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Abstract

It is argued how R ⊗ C ⊗ H ⊗ O-valued Gravity (real-complex-
quaterno-octonionic Gravity) naturally can describe a Grand Unified Field
theory of Einstein’s gravity with a Yang-Mills theory containing the Stan-
dard Model group SU(3) × SU(2) × U(1). In particular, it leads to a
[SU(4)]4 symmetry group revealing the possibility of extending the stan-
dard model by introducing additional gauge bosons, heavy quarks and
leptons, and an extra fourth family of fermions. We finalize by displaying
the analog of the Einstein-Hilbert action for R⊗C⊗H⊗O-valued gravity
via the use of matrices, and which is based on “coloring” the graviton; i.e.
by attaching internal indices to the metric gµν . In the most general case,
U(16) arises as the isometry group, while U(8) is the isometry group in
the split-octonion case.

Keywords: Nonassociative Geometry, Clifford algebras, Quaternions, Octonionic
Gravity, Unification, Strings.

∗Dedicated to the loving memory of Zita Lechter, who loved life, family and bridge with a
passion
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1 A brief Introduction

Exceptional, Jordan, Division, Clifford and Nonassociative algebras are deeply
related and essential tools in many aspects in Physics. See for instance the
work on Jordan algebras by [1], [12], [14]. Exceptional algebras in [2], [16], [30].
Nonassociative algebras [3]. Octonions and other Division algebras [4], [5], [7],
[6], [15], and Clifford algebras in [26], [34].

The exceptional E8 group was proposed long ago [28] as a candidate for
a grand unification model building in D = 4. The supersymmetric E8 model
was studied as a fermion family and grand unification model [28] under the
assumption that there is a vacuum gluino condensate but this condensate is not
accompanied by a dynamical generation of a mass gap in the pure E8 gauge
sector. Clifford algebras and E8 are key ingredients in Smith’s D4 −D5 −E6 −
E7 − E8 grand unified model in D = 8 [18].

Exceptional Jordan Matrix Models based on the compact E6 involve a double
number of the required physical degrees of freedom inherent in a complex-valued
action [12]. This led Ohwashi to construct an interacting pair of mirror universes
within the compact E6 matrix model and equipped with a Sp(4,H)/Z2 symme-
try based on the quaternionic valued symplectic group. The interacting picture
resembles that of the bi-Chern-Simons gravity models. A construction of nonas-
sociative Chern-Simons membranes and 3-branes based on the large N limit of
Exceptional Jordan algebras was put forward by [13]. More recently the con-
struction of Exceptional Periodicity (EP) based on semi-simple rank-3 Jordan
algebras has been generalized to rank-3 T -algebras (ternary Vinberg algebras)
of special type. This allowed the authors in [17] to explore the Geometry of
Exceptional Super Yang-Mills Theories in connection to bosonic M -theory in
D = 27.

A complexification of ordinary gravity (not to be confused with Hermitian-
Kahler geometry ) has been known for a long time. Complex gravity requires
a metric gµν = g(µν) + ig[µν] such that gνµ = (gµν)∗, so the diagonal compo-
nents of the metric gz1z1 = gz2z2 = gz̃1z̃1 = gz̃2z̃2 are real. A treatment of a
non-Riemannan geometry based on a complex tangent space and involving a
symmetric g(µν) plus antisymmetric g[µν] metric component was first proposed
by Einstein-Strauss [11] (and later on by [20] ) in their unified theory proposal
of Electromagentism with gravity by identifying the EM field strength Fµν with
the antisymmetric metric g[µν] component.

Borchsenius [19] proceeded to formulate the quaternionic extension of Einstein-
Strauss unified theory of gravitation with EM by incorporating appropriately the
SU(2) Yang-Mills field strength into the degrees of a freedom of a quaternionc-
valued metric. Oliveira and Marques [21] later on provided the Octonionic
Gravitational extension of Borchsenius theory involving two interacting SU(2)
Yang-Mills fields and where the exceptional group G2 was realized naturally as
the automorphism group of the octonions. The non-Desarguesian geometry of
the Moufang projective plane to describe Octonionic QM was discussed by [15].

The authors [23] showed how one could generalize Octonionic Gravitation
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into an Extended Relativity theory in Clifford spaces, involving polyvector-
valued (Clifford-algebra valued) coordinates and fields, where in addition to the
speed of light there is also an invariant length scale (set equal to the Planck scale)
in the definition of a generalized metric distance in Clifford spaces encoding,
lengths, areas, volumes and hyper-volumes metrics. An overview of the basic
features of the Extended Relativity in Clifford spaces can be found in [23].

The purpose of this work is to advance further the Octonionic Gravitational
construction of [21], [22], and show how R ⊗ C ⊗ H ⊗ O-valued Gravity
naturally can describe a grand unified field theory of Einstein’s gravity with a
Yang-Mills theory containing the Standard Model group SU(3)×SU(2)×U(1).

This work is organized as follows. In section 2 we review the algebraic struc-
ture of octonions and discuss the octonionic realizations of SO(8), SO(7), G2,
SU(3), GL(8, R). In section 3 we present all the steps involved in the construc-
tion of R ⊗ C ⊗H ⊗ O-valued Gravity, and show how the U(4)×U(4)×U(4)×
U(4) symmetry is encoded in the C ⊗ H ⊗ O piece of the connection. In section
4 we display the analog of the Einstein-Hilbert action for R⊗C⊗H⊗O-valued
gravity via the use of matrices, and based on “coloring” the graviton; i.e. by at-
taching internal indices to the metric gµν . In the most general case, U(16) arises
as the isometry group, while U(8) is the isometry group in the split-octonion
case. The introduction of matter fields and solutions to the generalized Einstein
field equations for the R ⊗ C ⊗ H ⊗ O-valued Gravitational theory will be the
subject of future investigation.

2 Octonions, Clifford and Lie Algebras

This introductory section is very important in order to understand some of the
arguments in the next section. For this reason we deem it necessary.

2.1 Octonionic Realizations of SO(8), SO(7), G2, SU(3)

Given an octonion X it can be expanded in a basis (eo, ea) as

X = xo eo + xa ea, a = 1, 2, · · · , 7. (2.1)

where eo is the identity element. The Noncommutative and Nonassociative
algebra of octonions is determined from the relations

e2
o = eo, eoea = eaeo = ea, eaeb = −δabeo +Cabcec, a, b, c = 1, 2, 3, ....7. (2.2)

The non-vanishing values of the fully antisymmetric structure constants Cabc is
chosen to be 1 for the following 7 sets of index triplets (cycles) [7]

(124), (235), (346), (457), (561), (672), (713) (2.3)
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Each cycle represents a quaternionic subalgebra. The values of Cabc for the other
combinations are zero. The latter 7 sets of index triplets (cycles) correspond to
the 7 lines of the Fano plane.

The octonion conjugate is defined

X̄ = xo eo − xm em. (2.4)

and the norm

N(X) = < X X > = Real (X̄ X) = (xo xo + xk xk). (2.5)

The inverse

X−1 =
X̄

N(X)
, X−1X = XX−1 = 1. (2.6)

The non-vanishing associator is defined by

{X,Y,Z} = (XY)Z−X(YZ) (2.7)

In particular, the associator

{ei, ej , ek} = dijkl el, dijkl = εijklmnp c
mnp, i, j, k.... = 1, 2, 3, .....7 (2.8)

There are no matrix representations of the Octonions due to the non-
associativity, however Dixon has shown how many Lie algebras can be obtained
from the left/right action of the octonion algebra on itself [7]. By an algebra act-
ing on itself, one does not mean that quantum mechanical operators and states
are expressed in the same algebra. An example of an algebra action on itself
is the Clifford algebra. The Clifford vector generators γµ acting on themselves
give

γµ γν =
1

2
{γµ, γν} +

1

2
[γµ, γν ] = gµν 1 + γ[µν] (2.9)

and which in turn lead to the unit element 1, and the bivector γ[µν] generators
of the 2D-dim Clifford algebra Cl(D).

OL and OR are identical, isomorphic to the matrix algebra R(8) of 8 × 8
real matrices. The 64-dimensional bases are of the form 1, eLa, eLab, eLabc, or
1, eRa, eRab, eRabc, where, for example, if x ∈ O, then eLab[x] = ea(ebx), and
eRab[x] = (xea)eb.

Focusing on the left actions, Dixon found [7]

• so(8) : {eLa; eLab | a, b = 1, · · · , 7} giving a total of 7+21 = 28 generators.

• so(7) : {eLab | a, b = 1, · · · , 7} giving a total of 21 generators.
• so(6) : {eLpq | p, q = 1, · · · , 6} giving a total of 15 generators.

• The Lie algebra g2

g2 : {eLab − eLcd | ea eb − ec ed = 0, a, b, c, d = 1, · · · , 7} (2.10a)
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g2 is the 14-dim Lie algebra of G2, the automorphism group of O. The 14
generators are [7]

eL24 − eL56; eL56 − eL37; eL35 − eL67; eL67 − eL41

eL46 − eL71; eL71 − eL52; eL57 − eL12; eL12 − eL63

eL61 − eL23; eL23 − eL74; eL72 − eL34; eL34 − eL15

eL13 − eL45; eL45 − eL26 (2.10b)

The su(3) Lie algebra is a subalgebra of g2 which leaves invariant one of the
imaginary units of the octonions. In particular if one chooses e7, su(3) is the
Lie algebra of SU(3) which is the stability group of e7 (a subgroup of G2). The
8 generators of su(3) are determined from the conditions
•

su(3) : {eLpq − eLrs | epeq − eres = 0, p, q, r, s = 1, · · · , 6}

from which one obtains the following 8 generators [7]

eL24 − eL56; eL35 − eL41; eL46 − eL52

eL12 − eL63; eL61 − eL23; eL34 − eL15

eL13 − eL45, eL45 − eL26 (2.11)

Notice that some of the generators of (2.11) are given by suitable linear combi-
nations of the generators in eq-(2.10b)1.
• The generator of the U(1) Lie algebra is [7]

eL45 + eL13 + eL26 (2.12)

and commutes with all the 8 generators of SU(3). The 7-dim round sphere can
be identified as the coset S7 ∼ SO(8)/SO(7). The 7-dim squashed sphere can
be identified as the coset SO(7)/G2. Compactifications of 11-dim M -theory on
7-dim manifolds of exceptional holonomy G2 have been extensively studied over
the years
• 8 × 8 matrix realizations of the left/right actions. From the structure

constants of the Octonion algebra one can associate to the left action of ea on
eo and eb

eLa [eo] = ea eo = ea, eLa [eb] = ea eb = Cabc ec (2.13)

the following 8×8 antihermitian matrix MLa : eLa ↔MLa, and whose entries
are given by

(ML
a )bc = Cabc, a, b, c = 1, 2, · · · , 7; (ML

a )00 = 0, (ML
a )0c = δac, (ML

a )c0 = −δac
(2.14)

1The su(3) algebra is obtained from the intersection of the so(6) and g2 algebra. G. Dixon,
private communication
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Due to the non-associativity of the Octonions one has e1e2 = e4, but ML1ML2 6=
ML4 !, otherwise the generators in the above equations would have been triv-
ially zero. As said previously, there are no matrix representations of the non-
associative Octonion algebra, and as a result one has that

MLa MLb 6= Cabc MLc (2.15)

Given the antihermian 8× 8 matrices in eq-(2.14) the g2, su(3), · · · algebras
are realized in terms of the commutators of the generators given by eqs-(2.10,
2.11). For example, in the su(3) algebra case, the commutator of the first two
su(3) generators (2.11) is

[eL24− eL56, eL35− eL41] ↔ [ML2ML4−ML5ML6, ML3ML5−ML4ML1] =

ML2[ML4,ML3]ML5 − ML5[ML6,ML3]ML5 + · · · (2.16)

The commutators of the 8 su(3) generators Lα are given by

[Lα, Lβ ] = fαβσ Lσ, α, β, σ = 1, 2, · · · , 7, 8 (2.17)

where fαβσ are the antisymmetric structure constants of the su(3) algebra.
The 8-dim adjoint representation of su(3) can be implemented in terms of 8
antihermitian 8 × 8 matrices Tα = (Tα)βσ = fαβσ. Since the commutators
of two antihermitain matrices is antihermitian, the (antisymmetric) structure
constants fαβσ are real-valued, and there are no i factors in the right hand side
of eq-(2.17). It is not difficult to verify that the commutators in eq-(2.16) are
indeed the same as those in eq-(2.17) 2. Similarly one could have written the
Lie algebra generators in terms of the right action of the Octonion algebra on
itself.

2.2 Octonionic realization of GL(8, R)

The combined left and right action of the algebra acting on itself [9] is defined
as

eLa eRb [x] = eLa (x eRb); eRb eLa [x] = (eLa x) eRb) (2.18)

Based on this left/right action, the authors [9] were able to find an octo-
nionic realization (not a representation) of the Lie algebra gl(8, R) based on the
generators (8× 8 matrices)

1, La, Rb, LaRa, [La, Rb], a, b = 1, 2, · · · , 7 (2.19)

2Despite that MLaMLb 6= CabcMLc;MLbMLa 6= CbacMLc it is still possible to have
[MLa,MLb] = 2CabcMLc
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obeying the relations

La Lb = −δab +Cabc Lc − [Ra, Lb], Ra Rb = −δab +Cabc Rc − [La, Rb],

[La, Lb] = fabcLc − 2 [Ra, Lb], [Ra, Rb] = fabcRc − 2 [La, Rb],

[Ra, Lb] = [La, Rb] = − [Rb, La] = − [Lb, Ra]

[Ra, La] = 0, a = 1, 2, · · · , 7 (2.20)

there is no sum over a in the eq-(2.20), and the structure constants are fabc =
2Cabc.

There are 7 + 7 = 14 generators : La, Rb. There are 7 generators LaRa (no
sum over a). There are 7 × 6 = 42 generators [La, Rb](a 6= b). Combined with
the unit 8 × 8 matrix 1, it gives a total of 1 + 7 + 7 + 7 + 42 = 64 generators,
and which matches the dimension of the Lie algebra gl(8, R).

The modified composition � defined as

La � Lb = La Lb + [Ra, Lb] ⇒ La � Lb − Lb � La = fabc Lc (2.21)

Ra �Rb = Ra Rb + [La, Rb] ⇒ Ra �Rb − Rb �Ra = fabc Rc (2.22)

allows closure [La, Lb]�, [Ra, Rb]� where fabc = 2Cabc.

2.3 Clifford Algebraic Realization of SU(N)

• The dim Cl(0, 6) = 64, is same as the dim of gl(8, R). OL ' OR ' Cl(0, 6).
The u(4) algebra can also be realized in terms of so(8) generators, and in

general, u(N) algebras admit realizations in terms of so(2N) generators Given
the Weyl-Heisenberg ”superalgebra” involving the N fermionic creation and
annihilation (oscillators) operators

{ai, a†j} = δij , {ai, aj} = 0, {a†i , a
†
j} = 0; i, j = 1, 2, 3, ..... N. (2.23)

one can find a realization of the u(N) algebra bilinear in the oscillators as

E j
i = a†i aj and such that the commutators

[E j
i , E

l
k ] = a†i aj a

†
k al − a†k al a

†
i aj =

a†i (δjk − a†k aj) al − a†k (δli − a†i al) aj = a†i (δjk) al − a†k (δli) aj =

δjk E
l
i − δli E

j
k . (2.24)

reproduce the commutators of the Lie algebra u(N) since

−a†i a
†
k aj al + a†k a

†
i al aj = − a†k a

†
i al aj + a†k a

†
i al aj = 0. (2.25)
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due to the anti-commutation relations (2.23) yielding a double negative sign
(−)(−) = + in (2.25). Furthermore, one also has an explicit realization of the
Clifford algebra Cl(2N) Hermitian generators by defining the even-number and
odd-number generators as

Γ2j =
1

2
(aj + a†j); Γ2j−1 =

1

2i
(aj − a†j). (2.26)

The Hermitian generators of the so(2N) algebra are defined as usual Σmn =
i
4 [Γm,Γn] where m,n = 1, 2, ....2N . Therefore, the u(4), so(8), Cl(8) algebras
admit an explicit realization in terms of the fermionic Weyl-Heisenberg oscilla-
tors ai, a

†
j for i, j = 1, 2, 3, 4.

Having overviewed the basics of Octonions, Clifford and Lie Algebras, in the
next section we will extend the notion of a real-valued metric, connection and
curvature, to the case where they are R ⊗ C ⊗ H ⊗ O-valued. In this fashion we
can show how one can extract ordinary gravity and Yang-Mills theory from the
different pieces involved. Ordinary gravity will appear in the R-piece, whereas
Yang-Mills theory appears in the C ⊗ H ⊗ O piece.

3 R ⊗ C ⊗ H ⊗ O-valued Gravity and Grand
Unification

In the first part of this section we follow all the steps in the construction of
R ⊗ C ⊗ H ⊗ O-valued Gravity, and in the second part we explain how the
U(4)× U(4)× U(4)× U(4) symmetry arises from the C ⊗ H ⊗ O piece of the
connection.

3.1 R ⊗ C ⊗ H ⊗ O-valued Gravity

Dixon [8] many years ago published a monograph pointing out the key role
that the composition algebra R ⊗ C ⊗ H ⊗ O had in the architecture of the
Standard Model. More recently, it has been shown how this algebra acting on
itself allows to find the Standard Model particle representations [10]. For this
reason we shall construct a gravitational theory based on a R ⊗ C ⊗ H ⊗
O-valued metric defined as

gµν(xµ) = g(µν)(x
µ) + gIAµν (xµ) (qI⊗eA), qI = qo, q1, q2, q3; eA = eo, e1, e2, · · · , e7

(3.1)
where the ordinary 4D spacetime coordinates are xµ, µ = 0, 1, 2, 3, and g(µν) is
the standard Riemannian metric. The extra “internal” C⊗H⊗O-valued metric
components are explicitly given by
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(g(µν) + ig[µν])
oo, (g[µν] + ig(µν))

ko, (g[µν] + ig(µν))
oa, (g(µν) + ig[µν])

ka (3.2)

k = 1, 2, 3; a = 1, 2, · · · , 7. The index o is associated with the real units qo, eo.
The bar conjugation amounts to i → −i; qk → −qk; ea → −ea, so that ḡµν =
gνµ.

The generalization of the line interval in 4D considered in [21], [22] based
on the metric (3.1) is defined by

ds2 = < gµν dx
µ dxν > = ( g(µν) + goo(µν) ) dxµ dxν , µ, ν = 0, 1, 2, 3 (3.3)

where the operation < · · · > denotes taking the real components of the terms
inside the <>. From eq-(3.3) one learns that the R ⊗ C ⊗ H ⊗ O-valued
metric leads to a line interval involving two metrics, respectively, g(µν) and
goo(µν) = h(µν)

3.

The R ⊗ C ⊗ H ⊗ O-valued affinity Υρ
µν ( µ, ν, ρ are spacetime indices

ranging from 0, 1, 2, 3) is given by

Υρ
µν = Γρµν(gµν) + Θρ

µν = Γρµν(gµν) + δρµ Aν =

Γρµν(gµν) + δρµ
(
Aooν (qo ⊗ eo) +Aiaν (qi ⊗ ea) +Aioν (qi ⊗ eo) +Aoaν (qo ⊗ ea)

)
(3.4)

Thus we have decomposed the R ⊗ C ⊗ H ⊗ O-valued affinity Υρ
µν into a

real-valued “external” part Γ plus an “internal” part Θρ
µν . The base spacetime

connection can be chosen to be given by the torsionless Christoffel connection

Γρµν = Γρνµ =
1

2
gρσ (∂µgσν + ∂νgµσ − ∂σgµν) (3.5)

but the ‘internal” part Θρ
µν = δρµAν of the connection is completely independent

on the metric like in the Palatini formulation of gravity.
The R ⊗ C ⊗ H ⊗ O-valued curvature tensor Rσ

ρµν = Rσρµν + Ωρ
σµν , in-

volving the base spacetime and internal space curvature is defined by

Rσ
ρµν = Υσ

ρµ,ν − Υσ
ρν,µ + Υσ

τν Υτ
ρµ − Υσ

τµ Υτ
ρν . (3.6)

Rσ
ρµν = Rσρµν(Γρµν) + δσρ Fµν . (3.7)

where Rσρµν(Γρµν) is the base spacetime Riemannian curvature associated to the
symmetric Christoffel connection Γρµν .

The “internal” space C ⊗ H ⊗ O-valued curvature is

Ωρ
σµν = δρσ Fµν (3.8)

with
Fµν = Aµ,ν −Aν,µ − [ Aµ , Aν ]. (3.9)

3In a bimetric theory of gravity two separate metrics are introduced
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and where the field Aµ can be read directly in terms of the internal space affinity
from the relation

Θρ
µν = δρµ Aν (3.10)

There are 32 complex-valued fields (64-real valued fields)

Aµ = {Aooµ , Aioµ , Aoaµ , Aiaµ } (3.11)

and based on the identity 4

[A⊗B, C ⊗D] =
1

2
{A,C} ⊗ [B,D] +

1

2
[A,C]⊗ {B,D} (3.12a)

the commutators in eq-(3.9) become

[qI ⊗ eA, qJ ⊗ eB ] =
1

2
{qI , qJ} ⊗ [eA, eB ] +

1

2
[qI , qJ ]⊗ {eA, eB} (3.12b)

which lead to the following explicit components for Fµν

F ooµν = ∂µA
oo
ν − ∂νA

oo
µ (3.13)

F ocµν = ∂µA
oc
ν − ∂νA

oc
µ + (Aoaµ Aobν − δij Aiaµ Ajbν ) Ccab (3.14)

F koµν = ∂µA
ko
ν − ∂νA

ko
µ + (Aioµ Ajoν − δab Aiaµ Ajbν ) fkij (3.15)

F kcµν = ∂µA
kc
ν − ∂νA

kc
µ + Aoaµ Akbν Ccab + Aioµ Ajcν fkij (3.16)

The next step is to establish the Gravity/Gauge correspondence (not un-
like the AdS/CFT correspondence) which in essence amounts to embed the
12 Gauge Fields of the Standard Model SU(3) × SU(2) × U(1) into the fields
appearing inside the internal connection Θρ

µν = δρµAν .
Eqs-(3.13-3.16) yield the following 32 complex-valued non-vanishing field

strengths

F ooµν , F koµν , F ocµν , F kcµν , k = 1, 2, 3; c = 1, 2, · · · , 7 (3.17)

Given the U(1) Maxwell field

Fµν = ∂µAν − ∂νAµ (3.18)

the Maxwell kinetic term in the Standard Model action is embedded as follows

4Similar relations follow for the anti-commutator, by having instead the combinations
{A,C} ⊗ {B,D}, and [A,C]⊗ [B,D]
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Fµν Fµν ⊂ F ooµν (Fµνoo )∗ (3.19)

Given the SU(2) field strength

Fkµν = ∂µAkν − ∂νAkµ + Aµi Ajν εkij (3.20)

the SU(2) Yang-Mills term is embedded as

F iµν F
µν
i (i = 1, 2, 3) ⊂ (F koµν ) (Fµνko )∗ (k = 1, 2, 3) (3.21)

Since the SU(2) algebra is isomorphic to the algebra of quaternions, the em-
bedding (3.21) is very natural. The chain of subgroups

SO(8) ⊃ SO(7) ⊃ G2 ⊃ SU(3) (3.22)

related to the round and squashed seven-spheres : S7 ' SO(8)/SO(7), S7
∗ '

SO(7)/G2, reflect how the SU(3) group is embedded. The number of generators
of SO(8), SO(7) are 28 and 21 respectively. There are 7 + 21 = 28 complex-
valued (14; 42 real-valued) field strengths, respectively

F ocµν , F kcµν , k = 1, 2, 3; c = 1, 2, · · · , 7 (3.23)

such that the SU(3) Yang-Mills terms can be embedded into the contribution
of the above 7 + 21 = 28 complex-valued fields as follows

Fαµν Fµνα (α = 1, 2, . . . , 7, 8) ⊂ (F ocµν) (Fµνoc )∗ + (F kcµν) (Fµνkc )∗ (c = 1, 2, . . . , 7)
(3.24)

and where the SU(3) field strength is given by

Fγµν = ∂µAγν − ∂νAγµ + Aµα Aβν f
γ
αβ (3.25)

3.2 Emergence of U(4)× U(4)× U(4)× U(4)

Having explained how the U(1), SU(2), SU(3) field strengths can be embedded
into the 32 complex-valued non-vanishing field strengths of eq-(3.17), we shall
show next how the C ⊗ H ⊗ OL algebra associated with the internal part of
the connection Θρ

µν = δρµAν in eq-(3.4) can accommodate a grand unified group
given by SU(4)×SU(4)×SU(4)×SU(4), and containing the SU(3)×SU(2)×
U(1) Standard Model group.

Given that the complex quaternionic algebra C ⊗ H is isomorphic to the
Pauli spin algebra with the 2× 2 matrices q0 = 12×2, qk = iσk, k = 1, 2, 3, and
the algebra of left actions of the octonionic algebra on itself 5 is represented by

5A similar construction follows for the algebra of right actions of the octonionic algebra on
itself. Note that OL ' OR [7]
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the 8 × 8 matrices eLA = ML
A, A = 0, 1, · · · , 7, then the 4 × 8 = 32 generators

qI⊗eLA of the C⊗H⊗OL algebra can be realized by 32 complex 16×16 matrices,
which is tantamount to 64 real 16× 16 matrices, and which is compatible with
the fact that 64 (2× 4× 8) is the dimension of the C ⊗H ⊗OL algebra.

Each complex 16× 16 matrix, above, can be expanded in terms of the basis
elements of the complex Clifford algebra Cl(8, C) comprised of 28 = 256 complex
16 × 16 matrices. However this is far too cumbersome. However, it is easier if
we expand each of the above 32 complex 16×16 matrices in terms of the tensor
products ΓM ⊗ 14×4, where ΓM (M = 1, 2, · · · , 32 = 25) is the basis of the
complex Clifford algebra Cl(5, C) comprised of 32 complex 4× 4 matrices, and
14×4 is the unit 4× 4 matrix.

Therefore we end up having that the 32 complex 16× 16 matrix generators
qI ⊗ eLA of the C ⊗ H ⊗ OL algebra can be expanded in terms of a linear
combination of the 32 Cl(5, C) algebra generators ΓM as follows

qI ⊗ eLA = (ML
IA)16×16 =

32∑
M=1

CMIA (ΓM )4×4 ⊗ 14×4, (3.26)

where I = 0, 1, 2, 3;A = 0, 1, 2, · · · , 7, and CMIA are complex numerical coeffi-
cients.

Let us recall the following isomorphisms among real and complex Clifford
algebras [34]

Cl(2m+ 1, C) = Cl(2m,C)⊕ Cl(2m,C) ∼M(2m, C)⊕M(2m, C) ⇒

Cl(5, C) = Cl(4, C)⊕ Cl(4, C) (3.27)

where M(2m, C) is the 2m×2m matrix algebra over the complex numbers (some
authors [7] use the different notation C(2m)).

Also one has

Cl(4, C) ∼M(4, C) ∼ Cl(4, 1, R) ∼ Cl(2, 3, R) ∼ Cl(0, 5, R) (3.28)

Cl(4, C) ∼M(4, C) ∼ Cl(3, 1, R)⊕ i Cl(3, 1, R) ∼M(4, R)⊕ i M(4, R) (3.29)

Cl(4, C) ∼M(4, C) ∼ Cl(2, 2, R)⊕ i Cl(2, 2, R) ∼M(4, R)⊕ i M(4, R) (3.30)

where M(4, R),M(4, C) is the 4 × 4 matrix algebra over the reals and com-
plex numbers, respectively. Cl(p, q,R) denotes a real Clifford algebra in p + q
dimensions and associated to a metric of signature p− q.

In [35] we showed, by recurring to the Weyl unitary “trick”, how from
each one of the Cl(3, 1, R) commuting sub-algebras inside the Cl(4, C) alge-
bra one can also obtain the u(p, q) algebras with the provision p + q = 4.
Namely, the u(p, q) algebra generators are given by suitable linear combinations
of the Cl(3, 1, R) generators. In particular, the u(2, 2) = su(2, 2)⊕u(1) algebra
contains the conformal algebra in four dimensions su(2, 2) ∼ so(4, 2). When
p = 4, q = 0, the algebra is u(4) = u(1)⊕ su(4) ∼ u(1)⊕ so(6).
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To sum up, given that the algebra M(4, C) ∼ gl(4, C) is also the complex-
ification of u(4) (sl(4, C) is the complexification of su(4)), and by virtue of
eqs-(3.27), the Cl(5, C) algebra can be decomposed into four copies of u(4)

Cl(5, C) = Cl(4, C)⊕ Cl(4, C) ∼ u(4)⊕ u(4)⊕ u(4)⊕ u(4) (3.31)

The dimension of the four copies of u(4) is 4 × 16 = 64 which matches the
dimension of the C ⊗H ⊗OL algebra, as expected (64 is also the dimension of
the real Cl(6) algebra). Consequently, the C⊗H⊗OL algebra, by virtue of the
decomposition in eq-(3.26), can accommodate a grand unified group given by

SU(4)C × SU(4)F × SU(4)L × SU(4)R ⊂ U(4)× U(4)× U(4)× U(4) (3.32)

The gauge group SU(3)C × SU(3)F × SU(3)L × SU(3)R can naturally be
embedded into the above [SU(4)]4 group. The former group involving a unifi-
cation of left-right SU(3)L × SU(3)R chiral symmetry, color SU(3)C and fam-
ily SU(3)F symmetries in a maximal rank-8 subgroup of E8 was proposed by
[33] as a landmark for future explorations beyond the Standard Model (SM).
This model is called the SU(3)-family extended SUSY trinification model [33].
Among the key properties of this model are the unification of SM Higgs and
lepton sectors, a common Yukawa coupling for chiral fermions, the absence of
the µ-problem, gauge couplings unification and proton stability to all orders in
perturbation theory.

The standard model (SM) fermions (quarks, leptons) can be embedded into
the fermionic matter belonging to the following SU(4)C × SU(4)F × SU(4)L ×
SU(4)R representations as follows

QSM ⊂ Q = (4, 4, 4̄, 1), QcSM ⊂ Qc = (4̄, 4̄, 1, 4), (3.33)

LSM ⊂ L = (1, 4, 4̄, 1), Lc = (1, 4̄, 1, 4) (3.34)

where the Q,Qc,L,Lc multiplets include the addition of heavy quarks (anti-
quarks); leptons (anti-leptons), and an extra fourth family of fermions (and
their anti-particles). The first (left handed) quark family is

Q1 ≡


ur dr Ur Dr

ub db Ub Db

ug dg Ug Dg

Qu Qd QU QD

 (3.35)

where Qu, Qd, QU , QD, and Ur,b,g, Dr,b,g are the additional quarks . As usual
r, b, g stand for red, blue, green color. The charge conjugate multiplet containing
the (right-handed) anti-quarks of the first family is

Qc
1 ≡


ur ub ug Qu
dr db dg Qd
Ur Ub Ug QU
Dr Db Dg QD

 (3.36)
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By ur one means ucr̄, the up anti-quark with anti-red color, etc · · ·. Whereas
Qu = Qcu, · · ·. And similar assignments for the remaining quark families.

The lepton multiplet will include the ordinary leptons (neutrino, electron,
· · · ), plus the addition of charged E−, E+, · · ·, and neutral leptons NE , N

c
E , · · ·.

The first (left handed) lepton multiplet is comprised of {νe, e−, NE , E−}, and
its (right handed) anti-multiplet is comprised of {νce , e+, N

c
E , E+}. If necessary,

one may also have to add extra fermions to cancel anomalies.
Concluding this section, the algebraic structure of C ⊗ H ⊗ OL associated

with the internal part of the connection Θρ
µν = δρµAν in eq-(3.4) leads to the

group [SU(4)]4 and reveals the possibility of extending the standard model by
introducing additional gauge bosons, heavy quarks and leptons, and a fourth
family of fermions. The physical implications are enormous.

4 Gravitational Actions and Matrix Geometry

In this section we shall discuss how to construct analogs of the Einstein-Hilbert
action for R ⊗ C ⊗ H ⊗ O-valued gravity via the use of matrices based on
“coloring” the graviton (by attaching internal indices to the metric gµν).

4.1 U(16) Matrix Geometry/Gravity

Following the arguments of the previous section, we may associate to the R⊗C⊗
H⊗O-valued metric gµν ↔ Gµν ≡ GMN

µν , the 16×16 matrix Gµν whose 16×16
entries are comprised of complex-valued rank-2 tensors. M,N = 1, 2, · · · , 16;
and µ, ν = 0, 1, 2, 3. For example, in 4D, let us firstly write down the 16 matrix
components of the 4×4 metric gµν given by : g00, g01, · · · , g03, · · · , g33; and then
let us “color” each one of these 16 matrix components by attaching an internal
16 × 16-complex matrix at each entry. In this fashion one ends up with what
one may coin as a “colored graviton” GMN

uv .
The 4D line element is defined as

ds2 =
1

32

(
Trace16×16 { GMN

µν dxµ dxν } + complex conjugate
)

(4.1)

and it is invariant under U(16) (unitary) transformations G→ UGU† acting
on the internal “color indices”. Under unitary U(16) transformations U†U =
UU† = 1 acting on the matrix (and not on the coordinates) one has

Trace { G′µν dx
µ dxν } = Trace { U Gµν U† dxµ dxν } =

Trace { U† U Gµν dx
µ dxν } = Trace { Gµν dx

µ dxν } (4.2)

due to the unitary matrix U† = U−1 condition, and the cyclic property of the
trace. The line element is also invariant under Lorentz transformations acting on
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the spacetime coordinates. The rank of the u(16) Lie algebra is 16 which agrees
also with the rank of the Lie algebras corresponding to the E8 × E8, SO(32)
groups associated with the anomaly-free heterotic string in 10D. This is an
interesting coincidence that deserves further scrutiny. For references on low
energy Grand Unification based SU(16) see [38], [32].

The absolute value of the determinant of the “colored graviton” GMN
uv is

||det Gµν || =
√

(det Gµν) (det Gµν)∗ (4.3)

where the det (GMN
µν ) is given by the antisymmetrized sums of products of the

determinants of the blocks of internal 16× 16 complex matrices which comprise
each single entry of Gµν . The measure of integration is

dµ(x) = d4x
√
||det Gµν || = d4x

(√
(det Gµν) (det Gµν)∗

) 1
2

(4.4)

and the generalized version of the 4D Einstein-Hilbert gravitational action is

S =
1

16πG

∫
dµ(x)

1

32
( Trace16×16{ Gµν Rνµ } + cc ) =

1

16πG

∫
dµ(x)

1

32

(
GµνMN RNMµν + cc

)
(4.5)

The above action is Lorentz invariant and U(16)-invariant because the Trace(GµνRµν)
remains invariant under Gµν → UGµνU†, URµνU

†, due to the cyclic property.
We may add other terms to the action, like the analog of the cosmological

constant, and quadratic curvature terms. This 16 × 16-complex matrix formu-
lation (“color graviton” construction) of R⊗C⊗H⊗O-valued gravity, based
on the U(16) (and Lorentz) invariant action (4.5) of the “colored graviton”,
may cast some light on the interplay between the rank-16 e8 × e8, so(32) Lie
algebras in string theory, and normed division algebras. The coordinates xµ are
real-valued ones; promoting them to complex, quaternionic, octonionic valued
ones is also possible and worth exploring.

4.2 Split Octonions and U(8) Matrix Geometry/Gravity

In this subsection we explain how the split-octonion case yields an U(8) isom-
etry instead of U(16). The generators of the split-octonionic algebra admit a
realization in terms of the 4× 4 Zorn matrices (in blocks of 2× 2 matrices) by
writing

uo =
1

2
(eo + ie7), u∗o =

1

2
(eo − ie7)
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ui =
1

2
(ei + iei+3), u∗i =

1

2
(ei − iei+3) (4.6)

uo =

(
0 0
0 ωo

)
u∗o =

(
ωo 0
0 0

)

ui =

(
0 0
ωi 0

)
u∗i =

(
0 −ωi
0 0

)
(4.7)

The quaternionic generators ωo, ωi, i = 1, 2, 3 obey the algebra ωiωj = εijkωk−
δijωo and are related to the Pauli spin 2× 2 matrices by setting σi = i ωi and
ωo = 12×2. The ui, u

∗
i behave like fermionic creation and annihilation operators

corresponding to an exceptional (non-associative) Grassmannian algebra

{ui, uj} = {u∗i , u∗j} = 0, {ui, u∗j} = −δij . (4.8)

1

2
[ui, uj ] = εijk u

∗
k,

1

2
[u∗i , u

∗
j ] = εijk uk, u2

o = uo, (u∗o)
2 = u∗o. (4.9)

Unlike the octonionic algebra, the split-octonionic algebra contains zero divisors
and therefore is not a division algebra.

The Zorn modified matrix product of

A =

(
Ao ωo −Ai ωi
Bi ω

i Bo ωo

)
B =

(
Co ωo −Ci ωi
Di ω

i Do ωo

)
(4.10)

and which encodes the nonassociativity of octonions is defined by

A•B =

(
(AoCo +AiDi) ωo −(AoCk +DoAk + εijkBiDj) ω

k

(CoBk +BoDk + εijkAiCj) ω
k (BoDo +BiCi) ωo

)
(4.11)

where we have used

ωi ωj = εijkωk − δijωo ⇒ ωi ωi = −ωo, for each i = 1, 2, 3 ⇒

~x.~y = (xiωi) (yiωi) = −xiyi ωo. (4.12)

Therefore, the multiplication product of the split-octonions generators uo, u
∗
o, ui, u

∗
i

is reproduced in this Zorn matrix realization.
The split-octonionic-valued metric Gµν = Gabµν can be represented by a 4×4

(tensor-valued) Zorn matrix as [21]

Gµν =

(
(gµν + i g[µν]) ωo − si[µν] ωi

ri[µν] ωi ( gµν + i g[µν] ) ωo

)
(4.13)
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Therefore, the split-octonions case permits to associate to the R ⊗ C ⊗ H
⊗ O-valued metric gµν a metric Gµν = GMN

µν whose entries are now comprised
of internal 8× 8 complex matrices, instead of 16× 16 complex matrices. In this
fashion one can rewrite the line element as follows

ds2 =
1

16

(
Trace8×8 { GMN

µν dxµ dxν } + complex conjugate
)

(4.14)

The isometry group that leaves invariant the line element in eq-(4.14) is the
unitary U(8) group. Similarly, one can construct the analog of the action in
eq-(4.5) for the split-octonion case.

4.3 The Standard Gravity and Yang-Mills Actions

We finalize this section by describing the relation to the standard gravity and
Yang-Mills Actions. To begin with one can realize that there are problems with
quadratic curvature actions like

∫
< gµν gρσ F̄µρ Fνσ >,

∫
< R̄µνρσ Rµνρσ >, · · · ... (4.15)

(as usual < · · · > denotes taking the real part) because the composition algebra
R ⊗ C ⊗ H ⊗ O is non-commutative, non-associative, and non-alternative [7].
To raise the four indices in < R̄R > requires the product of 4 factors of the
metric g making matters more problematic because the Moufang identities, like
(AB)(CA) = A(BC)A are no longer obeyed due to the loss of alternativity.

For the time being we shall discard the other metric components, and raise/lower
spacetime indices with the base spacetime metric gµν to simplify things. Ac-
tions based on terms linear in the curvature

∫
< R > furnish the standard

Einstein-Hilbert action
∫
R if one chooses for the integral measure

√
det |gµν |.

In doing so, we also may build quadratic curvature actions like

S2[F ] =

∫
< gµν gρσ F̄µρ Fνσ > =

∫
gµν gρσ (F IAµρ )∗ F JBνσ δAB δIJ

(4.16)
(I = 0, 1, 2, 3;A = 0, 1, 2, 3, · · · , 7), and

S2[R] =

∫
c1 R2 + c2 (Rµν)2 + c3 (Rµνρσ)2 (4.17)

An action linear in R, and quadratic in F

S =
1

16πG

∫
d4x

√
|det gµν |

(
R − κ2 (F IAµν ) (FµνIA)∗

)
(4.18)

17



leads to the standard gravity-Yang-Mills action. κ is a length parameter, and the
metric signature is chosen to be Lorentzian (−,+,+,+). Earlier on in section
3 we found how the 32 complex-valued fields AIAµ , and field strengths F IAµν , have
a one-to-one correspondence with the 64 real-valued fields associated with the
u(4)⊕ u(4)⊕ u(4)⊕ u(4) Lie algebra of the compact group [U(4)]4, and which
contains the Standard Model group. Thus, the correspondence

κ2

16πG

3∑
I=0

7∑
A=0

(F IAµν ) (FµνIA)∗ ↔ 1

4g2

m=4∑
m=1

16∑
α=1

Fαmµν Fµναm (4.19)

derived from eq-(4.18) allows to determine the [U(4)]4 gauge coupling g (asso-
ciated to the Yang-Mills Lagrangian in the right hand side of eq-(4.19) ) from
the relation

1

4g2
=

κ2

16πG
⇒ g2κ2 = 4πG = 4πL2

P (4.20)

where LP is the Planck scale.

5 Conclusions

To sum up, R ⊗ C ⊗ H ⊗ O-valued Gravity naturally can describe a Grand
Unified Field Theory of Einstein gravity with a [SU(4)]4 Yang-Mills theory
and leading to an extension of the Standard Model including a fourth fermion
family. The role of the extra metric element hµν = goo(µν) found in eq-(3.3) within

the context of bimetric theories of gravity (and dark energy) [36] deserves further
scrutiny.

The introduction of matter fields and solutions to the generalized Einstein
field equations for the R⊗C⊗H⊗O-valued Gravitational theory based on the
action (4.5) will be the subject of future investigations. For additional references
on the role that Clifford and Division algebras have in grand unification see [35].
It is interesting to note that the net dimension of R× S1 × S3 × S7 is 12 as in
F -theory [37]. The S1, S3, S7 “spheres” correspond to the unit-norm complex,
quaternion and octonion, respectively.

To finalize one must emphasize that the choice of the internal affinity Θρ
µν =

δρµAν in section 3 was a very restrictive one. There are many more components
for the internal affinity Θρ

µν in the most general case. Hence, the R ⊗ C ⊗
H ⊗ O-valued Gravitational theory is far richer in scope than the findings of
this work. It is also warranted to incorporate Octonionic Ternary Gauge Field
theories [35] into our program. In essence, one needs to explore deeper the
question asked by many in the past : are there four forces in Nature due to the
existence of four division algebras ?
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