′G  field ( the field due to A as it is felt by B) with the mass of body B. 

This is justified by the idea that the number of signals of the field that body B intercepts 

will be proportional to its observed mass, Bm′ . This can be written as 

 AB AB Bm′ ′ ′=F G  (52) 

 

Now we will let body B rotate (along with the space around it) so that 0Bw ≠ . To 

visualize the situation look at Figure 1. The case of no rotation is shown in Figure 1 (a). 
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Figure 1 (a) Neither body rotates . The straight line distance which coincides with the path of 

the signal is AB and its length is (0,0)ABρ  (b) Only A rotates. The curved line ACB indicates 

the path of a signal from A towards B through C as seen by  observer O′  . The length of the 

path ACB is again (0,0)ABρ  but the straight line for observer O′ is shorter: ( ,0)AB Aw ABρ′ =   

(c) A and B rotate in the same direction  (d) A and B rotate in opposite directions. The dashed 

line from ACB in cases (c) and (d) shows the path of the signal from A to B (whose length  is 

( , )AB A Bw wρ ′
A 

C B 
Aϕ  

Bθ ′

c)  0Bw ≠ , 0Aw ≠ , 

0A Bw w >  

( , )AB A Bw wρ ′
A 

C 
B 

Aϕ  
Bθ ′

d)  0Bw ≠ , 0Aw ≠ , 

0A Bw w <  

D 

F 

E E 

F 

D 

(0,0)ABρ  B 

b)  0Aw ≠ , 0Bw =  

( ,0)AB Awρ ′  
A 

C 

B 

Aϕ  

a)  0Bw = , 0Aw =  

A 
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again (0,0)ABρ  ) as seen by observer O′ . The straight line from A to B for that observer is 

( , )AB A Bw w ABρ ′ =  

 

 

Look at Figure 1(b), where disc A is rotating and disc B is stationary. According to an 

observer BO  at B the path of the signal follows the curved path ACB . Suppose now that 

body B and the frame, where it stands at the origin, starts rotating with angular velocity 

Bw , and let BO  rotate with B, while a second observer BO′ on top of BO  does not rotate 

with B. Observer BO  will continue to see the signal follow the same curved path ACB  . 

But BO′  will see the path of the signal change as the result of the addition of the two 

rotations of space (of A and B). It will be more curved if B rotates in the same direction 

as A, and less curved if it rotates in the opposite direction. For the more curved case see 

the dashed path ACB from A to B in Figure 1(c). For the less curved case, when it 

rotates in the opposite direction of Aw  see the dashed path ACB from A to B in Figure 

1(d). In fact, 
BO ′ , will see the angle of deflection 

A
ϕ  (= DBE∡ ) at point B increase by

B B AB
w tθ ′ ′= , where 

(0,0)
AB

ABt
c

ρ ′
= . Note that 

B
O′  does not necessarily have to be located 

at B. He is a type O′ observer as we explained above. 

 So the final deflection will be 
A B

ϕ θ ′+  . But in fact 
B

θ ′ is measured at B, which is zero 

distance from B, and therefore, there is no effect from the rotation of B. Thus 
B B

θ θ′ =  

and 
B B

w w′ = . (See Figure 1 (c) 
B

EBF θ ′=∡  and 
A B

DBFϕ θ ′+ =∡ , where 
A

ϕ  is given 

by 
(0,0)

tan A AB
A

w

c

ρ
ϕ

′
= ). In the following we may use 

B
θ  instead of 

B
θ ′  since they are 

equal. If B is rotating in the opposite direction, the final deflection angle 
A B

ϕ θ ′+  will be 

the result of subtraction (since 
B

θ ′ is negative) and will look as in Figure 1(d) where 
A

ϕ  

= DBE∡ , 
B

EBFθ ′ =∡  and 
A B

FBDϕ θ ′+ =∡ . Recall that observer O′  lies within the 

extend of both G fields, that of A and that of B, which for the outside far away observer 

O′′  extend up to the cylinder of radius 
A

c

w
 around the axis of rotation of body A and the 

cylinder of radius 
B

c

w
 around the axis of rotation of body B. 

 

The straight line distance between A and B according to observer O′  is ( , )
AB A B

w wρ ′ .  

In order to relate ( , )
AB A B

w wρ ′  to (0,0)
AB

ρ′ we must imagine that 
B

O  has a straight trans 

parent rod of length ( ,0)
AB A

wρ ′ whose one end he hold and it points in the radial 

direction from B, through which a signal is send, whenever its free end passes from A. 

Then O′  will see a curve from A to B being traveled by the signal and the radius being 

contracted to ( , )
AB A B

w wρ ′ according to (1) at 0z = . So in effect we apply (1) at 0z =  

twice: 

 
( ,0) ( , )

sinhB AB A B AB A B
w w w w w

c c

ρ ρ′ ′
=  (53) 
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(0,0) ( ,0)

sinhA AB A AB A
w w w

c c

ρ ρ′ ′
=  (54) 

From which we arrive at  

 
,( )

(0,0) sinh sinh
B AB A BA

AB

A B

w w wwc

w w c

ρ
ρ

′ 
′ =  

 
 (55) 

We may remark here that when 2 2x− ≤ ≤  then sinh x x≈  and therefore, when  

( , )
2 2B AB A B

w w w

c

ρ
− ≤ ≤  and 

( , )
2 2A AB A B

w w w

c

ρ
− ≤ ≤  then (0,0) ( , )

AB AB A B
w wρ ρ′ ′≃ . 

 

Observe that the subscript AB indicates the direction of the signal from body A to body 

B. ( , )
AB A B

w wρ ′ is not symmetric in the direction of the signal. It is also not symmetric in 

,
A B

w w . But it is symmetric if both A,B and ,
A B

w w are interchanged. This means that 

since observer O′  will see the same distance, ( ( , ) ( , )
AB A B BA A B

w w w wρ ρ′ ′= ) the 

corresponding distances that the light signals travel will be different ie.,

(0,0) (0,0)
AB BA

ρ ρ′ ′≠ . This, in turn, means that a signal traveling from A to B will travel 

a different distance ( (0,0)
AB

ρ′ ) than the signal traveling from B to A ( (0,0)
BA

ρ ′ ) as 

observer O′  sees them. 

By symmetrical arguments the signals that arrive to A from B will have an angle of 

deflection equal to 
B A

ϕ θ ′+  where 
A A BA

w tθ ′ ′= , 
(0,0)

tan B BA
B

w

c

ρ
ϕ

′
= , and 

(0,0)
BA

BAt
c

ρ ′
=

By the same arguments as for observers at B, 
A A

θ θ′ = , 
B B

w w′ =  and hence we will not 

use the prime. The magnitude of the force is again given by (52) but the direction is 

changed. Thus, 

 BA BA Am′ ′ ′=F G  (56) 

where BA
′G is given by (16), while the direction is given by the deflection from the 

straight line ( , )
BA B A

w wρ ′ by the total deflection 
B A

ϕ θ+ . 

 

We are ready now to relax the condition that 0z =  (recall that z  is the distance 

between A and B projected on the z axis).  

For observer O′  the field created by A is limited by 
A

c
z

w
<  

The force 
AB
′F  perceived by body B that is due to the 

AB
′G field created by body A is 

given by (56) and 
AB
′G is given by (11) and combining them, 

 

2 2 4 2 2 2

,2

2 2 2 2 2

ˆ
(0,0) ( , , ) (0,0) cos (0,0)

( , , )( (0,0) ) ( , , ) (0,0)

G A B
AB AB

AB A A AB AB AB A AB

A AB AB AB A AB AB A AB

k m m

z w U w t z c
z

I w t z cI w t c w

ρ ξ ρ ϕ ρ
ξ ρ ξ ρ

′ ′
′ ′= −

 ′ ′ ′ +
 + +
 ′ + ′+ 

F v

 (57) 

Where we have denoted ( , )
AB AB

I tξ  as ( , , )
A AB AB

I w tξ  and similarly for ( , , )
A AB AB

U w tξ  

to remind us that it also depends on 
A

w . Also in (57) for economy of space we denoted 
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(0,0)
AB AB

ξ ξ=  and (0,0)
AB AB

t t= . The magnitude of the field AB
′G  given by (11) 

remains unaffected by the rotation of B, because it gives the magnitude of the field at 

point B, where the rotation of B has no effect. It only affects the number of signals per 

unit volume at positive distance from B (not at zero distance from B). This is why (11) 

still holds. Only the direction ˆ
AB
′v of the signals of the field as they fall on body B 

changes because the angle of deflection changes as we will explain below. The curved 

distance (0,0)
AB

ρ′  is the projection on the plane of rotation or horizontal plane (i.e. the 

plane that is perpendicular to the axes of rotation of the bodies A, B) of the path that the 

field signal follows to go from A to B, which is curved and possibly winding around A 

and around B. The total distance that the signals travel from A to B is 
2 2(0,0)AB zρ′ + , 

while (0,0)
AB

ξ is the angle of inclination, which the signals from A make with the z axis 

(
(0,0)

tan (0,0) AB
AB

z

ρ
ξ

′
= ). 

Also the angle of deflection of the signals arriving at B will increase from 
A

ϕ  to 

A B
ϕ θ+ , where from (8) we know that 

2 2 2

(0,0)
tan

sin (0,0)

A AB
A

AB A

w

c w z

ρ
ϕ

ξ

′
=

−
 , while  

 (0,0)
B B AB B B AB

w t w tθ θ′ ′= = =  (58) 

and 

 

2 2(0,0)
(0,0)

cos (0,0)

AB

AB

AB

z z
t

c c

ρ
ξ

′ +
= =  (59) 

The direction of the signals of the field is represented by the unit vector ˆ
AB
′v , which 

(when projected on the horizontal plane) gives the total angle of deflection 
A B

ϕ θ+  of 

the signals from the projection of the straight line between A and B on the horizontal 

plane. Specifically, 

 ˆ (sin (0,0)cos( ),sin (0,0)sin( ),cos (0,0))
AB AB A B AB A B AB

ξ ϕ θ ξ ϕ θ ξ′ = + +v  (60) 

for the cylindrical components ( , , )zρ θ . 

Further, to determine (0,0)
AB

ρ′ from the observed ( , )
AB A B

w wρ ′ , we apply the same 

reasoning as for the two dimensional case ( 0z = ) that we used above and apply the 

transformation (1) twice, 

 ( ,0) sin (0,0) ( , (0,0), (0,0))
AB A AB A AB AB

w c I w tρ ξ ξ′ =  (61) 

 ( , ) sin ( ,0) ( , ( ,0), (0,0))
AB A B AB A B AB A AB

w w c w I w w tρ ξ ξ′ =  (62) 

 
(0,0)

tan (0,0) AB
AB

z

ρ
ξ

′
=  (63) 

 
( ,0)

tan ( ,0) AB A
AB A

w
w

z

ρ
ξ

′
=  (64) 

 

2 2(0,0)
(0,0) AB

AB

z
t

c

ρ′ +
=  (65) 

 

Substituting,(65) and (64) in (62) we have an equation relating ( , )
AB A B

w wρ ′  to 

( ,0)
AB A

wρ ′ . While substituting (65) and (63) in (61) we have an equation relating 
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( ,0)
AB A

wρ ′  to (0,0)
AB

ρ′ .Thus from ( , )
AB A B

w wρ ′ we may find ( ,0)
AB A

wρ ′  and then 

(0,0)
AB

ρ′ . 

Finally, from (1), (5) and (9) 

 
2 2 2

( , )

( ,0) ( ,0) )

B AB A B

B AB A B AB A

w w w c

w w c w w

ρ
ρ ρ

′ ′
=

′ ′+
 (66) 

From which 
B

w′  may be determined and then 
B

θ ′ found using (58). But in our case the 

latter is not needed since we measure 
B

θ ′ at zero distance from B and hence as we said 

B B
θ θ′ =  and 

B B
w w′ = . 

We may observe that the force in (57) is asymmetric in A and B both in direction and 

magnitude. 

 

3.2   The ′′F  force for rotation without slippage (observer O′′case A.II) 
 

Observer O′′  lies outside both ′′G  cylinders of the bodies A, B. That is he is beyond the 

cylinder of radius 
A

c

w
 with axis of rotation that of body A and cylinder with radius 

B

c

w
 

with axis of rotation that of body B. But bodies A and B lie within each other’s G- 

cylinder. The angle of deflection that is due only to the rotation of A is by (24) given by 
2 2 2 2 2

2

(0,0) (0,0) sin (0,0)
tan (1 )

A AB

A AB A AB AB
A

w t

w z w

c c

ρ ρ ξ
ϕ

′′ + ′′
′′ = +
���������

 . This angle of deflection 

will be increased because of the rotation of B by 
B B AB B

w tθ θ′′ = =  where 

2 2(0,0)
AB

AB

z
t

c

ρ′′ +
=  and the total deflection will be 

A B
ϕ θ′′ ′′+ . Observe that  B Bθ θ′′ = and 

that we may, therefore, omit the double prime for θ ′′ below. The angle of inclination of 

the signal velocity vector from the z axis  for observer O is 

(0,0)
tan (0,0) tan (0,0) AB

AB AB
z

ρ
ξ ξ

′′
′′= =  where z is the distance between A and B 

projected on the z axis.  

The radial distance 
AB

ρ ′′  is given by (17) and applying it twice we have, 

 
2 2 2

( , ) ( ,0)
( ,0)

AB A B AB A

B AB A

c
w w w

c w w
ρ ρ

ρ
′′ ′′=

′′+
 (67) 

 
2 2 2

( ,0) (0,0)
(0,0)

AB A AB

A AB

c
w

c w
ρ ρ

ρ
′′ ′′=

′′+
 (68) 

Substitute (68) in (67) to find 

 
2 2 2 2

(0,0)
( , )

( ) (0,0)

AB
AB A B

A B AB

c
w w

c w w

ρ
ρ

ρ

′′
′′ =

′′+ +
 (69) 

which is symmetric in A, B. From the observed radial distance between A, B, which is 

represented by ( , )
AB A B

w wρ ′′  one can use (69) to find the radial component (the 

projection on the horizontal plane) of the length of the path of the signal from A to B 

which is given by (0,0)
AB

ρ′′ . In fact we may solve to find, 
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2 2 2 2

( , )
(0,0)

( ) ( , )

AB A B
AB

A B AB A B

c w w

c w w w w

ρ
ρ

ρ

′′
′′ =

′′− +
 (70) 

This value may be used to determine 
AB

t  , (0,0)
AB

ξ ′′ and tan
A

ϕ ′′which is given by (24) 

 2 2 2tan (1 sin (0,0))A A AB A AB ABw t w tϕ ξ′′ ′′= +  (71) 

While from (25) 

 

2 2 2 2 2

3

2 2 2 2

1 (1 sin (0,0))
tan ( ,0) tan (0,0)

(1 sin (0,0))

A AB A AB AB

AB A AB

A AB AB

w t w t
w

w t

ξ
ξ ξ

ξ

′′+ +
′′ ′′=

′′+
 (72) 

Now the force exerted on B is given by, 

 
AB AB B

m′′ ′′ ′=F G  (73) 

And  substituting for 
AB
′′G  from (26) we obtain, 

 
( )

3
2 2 2 2

3 2 2

(0,0)
ˆ

( (0,0) )

G A B A AB

AB AB

AB

k m m c w

c z

ρ

ρ

′ ′ ′′+
′′ ′′= −

′′ +
F v  (74) 

This can also be expressed in terms of ( , )AB A Bw wρ ′′  using (70). The unit vector of the 

direction of the signals of the field is given by 

 ˆ (sin ( , ) cos( ),sin ( , ) sin( ), cos ( , ))AB AB A B A B AB A B A B AB A Bw w w w w wξ ϕ θ ξ ϕ θ ξ′′ ′′ ′′ ′′ ′′ ′′= + +v  (75) 

The unprimed quantities refer to observer O. As we explained in the previous section 

the ratio /w c  , remains invariant under the presence of a gravitational field and the 

same is true for the quantities wt, and ct. Thus, for the far away observer the angles Aϕ ′′ , 

Bθ ′′ , ABξ ′′ and the distance ABρ ′′ , will not depend on whether he or the other stationary 

observers at A or B or some other location, are under the influence of a gravity field and 

in particular of the G field created by the other rotating body. 

Still we need to show how tan ( , )AB A Bw wξ ′′  is determined so that the unit vector in (75) 

is well defined. Imagine a light signal starting from B is send through a transparent rod 

that has an angle ( , )BA A Bw wξ ′′ to the z axis and rotates with B having its one end fixed at 

B. After describing a curved path, the signal arrives at A when both B and A are 

rotating. We need to satisfy the following : 

From (69) 

 
2 2 2 2 2 2 2 2

(0,0) sin (0,0)
( , )

( ) (0,0) 1 ( ) sin (0,0)

AB AB
AB A B

A B AB A B AB

c ct
w w

c w w w w t

ρ ξ
ρ

ρ ξ

′′ ′′
′′ = =

′′ ′′+ + + +
 (76) 

Where ( , ) ( , )AB A B BA A Bw w w wρ ρ′′ ′′=  , (0,0) (0,0)AB BAρ ρ′′ ′′=  ,  

2 2(0,0)AB

AB BA

z
t t

c

ρ ′′ +
= =  

Letting 
,C BAυ  be the speed of the signal on the curved path from B to A we must have 

the speed in the z direction be unaffected by rotations : 

 
, cos ( , ) cos (0,0)C BA BA A B BAw w cυ ξ ξ′′ ′′=  (77) 

Where 
2 2

cos (0,0) cos (0,0)
(0,0)

BA AB

AB

z

z
ξ ξ

ρ
′′ ′′= =

′′ +
  

The tangential speed of the signal must equal ( , )B BA A Bw w wρ ′′ : 

 
, sin ( , )sin ( , )C BA BA A B BA B BA A Bw w w w wυ ξ ϕ ρ′′ ′′ ′′=  (78) 
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The radial speed of the signal must equal to the rate of increase of the radial distance: 

 ,

( , )
sin ( , ) cosBA A B

C BA BA A B BA

d w w
w w

dt

ρ
υ ξ ϕ

′′
′′ ′′=  (79) 

Where BAϕ′′ is the angle of deflection of the signal from the radial from B to A projected 

on the plain at 0z = .   

Solving the above we start with (76) and we find 

 
3

2 2 2 2 2

( , ) sin (0,0)

(1 ( ) sin (0,0))

BA A B BA

A B BA BA

d w w c

dt
w w t

ρ ξ

ξ

′′
=

+ +

 (80) 

Using this and dividing (78) by (79) and applying (76), we find 

 2 2 2 2( , )
tan (1 ( ) sin (0,0))

( , )
B BA A B

BA B BA A B BA BA
BA A B

w w w
w t w w t

d w w

dt

ρ
ϕ ξ

ρ
′′

′′ ′′= = + +
′′

 (81) 

Dividing (78) by (77) we find 

 
( , )

tan ( , )
cos (0,0)sin

B BA A B
BA A B

BA BA

w w w
w w

c

ρ
ξ

ξ ϕ
′′

′′ =
′′ ′′

 (82) 

And using (76) and (81) we obtain, 

 2

2 2 2 2

sin (0,0)
tan ( , ) 1 cot

cos (0,0) 1 ( ) sin (0,0)

B BA BA
BA A B BA

BA A B BA BA

w t
w w

c w w t

ξ
ξ ϕ

ξ ξ

′′
′′ ′′= +

′′ ′′+ +
 (83) 

 Or 

 

2 2 2 2 2 2

3

2 2 2 2 2

1 (1 ( ) sin (0,0))
tan ( , ) tan (0,0)

(1 ( ) sin (0,0))

B BA A B BA BA

BA A B BA

A B BA BA

w t w w t
w w

w w t

ξ
ξ ξ

ξ

′′+ + +
′′ ′′=

′′+ +
 (84) 

Finally from (77) 
2 2 2 2 2 2

2

, 2 2 2 2 3

cos (0,0) (1 (1 ( ) sin (0,0)) )
cos (0,0) 1 tan (0,0)

cos ( , ) (1 ( ) sin (0,0))

BA B BA A B BA BA
C BA BA BA

BA A B A B BA BA

c w t w w t
c

w w w w t

ξ ξ
υ ξ ξ

ξ ξ
′′ ′′+ + +

′′ ′′= = +
′′ ′′+ +

 (85) 

From (84) we can find for a signal that travels the opposite way, from A to B: 

 

2 2 2 2 2 2

3

2 2 2 2 2

1 (1 ( ) sin (0,0))
tan ( , ) tan (0,0)

(1 ( ) sin (0,0))

A AB A B AB AB

AB A B AB

A B AB AB

w t w w t
w w

w w t

ξ
ξ ξ

ξ

′′+ + +
′′ ′′=

′′+ +
 (86) 

by changing the subscript BA to AB since (0,0) (0,0)AB BAξ ξ′′ ′′= , AB BAt t= . Thus, 

( , )AB A Bw wξ ′′  is found and the unit vector in (75) is determined as required. 

 

3.3  The ′F force for rotation with slippage (observer O′ , case B.I) 
 

In this case we should follow the same steps as for case A.I and after we determine, 

(0,0)ABρ ′ , we calculate 0
0

0

(1 )
AB

AB AB AB

t

ct ctB
B B

AB

w
w e dt e

c

β βθ
β

− −= = −∫ , where  

2 2(0,0)AB

AB

z
t

c

ρ +
=  , sin (0,0) cos (0,0)AB AB ABβ λ ξ µ ξ= +   
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However, calculations are more difficult because of the exponential in the angular 

velocity. 

 

3.4 The ′′F  force for rotation with slippage (observer O′′ , case B.II) 
 

From (41), and setting 
0

AB ABct

A Aw w e
β−= , 

0
AB ABct

B Bw w e
β−= , where 

sin (0,0) cos (0,0)AB AB ABβ λ ξ µ ξ′′ ′′= +  and  

2 2(0,0)AB

AB AB

z
t t

c

ρ ′′ +
′′ = =   we have,

 
 

 
2( (0,0) )2 2 2

0

( ,0) (0,0)
(0,0) AB

AB A AB
z

A AB

c
w

c w e λρ µ
ρ ρ

ρ ′′− +
′′ ′′=

′′+
 (87) 

 
2( (0,0) )2 2 2

0

( , ) ( ,0)
( ,0) AB

AB A B AB A
z

B AB A

c
w w w

c w w e λρ µ
ρ ρ

ρ ′′− +
′′ ′′=

′′+
 (88) 

From which (0,0)ABρ ′′  is determined. Observe that ( , ) ( , )AB A B BA A Bw w w wρ ρ′′ ′′= . The 

force is given by, 

 

3
2( (0,0) )2 2 2 2

0

2( (0,0) )2 2 2 2 3

0

( (0,0) )
ˆ

( (0,0) ) ( (0,0) )

AB

AB

z

G A B A AB
AB AB B ABz

AB A AB

k m m c w e
m

z c c w e

λρ µ

λρ µ

ρ
ρ λ ρ

′′− +

′′− +

′ ′ ′′+
′′ ′′ ′ ′′= = −

′′ ′′+ +
F G v  (89) 

where the unit vector is given by, 

 ˆ (sin ( , ) cos( ),sin ( , ) sin( ), cos ( , ))AB AB A B A B AB A B A B AB A Bw w w w w wξ ϕ θ ξ ϕ θ ξ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′= + +v  (90) 

Using simpler notation 

2 2(0,0)AB

AB AB

z
t t

c

ρ ′′ +
′′ = =    and

(0,0)
tan (0,0) tan (0,0) tan AB

AB AB AB
z

ρ
ξ ξ ξ

′′
′′ = = =   we find tan Aϕ ′′ from (48). 

2 2

2 22 2 2 2

2 23 2 2

2

(0,0)
1(0,0)(1 sin )

tan
(0,0) ( (0,0) )1 sin

1

A AB

A ABA AB A AB
A

A AB ABAB AB A

w
w zw t w t c

w zc t w c

c

ρ
ρξ

ϕ
ρ λρ µβ ξ

′′
+′′ ++

′′ = =
′′ ′′ ++

+
(91) 

 Then we calculate  0
0 0

0 0

(1 )
AB AB

AB AB AB AB

t t

ct ct ctB
B B B B

AB

w
w e dt w e dt e

c

β β βθ θ
β

′′
− − −′′ = = = = −∫ ∫   

From (49) 
2 2 2 2 3 2 2 2

3

2 2 2 2

(1 sin (0,0)) (1 sin (0,0))
tan ( ,0) tan (0,0)

(1 sin (0,0))

A AB AB AB AB A AB

AB A AB

A AB AB

w t c t w
w

w t

ξ β ξ
ξ ξ

ξ

+ + +
′′ =

+
(92) 

To determine tan ( , )AB A Bw wξ ′′ , which is needed to determine the unit vector in  (89) we 

follow a similar approach to that for the case A.II above,  

The only difference  is in the calculation of the derivative of the radial distance, 

 
3 2 2 2

3

2 2 2 2 2

( , ) sin (0,0)(1 ( )sin (0,0))

(1 ( ) sin (0,0))

BA A B BA BA BA A B BA

A B BA BA

d w w c c t w w

dt
w w t

ρ ξ β ξ

ξ

′′ + +
=

+ +
 (93) 

Where we observe that AB BAβ β= , AB BAt t= , 

sin (0,0) sin (0,0) sin (0,0) sin (0,0)BA AB AB BAξ ξ ξ ξ′′ ′′= = = . 
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After some calculation as in A.II we find for a signal traveling from B to A, while both A 

and B are rotating, 

 

 
2 2 2 2

3 2 2 2

( , ) (1 ( ) sin (0,0))
tan

( , ) 1 ( )sin (0,0)

B BA A B B BA A B BA BA
BA

BA A B BA BA A B BA

w w w w t w w t

d w w c t w w

dt

ρ ξ
ϕ

ρ β ξ
′′ ′′+ +

′′ = =
′′ ′′+ +

 (94) 

 
3 2 2 2 2

2 2 2 2 2 2 22 2 2 2

(1 ( )sin (0,0))
tan ( , ) tan (0,0) 1

(1 ( ) sin (0,0))1 ( ) sin (0,0)

B BA BA BA A B BA
BA A B BA

B BA A B BA BAA B BA BA

w t c t w w
w w

w t w w tw w t

β ξ
ξ ξ

ξξ

′′+ +
′′ ′′= +

′′+ +′′+ +
 (95) 

Also written as 
2 2 2 2 2 2 2 3 2 2 2 2

3

2 2 2 2 2

(1 ( ) sin (0,0)) (1 ( )sin (0,0))
tan ( , ) tan (0,0)

(1 ( ) sin (0,0))

B BA A B BA BA BA BA A B BA

BA A B BA

A B BA BA

w t w w t c t w w
w w

w w t

ξ β ξ
ξ ξ

ξ

′′ ′′+ + + + +
′′ ′′=

′′+ +
 (96) 

 
,

cos (0,0)

cos ( , )

BA
C BA

BA A B

c

w w

ξ
υ

ξ
′′

=
′′

 (97) 

It follows that for a signal traveling from A to B when both A and B are rotating the 

angle of inclination to the z axis is, 

 
2 2 2 2 2 2 3 2 2 2 2

3

2 2 2 2 2

(1 ( )sin (0,0)) (1 ( )sin (0,0))
tan ( , ) tan (0,0)

(1 ( ) sin (0,0))

A AB A B AB AB AB A B AB

AB A B AB

A B AB AB

w t w w c t w w
w w

w w t

ξ β ξ
ξ ξ

ξ

′′ ′′+ + + + +
′′ ′′=

′′+ +
 (98) 

And we substitute in (90) to determine the direction of ˆ
AB
′′v , which points opposite to 

the direction of the force.   

 

4   Visualization of the signals’ path for the ′G and ′′G field and 

the attractive-repulsive effect 
 

In Figure 1 (d) and 1 (c) the dashed path from A to B shows how the signal travels from 

A to B for the case of rotations in the same direction and in the opposite direction. Let 

us expand on that in Figure 2.  
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Figure 2    Assuming that bodies A,B are both within the reach of each other’s G field, the 

signals’ path from body A to body B is shown by the curved (or possibly winding) path with 

length . The straight line distance observed by observer O′ , is ( , )AB A Bw wρ ′ or ( , )AB A Bw wρ ′′

for observer O′′ .  (a) When they are rotating in the same direction the angle of deflection Aϕ  

increases to A Bϕ θ ′+  or ( A Bϕ θ ′′+ ) producing a repulsive field. (b) When they are rotating in the 

opposite direction the angle of deflection Aϕ  decreases to A Bϕ θ ′+  or ( A Bϕ θ ′′+  ) (since Bθ ′ < 0) 

producing an attractive field for B. Recall that B B Bθ θ θ′ ′′= =  

 

 

For rotation with or without slippage, the signals of a G field produced by a rotating 

body A will fall on a body B with angle of deflection  
2

A

π
ϕ ≤ . If body B is rotating in 

the same direction as A (Figure 2(a)), the angle of deflection will increase and for 

appropriate range of values of Bw  the resulting angle of deflection A Bϕ θ+ will initially 

result in a repulsive field experienced by B. If the angular velocity Bw  of rotation 

continues to increase Bθ  will increase resulting in winding around B. This will give 

ranges of Bw  for which we will have alternating repulsive and attractive forces 

experienced by B. Similar observations hold for case of Figure 2(b) where 0Bw <  has 

opposite sign to Aw . As we increase Bw , the angle of deflection decreases to A Bϕ θ+  

(because 0Bθ < ), resulting initially in an attractive force as experienced by B. But as 

(a)  0A Bw w >  

(0,0)ABρ ′  

A 

B 

A Bϕ θ ′+

( , )AB A BAB w wρ ′=

Aw
Bw

(0,0)ABρ ′  

Aw

 

A B 

Bw

A Bϕ θ ′+

( , )AB A BAB w wρ ′=

(b)  0A Bw w <  
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Bw  continues to increase we will have winding of Bθ ,  resulting in ranges of Bw  for 

which body B will feel alternating a repulsive and attractive force.  

For values of Bw  that do not cause winding of Bθ , we may talk simply about attractive 

and repulsive force experienced by B depending on whether the rotation is in the same 

or opposite direction.  

Similar remarks hold for ′′G , ( , )AB A Bw wρ ′′ , Bθ  , Aϕ ′′   and for rotation with slippage. 

Figure 3 presents in blue the plot of the total angle of deflection for rotation with 

slippage, 
ATot A Bϕ ϕ θ′′ ′′ +≜  in radians versus (0,0)ABρ ρ ′′= for various cases both for 

macrocosmos and microcosmos. (Recall from [3] that  macrocosmos is when 

(0,0)0 (0,0)
AB zA ABw

e
c

λρ µρ ′′ +′′
<<   , and microcosmos when  (0,0)0 (0,0)

AB zA ABw
e

c

λρ µρ ′′ +′′
>>  ). In 

orange we see angle 

2 2

2 2
2

2 2

2

(0,0)
1(0,0)

arctan( )
(0,0) ( (0,0) )

1

A AB

A AB

A

A AB AB

w
w z c

w zc

c

ρ
ρ

ϕ
ρ λρ µ

′′
+′′ +

′′ =
′′ ′′ +

+
 

and in green  is 0 (1 )AB ABctB
B

AB

w
e

c

βθ
β

−= − . Figures 3 (a), (b), (c), (d), (e) are examples of 

macrocosmos, while  (f), (g), (h) are from microcosmos. It is possible to have examples, 

where the total  angle of deflection is attractive for all distance or alternating attractive – 

repulsive depending on the distance from A (the origin). 
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   (c)      (d) 
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   (e)      (f) 

  

   (g)      (h) 

 

  

Figure 3 The graph of  the total angle of deflection ATot A Bϕ ϕ θ′′ ′′= +  (blue) vs ρ . Also the 

graph of Aϕ ′′  in orange and Bθ  in green. (a), (b), (c), (d), (e) are macrocosmos cases while (f), 

(g), (h) are microcosmos examples. In particular, (a)
10

0 2.16*10Aw −≈ rad/s ,

10

0 1.64*10Bw −≈ rad/s , 
151.68*10λ −≈ m

-1
, 

141.27*10z ≈ m, , the total angle of deflection 

remains positive for all ρ but does not exceed / 2π . (b) 
9

0 9.26*10Aw −≈ rad/s, 

7

0 9.4*10Bw −≈ rad/s , 
163.89*10λ −≈ m

-1
, 0z ≈ m. The total deflection angle spans values 

from 0 to 8 in radians. Therefore, for ( 0, / 2π ) it is attractive, for ( / 2,3 / 2)π π  it is repulsive, 

fot (3 / 2,5 / 2)π π  it is attractive and for (5 / 2,8)π  it is repulsive.  (c) 
10

0 6.82*10Aw −≈

rad/s, 
10

0 3.12*10Bw −≈ − rad/s , 
165.27*10λ −≈ m

-1
, 0z ≈ m.  

Body B rotates with negative sign. The total angle of deflection takes both positive and negative 

values depending on the distance but remains within ( / 2, / 2)π π− and hence it is always 

attractive. (d)  This is the same as (c) only 143.01*10z = m. (e) 
9

0 8.52*10Aw −≈ rad/s, 

7

0 2.84*10Bw −≈ − rad/s , 
163*10λ −≈ m

-1
, 0z ≈ m. The total angle of  deflection spans 

(0, / 2)π− where it is attractive and ( / 2, 3)π− − where it is repulsive.  (f) 
15

0 5.7*10Aw ≈

rad/s, 
15

0 1*10Bw ≈ − rad/s , 
101*10λ −≈ m

-1
, 0z ≈ m. The total angle of deflection spans 

(0, / 2)π  where it is attractive, (g) 
23

0 3*10Aw ≈ rad/s, 
19

0 3*10Bw ≈ − rad/s , 
41*10λ −≈ m

-1
, 

0z ≈ m. The total  angle of deflection  spans (-2,8) as the distance varies from 0 to 
1010−

. The 

space where the total angle of deflection takes values is segmented to (2, / 2)π where it is 

repulsive, ( / 2, / 2)π π−  where it is attractive, ( / 2, 3 / 2)π π− − where it is repulsive, 

( 3 / 2, 5 / 2)π π− − where it is attractive, ( 5 / 2,8)π− where it is repulsive. (h)
 

23

0 8.4*10Aw ≈

rad/s, 
24

0 3*10Bw ≈ − rad/s , 
95*10λ −≈ m

-1
, 0z ≈ m. For distances from 0 to

1510−
 m the total 
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angle of deflection is virtually equal to the angle of deflection that is due to the rotation of body 

A only and varies from 0 to / 2π (attractive). 

 

 

5  Interaction of two spinning bodies with axes not parallel 

 
Until now we have assumed that the axes of rotation of the two bodies were parallel. 

This was done for simplicity and in order to understand the problem better by 

approaching it stepwise. Now we will look at the general situation, when the axes of 

rotation of the two bodies are not parallel. Figure 4 (a) and (b) shows the setup. 

We imagine a body A rotating around axis 1Z . The plane perpendicular to 1Z  at A is 

called the plane of rotation and is denoted as PL1. Similarly a body B rotates around an 

axis 2Z  and the plane of rotation is PL2. PL1and PL2 intersect at XX’ with angleφ . A 

signal from A to B travels a curved path. The tangent to this curve at B is extended 

tangentially to some point F. The straight line from A to B is extended to E. Let a plane 

PL1’ parallel to PL1 pass through point B (PL1’ is not shown in Figure 4(a)). The 

projection of E on PL1’ is 1E  (not shown) and the projection on PL2 is 2E .The 

projection of F on PL1’ is 1F  (not shown) and on PL2 is 2F . Angle 1 1 1E BF ϕ=∡  and 

angle 2 2 2F BE ϕ=∡ . Also angle 1 1FZ BF ξ′ =∡ (not shown, where 1Z ′ is a line parallel to 

axis 1Z  passing through B) and 2 2FZ BF ξ=∡ . Further, we observe that starting from A 

with cylindrical coordinates, point B is at height 1z  and radial distance 1ρ , while 

starting from B, point A is at height 2z  and radial distance 2ρ . The plane that contains 

2Z  and passes through A, contains also E (since A, B lie on this plane and E lies on the 

extension of AB). This plane crosses XX’ at Q.  AL is drawn perpendicular to XX’. The 

angle 1LAQ u=∡  is the azimuth angle of B with respect to the cylindrical coordinate 

system that has origin at A and axis 1Z . The azimuth angle is measured looking down 

from 1Z  counterclockwise starting from AL (the perpendicular from A to XX’). The 

angle 1 190EAQL uγ= = °−∡  

Now our strategy is as follows. We let body B not rotate for the moment and we 

transform 
1, 1, 1, 1 1,F z uϕ ξ ρ ,to 

2, 2, 2, 2 2,F z uϕ ξ ρ . After that we will let B rotate and see how 

2 2, 2, 2 2, ,F z uϕ ξ ρ  are changed by the rotation. 
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Figure 4(a)   Body Α rotates with axis of rotation 1Z  and plane of rotation PL1. Body Β has 

axis of rotation 2Z and plane of rotation PL2. The signal that travels from Α to Β is shown by 

the curve that passes through Α and Β. Taking the tangent at B we extend it to F. AB is the 

straight line from A to B which is extended to E. Angle 2 2FZ BF ξ=∡ . The projections of E , F 

on PL2 are 2E , 2F , respectively. Angle 2 2 2E BF ϕ=∡ , the angle of deflection on PL2. Angle 

1LAQ u=∡  is the azimuth angle of 2Z  with respect to cylindrical coordinate system 1Z with 

origin at A. The angle between PL1 and PL2 is φ . 

 

 

 

PL1 

PL2 

1Z 2Z  

A 

B 

C 

X’ 

L 

E 

F 

2E  

2F

2Fξ  

2ϕ

1u  
1Eγ

φ  
X 

Q 
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Figure 4(b)   This a schematic side view of a section of  Figure 4(a). The tangent to the signal path 

at B and the straight line from ABE form an angle in space with vertex at Β. The projection of 

this angle ( EBF∡ ) on PL1 forms the angle 1ϕ  while the projection on PL2 forms the angle 2ϕ
. Also the tangent to the curve (Α,Β) at Β forms an angle 1Fξ with 1Z ′  ( 1Z BF′∡ ), while the 

same forms an angle 2Fξ  with PL2  ( 2Z BF∡ ). Further, starting from Α with cylindrical 

coordinates ,Β is at height 1z  and radial distance 1ρ  and azimuth angle 1u . While starting from 

Β with cylindrical coordinates the point Α is at a height 2z  and radial distance 2ρ  and azimuth 

angle 2u . PL1’ is a plane parallel to PL1 that passes through B . 

 

 

 

We will use two Lemmas from Geometria proven in Appendix A to show how 

2 2, 2, 2, F zϕ ξ ρ  are related to 1 1 1 1, , ,F zϕ ξ ρ . Draw plane PL1’parallel to PL1 passing 

through body B. The planes PL2 and PL1’ refer us to Lemma 1 of Appendix A. We 

know that 1 1EE BX γ=∡  and we call  2 2EE BX γ=∡  , 1 1FF BX γ=∡  and 2 2FF BX γ=∡ . 

We also know that 

 1 1 1E Fγ γ ϕ− =  (99) 

 2 2 2E Fγ γ ϕ− =  (100) 

 1 1
2

E u
π

γ = −  (101) 

And from Lemma 1, noting that 1 1
2

x
π

ξ = −  and 2 2
2

x
π

ξ = −  

 1
2 1

1

cot
tan (sin cos ) tan

sin

E
E E

E

ξ
γ φ φ γ

γ
= +  (102) 

A 

B 

PL1 

PL2 

1Z 2Z  

1, 1Fξ ϕ

2, 2Fξ ϕ

2ρ  

1ρ

1z  
2z  

Α’ PL1’ 

F 

E 

φ  

1Z ′  
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 1
2 1

1

cot
tan (sin cos ) tan

sin

F
F F

F

ξ
γ φ φ γ

γ
= +  (103) 

 1
1

1

tan E
z

ρ
ξ =  (104) 

 1 1
2 1 1 1 1

2 2 2 2

1 1 1 1

cos cos cos sin sin sin cos sin cosE E E E

z
u

z z

ρ
ξ φ ξ ξ γ φ φ φ

ρ ρ
= − = −

+ +
(105) 

 2 1 1 1 1 1 1 1cos cos cos sin sin sin cos cos sin cos( )sinF F F F F F uξ φ ξ ξ γ φ φ ξ ξ ϕ φ= − = − + (106) 

 

 
Using (102) , (101), (104) we find 2tan Eγ  

We use (103) and (99) to find 2tan Fγ . From these we may find 2ϕ since 2 2 2E Fγ γ ϕ− =  

Now we use Lemma 2 of Appendix A to find  

 2 1 1 1cos cos sinz z uφ ρ φ= − −  (107) 

 2 2 2 2 2 2

2 1 1 1 1 1 1(1 cos sin ) sin 2 sin cos cosu z z uρ ρ φ φ ρ φ φ= − + −  (108) 

 1
2 1

2

sin sinu u
ρ
ρ

= −  (109) 

Finally, we allow body B to rotate around 2Z  and use : For rotation without slippage, 

use either (61) to (65) to determine 2ρ ′ , or (67) to (70), to determine 2ρ′′  from 2ρ . 

Similarly, for rotation without slippage  use (87) and (88) to determine 2ρ′′ . For 

example, to determine 2ρ′′  for rotation without slippage, 

 
2. 2.

2 2 2

2.

( , ) ( ,0)
( ,0)

AB A B AB A

B AB A

c
w w w

c w w
ρ ρ

ρ
′′ ′′=

′′+
 (110) 

 
1. 1.

2 2 2

1.

( ,0) (0,0)
(0,0)

AB A AB

A AB

c
w

c w
ρ ρ

ρ
′′ ′′=

′′+
 (111) 

And the procedure is: Start from 1. (0,0)ABρ ′′  use (111) to find 1. ( ,0)AB Awρ ′′ . Then use 

(107), (108), (109) to change coordinates and determine 2. ( ,0)AB Awρ ′′  and then use (110) 

to finally get 2. ( , )AB A Bw wρ ′′ . Similarly, for 2. ( , )AB A Bw wρ ′ , 2. ( , )AB A Bz w w′ , 2. ( , )AB A Bz w w′′  

Also, the angle of deflection 2.ABϕ , will be increased by B B ABw tθ ′ ′= and B B ABw tθ ′′ = , 

respectively where 

2 2

1. 1.(0,0) (0,0)AB AB

AB

z
t

c

ρ ′ +
= . 

 

 

6 Summary 

 
The force acting on a body rotating within the G field created by another rotating body 

is in general not central and not symmetric. It depends not only on the G field created 

by the other rotating body but also on its own rotation not only in magnitude but also in 

direction. As a consequence, depending on the angular velocity and the distance 

between the bodies, we may vary the direction and magnitude of the force and thus 
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make it attractive or repulsive. The force is calculated for the non rotating observer O′
as well as for the far away observer O′′ for the cases of rotation with and without 

slippage and are valid both for macrocosmos and microcosmos. Finally, we use 

geometry to show how we may calculate the force, when the axes of rotation of the two 

interacting bodies are not parallel. 
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Appendix A 

 

 

Lemmas from Geometria 

 
Lemma 1 

Let two planes PL1 and PL2 intersect along a line XX’ and the angle of intersection be 

φ . Draw a line from a point A on XX’ to any point C. Let the projection of AC on PL1 

be AB. and the projection of AC on PL2 be AD. Call angles 1CAB x=∡ , 2CAD x=∡ . 

Draw a plane through C vertical to XX’. Let it cross XX’ at E. Call angles 1EAB γ=∡ , 

2EAD γ=∡ , 1CEB ϑ=∡ , 2CED ϑ=∡  . Then 

(1) 

 1 1 2 2cos cos cos cosx xγ γ=  (A.112) 

(2) 

 1 2
1 2

1 2

tan tan
tan , tan

sin sin

x x
ϑ ϑ

γ γ
= =  (A.113) 

(3)   

 2 1
2 1 1 1 2 2

1 2

sin sin
sin cos sin ,sin cos sin

cos cos
x x x x

ϑ ϑ
γ γ

ϑ ϑ
= =  (A.114) 

(4)   

 2
2 1

1

cos
tan tan

cos

ϑ
γ γ

ϑ
=  (A.115)  

Proof: 
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Figure  A-1 

 

The plane perpendicular to XX’ that passes through C will pass through D, B (because 

D,B are the projections of C on the two planes respectively). (see Figure A-1) 

 

(1) To prove the first equation observe that triangle CAB is orthogonal at B, triangle 

ABE is orthogonal at E and also triangle CDA is orthogonal at B, triangle DEA is 

orthogonal at E. Hence, 

 1 1 2 2cos cos cos cosAE AC x AC xγ γ= =  

From which the equation to be proved follows 

 (2) To prove the second equation  

1 1
1

1 1 1

sin tan
tan

cos sin sin

AC x xCB

BE AC x
ϑ

γ γ
= = =  

And 

2 2
2

2 2 2

sin tan
tan

cos sin sin

AC x xCD

DE AC x
ϑ

γ γ
= = =  

 
(3) To prove the third equation 

 

2 2
2

1

sin sin
sin

cos

CE BECD
x

AC AC AC

ϑ ϑ
ϑ

= = =   

  

But 1 1cos sinBE AC x γ= , hence, 

 1 1 2
2

1

cos sin sin
sin

cos

x
x

γ ϑ
ϑ

=  

The second equation of (3) follows by symmetrical arguments  

(4) To prove the fourth equation 

X 

X’ A 

B 

C 

D 

E 
1x

1γ  

2x  2γ  

PL1 

PL2 

1ϑ  

2ϑ

φ  

1Z
2Z  
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 2tan
ED

AE
γ =  

 2cosED EC ϑ=  

 1cosAE AB γ=  

 1sin
EB

AB
γ =  

 1cosEB EC ϑ=  

From the above equations use the first four to solve for 2tan γ and find  

 2 2 1tan cos tan
EC

EB
γ ϑ γ=  

And use the fifth to substitute for 
EC

EB
 and obtain, 

 2
2 1

1

cos
tan tan

cos

ϑ
γ γ

ϑ
=  

(QED) 

 

Lemma 1 tells us how to find the projection angles of a line on Plane 2 when we know 

the projection angles on Plane 1 and the angle between the planes. 

 

 

Discussion  

The angles 1ϑ and 2ϑ  are related to φ . In fact, the formulas in (3) and (4) of Lemma 1 

can be further manipulated and expressed in terms of φ  . To do this we must look at the 

two planes from X towards X’ and make some definitions about orientations. 

 

 
Figure A-2 
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Given a plane PL1 we draw a vertical pointing in the Z direction and call it 1Z  and the 

same for PL2 and 2Z . Given a line of intersection of PL1 and PL2 we call it  XX’ and 

define a direction towards X. In Figure C-2, XX’ is vertical to the paper surface and X 

is on our side). The angle φ  of intersection of PL1 and PL2 is zero when 1Z  and 2Z are 

parallel both pointing in the same direction and the half planes PL1 and PL2 coincide. 

Angle φ  is measured counterclockwise as we look from X towards X’ starting from 

PL1 and ending at PL2.(see Figure A-2). 

We draw a plane 1X  through the intersection of PL1 and PL2 (XX’) that is vertical to 

PL1 ( 1X  contains 1Z ). We also draw a plane 2X  through the intersection of PL1 and 

PL2 (XX’) that is vertical to PL2 ( 2X  contains 2Z ). This way space is divided in eight 

regions: R1, R1’, R2, R2’,R3, R3’, R4, R4’(see Figure C-2) 

Observe that varying 1x  , 1γ  so that 1
2 2

x
π π

− ≤ ≤  and 10 2γ π≤ ≤  spans the surface of a 

sphere. In fact, 1x , 1γ  are the angles used in spherical coordinates. The same is true for 

2x , 2γ , where 1 0x =  when AC lies on PL1 and it is positive in the positive side of 1Z ; 

and 1γ  is measured counterclockwise looking down from 1Z , starting from AX towards 

AB. Similarly, 2 0x =  when AC lies on PL2 and it is positive on the positive side of 2Z , 

while 2γ  is measured counterclockwise as we look down from 2Z on PL2 and starting 

from AX towards AD. 

Also, 1 0ϑ =  when AC lies on PL1 where 1
2 2

π π
ϑ− ≤ ≤  being positive on the positive 

side of 1Z  , and 2 0ϑ =  when AC lies on PL2 where 2
2 2

π π
ϑ− ≤ ≤  being positive on the 

positive side of 2Z  

We summarize all this in the following table 

 

Region 
1ϑ ,  

1x  

2ϑ ,  

2x  

1γ  2γ  1 2ϑ ϑ−  

R1 + - 
10 γ π≤ ≤  20 γ π≤ ≤  1 2ϑ ϑ φ− =  

R1’ - + 
1 2π γ π≤ ≤  2 2π γ π≤ ≤  1 2ϑ ϑ φ− = −  

R2 + + 
10 γ π≤ ≤  20 γ π≤ ≤  1 2ϑ ϑ φ− =  

R2’ - - 
1 2π γ π≤ ≤  2 2π γ π≤ ≤  1 2ϑ ϑ φ− = −  

R3 + + 
1 2π γ π≤ ≤  20 γ π≤ ≤  1 2ϑ ϑ φ+ =  

R3’ - - 
10 γ π≤ ≤  2 2π γ π≤ ≤  

1 2ϑ ϑ φ+ = −  

R4 + + 
1 2π γ π≤ ≤  2 2π γ π≤ ≤  1 2ϑ ϑ φ− = −  

R4’ - - 
10 γ π≤ ≤  20 γ π≤ ≤  1 2ϑ ϑ φ− =  

 

Table A-1  The + sign in columns for ( 1ϑ , 1x ) and ( 2ϑ , 2x ) indicates that the quantities are 

non-negative, while the –  sign that they are non-positive. 
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 (a) When C lies in R1 equation (A.114) of Lemma 1 becomes  

2
2 1 1

1

sin
sin cos sin

cos
x x

ϑ
γ

ϑ
−

− =   but  in R1 1 2ϑ ϑ φ− =  and hence, 

1 1
2 1 1 1 1 1

1

cos sin sin cos
sin cos sin cos sin (cos tan sin )

cos
x x x

φ ϑ φ ϑ
γ γ φ ϑ φ

ϑ
−

= = −  

Using (A.113) of Lemma 1 which in R1 becomes  1
1

1

tan
tan

sin

x
ϑ

γ
=  we obtain, 

 2 1 1 1sin cos sin cos sin sinx x xφ γ φ= −  (A.116) 

And similarly, 

 1 2 2 2sin cos sin cos sin sinx x xφ γ φ= +  (A.117) 

Observe here that if we replace φ  by -φ  to indicate the reverse transformation then 

(A.117) becomes symmetric to (A.116). Namely, 

 1 2 2 2sin cos sin cos sin sinx x xφ γ φ= −  (A.118) 

Also (A.115) becomes 

 1
2 1

1

tan
tan (sin cos ) tan

sin

x
γ φ φ γ

γ
= +  (A.119) 

And 

  

 2 2
1 2 2

2 2

tan tan
tan (cos sin ) tan (cos sin ) tan

sin sin

x x
γ φ φ γ φ φ γ

γ γ
−

= + = −  (A.120) 

Again if we replace φ  by -φ  to indicate the reverse transformation we end up with a 

relation symmetrical to (A.119) 

 

If we repeat the calculations for the remaining regions R1’, R2, R2’, R3, R3’, R4, R4’, 

we find that the same relations (A.116), (A.117), (A.118), (A.119), (A.120) continue to 

hold in all regions. 
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Lemma 2 

Let two planes PL1 and PL2 intersect along line XX’ with an angle 0 90φ≤ ≤ ° . Let a 

line 1Z , perpendicular to PL1, that crosses it at point A and a line 2Z perpendicular to 

PL2 that crosses it at point B. Draw a line from B parallel to 1Z that crosses PL1 at G. 

Draw the line AG and extend it until it crosses XX’ at F. Call the line segments AG= 1ρ  

and the line segment BG= 1z . Draw a line from A perpendicular to XX’ that crosses it at 

L. Call the angle LAG u=∡ (it is measured counterclockwise looking from 1Z down on 

PL1, starting from AL and ending on AG). Draw a line from A perpendicular to 2Z that 

crosses it at I. Call BI= 2z  and AI= 2ρ . 

Then  

(1)  

 2 1 1cos cos sinz z uφ ρ φ= − −  (A.121) 

(2) 

 2 2 2 2 2 2

2 1 1 1 1(1 cos sin ) sin 2 sin cos cosu z z uρ ρ φ φ ρ φ φ= − + −  (A.122) 

 

 
Figure A-3 

 

 

Proof (using Figure A-3) 

Draw a line from B parallel to XX’. Let the plane that passes through 1Z
 
 and is 

perpendicular to XX’ cross the previously drawn line at E. Draw ED parallel to AL. 

Draw a line from E perpendicular to PL1 that crosses it at P. 

The plane defined by BGC is perpendicular to PL1 and PL2 because BC lies on  2Z  

which is perpendicular on PL2  and BG was drawn perpendicular to PL1.  Therefore, 
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the plane defined by BGC is perpendicular to XX’ and therefore it is parallel to the 

plane defined by EDLA .   In fact EDAP is an orthogonal parallelogram   and AD=BG. 

Draw a line through E parallel to 2Z . It will cross LA at some point H. Draw a line from 

A perpendicular to the line defined by EH, and let it cross it at  K. Also draw a line from 

D perpendicular to EH and let it cross it at M. 

The plane defined by AKI is perpendicular to both 2Z and its parallel line EMHK. 

Therefore, EBIK is an orthogonal parallelogram and therefore, BI=EK, or 

2z EM MK= +  

Observe that by construction BDAG is orthogonal parallelogram and therefore angle 

LAG BDE u= =∡ ∡ .  

But 1 cos sinEM uρ φ=  because triangle BED is orthogonal and angle BDE u=∡  and 

also triangle DEM is orthogonal and angle 
2

DEM
π

φ= −∡ . To show that angle 

2
DEM

π
φ= −∡  observe that angle EDM φ=∡  because its sides are perpendicular to 

lines ( 1Z , and EMHK) that are perpendicular to the two planes (PL1, PL2) that cross 

with angleφ . 

Also MK is the projection of AD (which is equal to 1z ) on line EMHK which was 

drawn parallel to 2Z .The angle between the two line EMHK and  1Z  is φ  because each 

is perpendicular to the two plane PL1 and PL2 that cross at angle φ . Hence 

1 cosMK z φ=  

Gathering things together we obtain 2 1 1cos cos sinz z uφ ρ φ= +  . But 2z  lies in the 

negative semi axis of 2Z and therefore we may write 2 1 1cos cos sinz z uφ ρ φ= − −  which 

proves (A.121) 

To prove (A.122) observe that 2 2 2 2 2

1 1 2 2AB z zρ ρ= + = +  and solve for 2

2ρ  using(A.121). 

(QED) 

 

Discussion 1 

Note that 1ρ , 1z  are the cylindrical coordinates of point B with respect to origin at A and 

axis 1Z , while 2ρ , 2z  are the cylindrical coordinates of A with respect to origin at B 

and axis 2Z . The azimuth angle is u  for 1Z  and it is measured counterclockwise ( as we 

look down from 1Z ) starting from the plane that contains 1Z  and is vertical to PL2. In a 

similar fashion we define the azimuth angle for the cylindrical coordinate system 2Z as 

v  measured counterclockwise (as we look down from 2Z ) starting from the plane that 

contains 2Z  and is vertical to PL1, (see Figure A-3). 

The plane that passes through 2Z  and is vertical to PL1 includes CG . Let its extension 

cross XX’ at Q and draw QB. Draw LE and extend it to some point N so that triangle 

BEN is parallel and equal to triangle AKI. Then 2 AI BNρ = =   and 
3

2
NBE v

π
= −∡  

We can easily see now that  
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1 sinBE GP uρ= =  and also 2 2

3
cos( ) sin

2
BE v v

π
ρ ρ= − = −  and therefore  

 1 2sin sinu vρ ρ= −  (A.123) 

Further, we observe that LE LN EN= −  where  

2

tan

z
LN

ϕ
= ,  2 2

3
sin( ) cos

2
EN v v

π
ρ ρ= − = − ,  1 sinz PE ϕ= . Substituting above we 

obtain, 

2

1 2 2 2sin cos sin cos cos sin
tan

z
z v z vφ ρ φ φ ρ φ

ϕ
= − = −   and since 2z  is non positive  

 1 2 2cos cos sinz z vφ ρ φ= − −  (A.124) 

 

Discussion 2 

In the proof of Lemma 2 we assumed that 0 90φ≤ ≤ ° . If we define φ  to be measured 

counterclockwise starting when the two half planes PL1, PL2 coincide and we look 

from X towards X’, while the positive half axes 1Z , 2Z coincide when 0φ = , Then 

Lemma 2 continues to hold for all 0 360φ≤ ≤ ° . This is the same convention that we 

used for Lemma 1. Finally, Lemma 2 tells us how to change from one cylindrical 

coordinate system with coordinates ( 1 1, ,z uρ ) to another with coordinates (
2 2,, z vρ ) 

 


