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Abstract

We argue how R ⊗ C ⊗ H ⊗ O-valued Gravity naturally can describe
a grand unified field theory of Einstein’s gravity with an U(8) Yang-Mills
theory. In particular, it allows for an extension of the Standard Model by
including a 3-family SU(3)F symmetry group and an extra U(1) symme-
try. A unification of left-right SU(3)L×SU(3)R, color SU(3)C and family
SU(3)F symmetries in a maximal rank-8 subgroup of E8 has been pro-
posed by [33] as a landmark for future explorations beyond the Standard
Model. It is warranted to explore further if this latter model also admits
a similar gravitational interpretation based on the above composition of
normed division algebras. Furthermore, our construction leads also to a
bimetric theory of gravity which may have a role in dark energy. The crux
of this approach is that we have replaced the Kaluza-Klein prescription
to generate gauge symmetries in lower dimensions from isometries of the
internal manifold, by U(8) isometry transformations of the R ⊗ C ⊗ H
⊗ O-valued metric.

Keywords: Nonassociative Geometry, Clifford algebras, Quaternions, Octonionic
Gravity, Unification, Strings.
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1 Introduction

Exceptional, Jordan, Division, Clifford and Noncommutative algebras are deeply
related and essential tools in many aspects in Physics, see for instance [1], [2],
[3], [4], [5], [7], [6], [5], [11], [14], [13], [15], [24], [28].

Exceptional Jordan Matrix Models based on the compact E6 involve a double
number of the required physical degrees of freedom inherent in a complex-valued
action [11]. This led Ohwashi to construct an interacting pair of mirror universes
within the compact E6 matrix model and equipped with a Sp(4,H)/Z2 symme-
try based on the quaternionic valued symplectic group. The interacting picture
resembles that of the bi-Chern-Simons gravity models. A construction of nonas-
sociative Chern-Simons membranes and 3-branes based on the large N limit of
Exceptional Jordan algebras was put forward by [12].

The E8 group was proposed long ago [30] as a candidate for a grand unifica-
tion model building in D = 4. The supersymmetric E8 model has more recently
been studied as a fermion family and grand unification model [30] under the as-
sumption that there is a vacuum gluino condensate but this condensate is not ac-
companied by a dynamical generation of a mass gap in the pure E8 gauge sector.
Clifford algebras and E8 are key ingredients in Smith’s D4−D5−E6−E7−E8

grand unified model in D = 8 [16].
A complexification of ordinary gravity (not to be confused with Hermitian-

Kahler geometry ) has been known for a long time. Complex gravity requires
that gµν = g(µν)+ig[µν] so that now one has gνµ = (gµν)∗, which implies that the
diagonal components of the metric gz1z1 = gz2z2 = gz̃1z̃1 = gz̃2z̃2 must be real.
A treatment of a non-Riemannan geometry based on a complex tangent space
and involving a symmetric g(µν) plus antisymmetric g[µν] metric component was
first proposed by Einstein-Strauss [10] (and later on by [18] ) in their unified
theory of Electromagentism with gravity by identifying the EM field strength
Fµν with the antisymmetric metric g[µν] component.

Borchsenius [17] formulated the quaternionic extension of Einstein-Strauss
unified theory of gravitation with EM by incorporating appropriately the SU(2)
Yang-Mills field strength into the degrees of a freedom of a quaternionc-valued
metric. Oliveira and Marques [19] later on provided the Octonionic Gravita-
tional extension of Borchsenius theory involving two interacting SU(2) Yang-
Mills fields and where the exceptional group G2 was realized naturally as the
automorphism group of the octonions. The non-Desarguesian geometry of the
Moufang projective plane to describe Octonionic QM was discussed by [14].

It was shown in [21] how one could generalize Octonionic Gravitation into
an Extended Relativity theory in Clifford spaces, involving poly-vector valued
(Clifford-algebra valued) coordinates and fields, where in addition to the speed
of light there is also an invariant length scale (set equal to the Planck scale)
in the definition of a generalized metric distance in Clifford spaces encoding,
lengths, areas, volumes and hyper-volumes metrics. An overview of the basic
features of the Extended Relativity in Clifford spaces can be found in [21].

The purpose of this work is to advance further the Octonionic Geometry
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(Gravity) of [19], [20] and show how R ⊗ C ⊗ H ⊗ O-valued Gravity naturally
can describe a grand unified field theory of Einstein’s gravity with an U(8)
Yang-Mills theory. The introduction of matter fields will be the subject of
future investigation.

2 Octonions, Clifford and Lie Algebras

This introductory section is very important in order to understand some of the
arguments in the next section. For this reason we deem it necessary.

2.1 Octonionic Realizations of SO(8), SO(7), G2, SU(3)

Given an octonion X it can be expanded in a basis (eo, ea) as

X = xo eo + xa ea, a = 1, 2, · · · , 7. (2.1)

where eo is the identity element. The Noncommutative and Nonassociative
algebra of octonions is determined from the relations

e2o = eo, eoea = eaeo = ea, eaeb = −δabeo +Cabcec, a, b, c = 1, 2, 3, ....7. (2.2)

The non-vanishing values of the fully antisymmetric structure constants Cabc is
chosen to be 1 for the following 7 sets of index triplets (cycles) [7]

(124), (235), (346), (457), (561), (672), (713) (2.3)

Each cycle represents a quaternionic subalgebra. The values of Cabc for the other
combinations are zero. The latter 7 sets of index triplets (cycles) correspond to
the 7 lines of the Fano plane.

The octonion conjugate is defined

X̄ = xo eo − xm em. (2.4)

and the norm

N(X) = < X X > = Real (X̄ X) = (xo xo + xk xk). (2.5)

The inverse

X−1 =
X̄

N(X)
, X−1X = XX−1 = 1. (2.6)

The non-vanishing associator is defined by

{X,Y,Z} = (XY)Z−X(YZ) (2.7)

3



In particular, the associator

{ei, ej , ek} = dijkl el, dijkl = εijklmnp c
mnp, i, j, k.... = 1, 2, 3, .....7 (2.8)

There are no matrix representations of the Octonions due to the non-
associativity, however Dixon has shown how many Lie algebras can be obtained
from the left/right action of the octonion algebra on itself [7]. OL and OR are
identical, isomorphic to the matrix algebra R(8) of 8 × 8 real matrices. The
64-dimensional bases are of the form 1, eLa, eLab, eLabc, or 1, eRa, eRab, eRabc,
where, for example, if x ∈ O, then eLab[x] = ea(ebx), and eRab[x] = (xea)eb.

Focusing on the left actions, Dixon found [7]

• so(8) : {eLa; eLab | a, b = 1, · · · , 7} giving a total of 7+21 = 28 generators.

• so(7) : {eLab | a, b = 1, · · · , 7} giving a total of 21 generators.
• so(6) : {eLpq | p, q = 1, · · · , 6} giving a total of 15 generators.

• The Lie algebra g2

g2 : {eLab − eLcd | ea eb − ec ed = 0, a, b, c, d = 1, · · · , 7} (2.9)

g2 is the 14-dim Lie algebra of G2, the automorphism group of O. The 14
generators are

eL24 − eL56; eL56 − eL37; eL35 − eL67; eL67 − eL41
eL46 − eL71; eL71 − eL52; eL57 − eL12; eL12 − eL63
eL61 − eL23; eL23 − eL74; eL72 − eL34; eL34 − eL15

eL13 − eL45; eL45 − eL26 (2.10)

The su(3) Lie algebra is a subalgebra of g2 which leaves invariant one of the
imaginary units of the octonions. In particular if one chooses e7, su(3) is the
Lie algebra of SU(3) which is the stability group of e7 (a subgroup of G2). The
8 generators of su(3) are determined from the conditions
•

su(3) : {eLpq − eLrs | epeq − eres = 0, p, q, r, s = 1, · · · , 6}

from which one obtains the following 8 generators

eL24 − eL56; eL35 − eL41; eL46 − eL52

eL12 − eL63; eL61 − eL23; eL34 − eL15
eL13 − eL45, eL45 − eL26 (2.11)

• The generator of the U(1) Lie algebra is [7]

eL45 + eL13 + eL26 (2.12)
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and commutes with all the 8 generators of SU(3). The 7-dim round sphere can
be identified as the coset S7 ∼ SO(8)/SO(7). The 7-dim squashed sphere can
be identified as the coset SO(7)/G2. Compactifications of 11-dim M -theory on
7-dim manifolds of exceptional holonomy G2 have been extensively studied over
the years
• 8 × 8 matrix realizations of the left/right actions. From the structure

constants of the Octonion algebra one can associate to the left action of ea on
eo and eb

eLa [eo] = ea eo = ea, eLa [eb] = ea eb = Cabc ec (2.13)

the following 8×8 antihermitian matrix MLa : eLa ↔MLa, and whose entries
are given by

(ML
a )bc = Cabc, a, b, c = 1, 2, · · · , 7; (ML

a )00 = 0, (ML
a )0c = δac, (ML

a )c0 = −δac
(2.14)

Due to the non-associativity of the Octonions one has e1e2 = e4, but ML1ML2 6=
ML4 !, otherwise the generators in the above equations would have been triv-
ially zero. As said previously, there are no matrix representations of the non-
associative Octonion algebra, and as a result one has that

MLa MLb 6= Cabc MLc (2.15)

Given the antihermian 8× 8 matrices in eq-(2.14) the g2, su(3), · · · algebras
are realized in terms of the commutators of the generators given by eqs-(2.10,
2.11). For example, in the su(3) algebra case, the commutator of the first two
su(3) generators (2.11) is

[eL24− eL56, eL35− eL41] ↔ [ML2ML4−ML5ML6, ML3ML5−ML4ML1] =

ML2[ML4,ML3]ML5 − ML5[ML6,ML3]ML5 + · · · (2.16)

The commutators of the 8 su(3) generators Lα are given by

[Lα, Lβ ] = fαβσ Lσ, α, β, σ = 1, 2, · · · , 7, 8 (2.17)

where fαβσ are the antisymmetric structure constants of the su(3) algebra.
The 8-dim adjoint representation of su(3) can be implemented in terms of 8
antihermitian 8 × 8 matrices Tα = (Tα)βσ = fαβσ. Since the commutators
of two antihermitain matrices is antihermitian, the (antisymmetric) structure
constants fαβσ are real-valued, and there are no i factors in the right hand side
of eq-(2.17). It is not difficult to verify that the commutators in eq-(2.16) are
indeed the same as those in eq-(2.17). Similarly one could have written the Lie
algebra generators in terms of the right action of the Octonion algebra on itself.

5



2.2 Octonionic realization of GL(8, R)

The combined left and right action of the algebra acting on itself [8] is defined
as

eLa eRb [x] = eLa (x eRb); eRb eLa [x] = (eLa x) eRb) (2.18)

Based on this left/right action, the authors [8] were able to find an octo-
nionic realization (not a representation) of the Lie algebra gl(8, R) based on the
generators (8× 8 matrices)

1, La, Rb, LaRa, [La, Rb], a, b = 1, 2, · · · , 7 (2.19)

obeying the relations

La Lb = −δab +Cabc Lc − [Ra, Lb], Ra Rb = −δab +Cabc Rc − [La, Rb],

[La, Lb] = fabcLc − 2 [Ra, Lb], [Ra, Rb] = fabcRc − 2 [La, Rb],

[Ra, Lb] = [La, Rb] = − [Rb, La] = − [Lb, Ra]

[Ra, La] = 0, a = 1, 2, · · · , 7 (2.20)

there is no sum over a in the eq-(2.20), and the structure constants are fabc =
2Cabc.

There are 7 + 7 = 14 generators : La, Rb. There are 7 generators LaRa (no
sum over a). There are 7 × 6 = 42 generators [La, Rb](a 6= b). Combined with
the unit 8 × 8 matrix 1, it gives a total of 1 + 7 + 7 + 7 + 42 = 64 generators,
and which matches the dimension of the Lie algebra gl(8, R).

The modified composition � defined as

La � Lb = La Lb + [Ra, Lb] ⇒ La � Lb − Lb � La = fabc Lc (2.21)

Ra �Rb = Ra Rb + [La, Rb] ⇒ Ra �Rb − Rb �Ra = fabc Rc (2.22)

allows closure [La, Lb]�, [Ra, Rb]� where fabc = 2Cabc.

2.3 Clifford Algebraic Realization of SU(N)

• The dim Cl(0, 6) = 64, is same as the dim of gl(8, R). OL ' OR ' Cl(0, 6).
The u(4) algebra can also be realized in terms of so(8) generators, and in

general, u(N) algebras admit realizations in terms of so(2N) generators Given
the Weyl-Heisenberg ”superalgebra” involving the N fermionic creation and
annihilation (oscillators) operators

{ai, a†j} = δij , {ai, aj} = 0, {a†i , a
†
j} = 0; i, j = 1, 2, 3, ..... N. (2.23)
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one can find a realization of the u(N) algebra bilinear in the oscillators as

E j
i = a†i aj and such that the commutators

[E j
i , E

l
k ] = a†i aj a

†
k al − a†k al a

†
i aj =

a†i (δjk − a†k aj) al − a†k (δli − a†i al) aj = a†i (δjk) al − a†k (δli) aj =

δjk E
l
i − δli E

j
k . (2.24)

reproduce the commutators of the Lie algebra u(N) since

−a†i a
†
k aj al + a†k a

†
i al aj = − a†k a

†
i al aj + a†k a

†
i al aj = 0. (2.25)

due to the anti-commutation relations (2.23) yielding a double negative sign
(−)(−) = + in (2.25). Furthermore, one also has an explicit realization of the
Clifford algebra Cl(2N) Hermitian generators by defining the even-number and
odd-number generators as

Γ2j =
1

2
(aj + a†j); Γ2j−1 =

1

2i
(aj − a†j). (2.26)

The Hermitian generators of the so(2N) algebra are defined as usual Σmn =
i
4 [Γm,Γn] where m,n = 1, 2, ....2N . Therefore, the u(4), so(8), Cl(8) algebras
admit an explicit realization in terms of the fermionic Weyl-Heisenberg oscilla-
tors ai, a

†
j for i, j = 1, 2, 3, 4.

3 R ⊗ C ⊗ H ⊗ O-valued Gravity and Grand
Unification

Dixon [7] many years ago published a monograph pointing out the key role
that the composition algebra R ⊗ C ⊗ H ⊗ O had in the architecture of the
Standard Model. More recently, it has been shown how this algebra acting on
itself allows to find the Standard Model particle representations [9]. For this
reason we shall construct a gravitational theory based on a R ⊗ C ⊗ H ⊗
O-valued metric defined as

gµν(xµ) = g(µν)(x
µ) + gIAµν (xµ) (qI⊗eA), qI = qo, q1, q2, q3; eA = eo, e1, e2, · · · , e7

(3.1)
where the ordinary 4D spacetime coordinates are xµ, µ = 0, 1, 2, 3, and g(µν) is
the standard Riemannian metric. The extra “internal” C⊗H⊗O-valued metric
components are explicitly given by

(g(µν) + ig[µν])
oo, (g[µν] + ig(µν))

ko, (g[µν] + ig(µν))
oa, (g(µν) + ig[µν])

ka (3.2)
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k = 1, 2, 3; a = 1, 2, · · · , 7. The index o is associated with the real units qo, eo.
The bar conjugation amounts to i → −i; qk → −qk; ea → −ea, so that ḡµν =
gνµ.

The generalization of the line interval considered in [19], [20] based on the
metric (3.1) is then given by

ds2 = < gµν dx
µ dxν > = ( g(µν) + goo(µν) ) dxµ dxν (3.3)

where the operation < · · · > denotes taking the real components. From eq-(3.3)
one learns that the R ⊗ C ⊗ H ⊗ O-valued metric leads to a bimetric theory
of gravity where the two metrics are, respectively, g(µν), g

oo
(µν) = h(µν).

The R ⊗ C ⊗ H ⊗ O-valued affinity is given by

Υρ
µν = Γρµν(gµν) + Θρ

µν = Γρµν(gµν) + δρµ Aν =

Γρµν(gµν) + δρµ
(
Aooν (qo ⊗ eo) +Aiaν (qi ⊗ ea) +Aioν (qi ⊗ eo) +Aoaν (qo ⊗ ea)

)
(3.4)

Thus we have decomposed the R ⊗ C ⊗ H ⊗ O-valued affinity Υρ
µν into a

real-valued “external” part Γ plus an “internal” part Θρ
µν . The base spacetime

connection is chosen to be the torsionless Christoffel connection

Γρµν = Γρνµ =
1

2
gρσ (∂µgσν + ∂νgµσ − ∂σgµν) (3.5)

The R ⊗ C ⊗ H ⊗ O-valued curvature tensor Rσ
ρµν = Rσρµν + Ωρ

σµν , in-
volving the base spacetime and internal space curvature is defined by

Rσ
ρµν = Υσ

ρµ,ν − Υσ
ρν,µ + Υσ

τν Υτ
ρµ − Υσ

τµ Υτ
ρν . (3.6)

Rσ
ρµν = Rσρµν(Γρµν) + δσρ Fµν . (3.7)

where Rσρµν(Γρµν) is the base spacetime Riemannian curvature associated to the
symmetric Christoffel connection Γρµν .

The “internal” space C ⊗ H ⊗ O-valued curvature is

Ωρ
σµν = δρσ Fµν (3.8)

with
Fµν = Aµ,ν −Aν,µ − [ Aµ , Aν ]. (3.9)

and where the field Aµ can be read directly in terms of the internal space affinity
from the relation

Θρ
µν = δρµ Aν (3.10)

There are 32 complex-valued fields (64-real valued fields)

Aµ = {Aooµ , Aioµ , Aoaµ , Aiaµ } (3.11)

and the commutators in eq-(3.9) are defined by

[qI ⊗ eA, qJ ⊗ eB ] =
1

2
{qI , qJ} ⊗ [eA, eB ] +

1

2
[qI , qJ ]⊗ {eA, eB} (3.12)
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which lead to the following explicit components for Fµν

F ooµν = ∂µA
oo
ν − ∂νA

oo
µ (3.13)

F ocµν = ∂µA
oc
ν − ∂νA

oc
µ + (Aoaµ Aobν − δij Aiaµ Ajbν ) Ccab (3.14)

F koµν = ∂µA
ko
ν − ∂νA

ko
µ + (Aioµ Ajoν − δab Aiaµ Ajbν ) fkij (3.15)

F kcµν = ∂µA
kc
ν − ∂νA

ko
µ + Aoaµ Akbν Ccab + Aioµ Ajcν fkij (3.16)

Embedding the Standard Model Gauge Fields into the Internal Connection Θρ
µν

The next step is to establish the Gravity/Gauge correspondence (not un-
like the AdS/CFT correspondence) which in essence amounts to embed the
12 Gauge Fields of the Standard Model SU(3) × SU(2) × U(1) into the fields
appearing inside the internal connection Θρ

µν = δρµAν .
Eqs-(3.13-3.16) yield the following 32 complex-valued non-vanishing field

strengths

F ooµν , F koµν , F ocµν , F kcµν , k = 1, 2, 3; c = 1, 2, · · · , 7 (3.17)

Given the U(1) Maxwell field

Fµν = ∂µAν − ∂νAµ (3.18)

the Maxwell kinetic term in the Standard Model action is embedded as follows

Fµν Fµν ⊂ F ooµν (Fµνoo )∗ (3.19)

Given the SU(2) field strength

Fkµν = ∂µAkν − ∂νAkµ + Aµi Ajν εkij (3.20)

the SU(2) Yang-Mills term is embedded as

F iµν F
µν
i (i = 1, 2, 3) ⊂ (F koµν ) (Fµνko )∗ (k = 1, 2, 3) (3.21)

Since the SU(2) algebra is isomorphic to the algebra of quaternions, the em-
bedding (3.21) is very natural. The chain of subgroups

SO(8) ⊃ SO(7) ⊃ G2 ⊃ SU(3) (3.22)

related to the round and squashed seven-spheres : S7 ' SO(8)/SO(7), S7
∗ '

SO(7)/G2, reflect how the SU(3) group is embedded. The number of generators
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of SO(8), SO(7) are 28 and 21 respectively. There are 7 + 21 = 28 complex-
valued (42 real-valued) field strengths, respectively

F ocµν , F kcµν , k = 1, 2, 3; c = 1, 2, · · · , 7 (3.23)

such that the SU(3) Yang-Mills terms can be embedded into the contribution
of the above 7 + 21 = 28 complex-valued fields as follows

Fαµν Fµνα (α = 1, 2, . . . , 7, 8) ⊂ (F ocµν) (Fµνoc )∗ + (F kcµν) (Fµνkc )∗ (c = 1, 2, . . . , 7)
(3.24)

and where the SU(3) field strength is given by

Fγµν = ∂µAγν − ∂νAγµ + Aµα Aβν f
γ
αβ (3.25)

The Gravitational Action

To begin with one can realize that there are problems with quadratic curva-
ture actions like

∫
< gµν gρσ F̄µρ Fνσ >,

∫
< R̄µνρσ Rµνρσ >, · · · ... (3.26)

(as usual < · · · > denotes taking the real part) because the composition algebra
R ⊗ C ⊗ H ⊗ O is non-commutative, non-associative, and non-alternative [7].
To raise the four indices in < R̄R > requires the product of 4 factors of the
metric g making matters more problematic because the Moufang identities, like
(AB)(CA) = A(BC)A are no longer obeyed due to the loss of alternativity.

For the time being we shall discard the other metric component goo(µν), and

raise/lower spacetime indices with the base spacetime metric gµν to simplify
things. Actions based on terms linear in the curvature

∫
< R > furnish the

standard Einstein-Hilbert action
∫
R if one chooses for the integral measure√

det |gµν |. In doing so, we also may build quadratic curvature actions like

∫
< gµν gρσ F̄µρ Fνσ > =

∫
gµν gρσ (F IAµρ )∗ F JBνσ δAB δIJ (3.27)

(I = 0, 1, 2, 3;A = 0, 1, 2, 3, · · · , 7), and∫
c1 R + c2 (Rµν)2 + c3 (Rµνρσ)2 (3.28)

To sum up, given the R ⊗ C ⊗ H ⊗ O-valued curvature tensor Rσ
ρµν =

Rσρµν + Ωρ
σµν , we shall raise/lower indices with the base spacetime metric gµν

to construct the following action linear in R, and quadratic in F :

S =
1

16πG

∫
d4x

√
|det gµν |

(
R − κ2 (F IAµν ) (FµνIA)∗

)
(3.29)
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κ is a length parameter, and the metric signature is chosen to be Lorentzian
(−,+,+,+).

The 32 complex-valued fields AIAµ , and field strengths F IAµν , have a one-to-one
correspondence with the 64 real-valued fields Aαµ(α = 1, 2, · · · , 64) associated
with the u(8) Lie algebra of the compact group U(8) = SU(8) × U(1). Hence,
the R ⊗ C ⊗ H ⊗ O-valued Gravity / Gauge correspondence is

1

16πG

∫
d4x

√
|det gµν |

(
R − κ2 (F IAµν ) (FµνIA)∗

)
⇔∫

d4x
√
|det gµν |

(
R

16πG
− 1

4g2
(Fαµν) (Fµνα )

)
(3.30)

α runs over 1, 2, 3, · · · , 64 which is the number of generators of the u(8) Lie

algebra. The U(8) gauge coupling g is 1
4g2 = κ2

16πG ⇒ g2κ2 = 4πG = 4πL2
P ,

where LP is the Planck scale.
The results of section 2 permit to associate the internal C ⊗ H ⊗ O part

of the R ⊗ C ⊗ H ⊗ O-valued metric gµν to a 8 × 8 matrix-valued metric
Gµν = GMN

µν comprised of 8× 8 complex entries. Namely, the 64 matrix entries

in GMN
µν are comprised of tensorial quantities. The R-component of the metric

gµν is associated to the diagonal 8 × 8 matrix gµνδ
MN . In this way one can

rewrite the line element (3.3) in terms of the trace of the 8× 8 complex-valued
matrices with tensorial-valued entries as follows

ds2 =
1

16

(
Trace { GMN

µν dxµ dxν }
)

+ complex conjugate (3.31)

The isometry group that leaves invariant the line element in eq-(3.31) is pre-
cisely the unitary U(8) group. Under U(8) transformations acting on the matrix
(and not on the coordinates) one has

Trace { G′µν dx
µ dxν } = Trace { U Gµν U† dxµ dxν } =

Trace { U† U Gµν dx
µ dxν } = Trace { Gµν dx

µ dxν } (3.32)

due to the unitary matrix U† U = 1, and the cyclic property of the trace.
Consequently, we have replaced the Kaluza-Klein prescription to generate gauge
symmetries in lower dimensions from isometries of the internal manifold, by U(8)
isometry transformations of the R ⊗ C ⊗ H ⊗ O-valued metric, described by
eq-(3.2). A related approach based on Clifford spaces can be found in [22]. The
Lorentz transformations act on the spacetime coordinates and spacetime indices
of Gµν only. Thus the interval (3.32) is also Lorentz invariant.

This R ⊗ C ⊗ H ⊗ O-valued gravitational model is not complete until
matter is introduced and solutions to the corresponding Einstein’s equations are
found. There is a long history of SU(8) unification models in the literature; see
[31] and the encyclopedic work by [32]. An interesting SU(8) family unification
with boson-fermion balance was constructed by [30] where the 56 of scalars
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breaks SU(8) to SU(3)family × SU(5) × U(1)/Z5. The embedding conditions
(3.19-3.24) correspond to the following branching/decomposition of U(8)

U(8) = SU(8)×U(1) → SU(3)F ×SU(3)C ×SU(2)L×SU(2)R×U(1)×U(1)
(3.33)

The subgroups in the right hand side of (3.34) appear in pairs due to the
doubling of degrees of freedom resulting from the complex-valued fields which
appear in the right-hand side of eqs-(3.19, 3.24). The rank of U(8) is 8 and
matches the total rank of the groups in the right-hand side (3.33) : 2 + 2 + 1 +
1 + 1 + 1 = 8. SU(3)F is the 3-family symmetry group; SU(3)C is the color
group. SU(2)L × SU(2)R is the left/right chiral isospin group, and one of the
U(1)’s can be identified with the U(1)Y .

A unification of left-right SU(3)L×SU(3)R, color SU(3)C and family SU(3)F
symmetries in a maximal rank-8 subgroup of E8 was proposed by [33] as a land-
mark for future explorations beyond the Standard Model (SM). This model is
called the SU(3)-family extended SUSY trinification model [33]. Among the
key properties of this model are the unification of SM Higgs and lepton sectors,
a common Yukawa coupling for chiral fermions, the absence of the µ-problem,
gauge couplings unification and proton stability to all orders in perturbation
theory.

One may notice that after a symmetry breaking SU(3)L → SU(2)L ×U(1),
and SU(3)R → SU(2)R×U(1) of the SU(3)-family extended SUSY trinification
model [SU(3)]4 of [33], one recovers precisely the branching of U(8) described by
the right hand side of eq-(3.33). Therefore it is warranted to explore further the
model of [33] within the context of the results described in this work. Arguments
for a Grand Unified Model, including gravity, based on the complex Clifford
algebra Cl(5, C) ∼ [Cl(4, R)]4, were advanced by the author [34]. The dimension
of Cl(5, C) = 64, is also the dimension of the real Clifford algebra Cl(0, 6;R) '
OL ' OR [7].

Concluding, R ⊗ C ⊗ H ⊗ O-valued Gravity naturally can describe a
Grand Unified Field Theory of Einstein gravity with a U(8) Yang-Mills theory.
In particular, the embedding conditions (3.19-3.24) suggest that an extension of
the Standard Model group should include a 3-family SU(3)F symmetry group,
and an extra U(1) symmetry. The fact that so far only 3 families have been
observed is very encouraging that this Grand Unification approach based on R
⊗ C ⊗ H ⊗ O-valued Gravity is on the right track. The role of the extra metric
element hµν = goo(µν) within the context of bimetric theories of gravity (and dark

energy) deserves further scrutiny.
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