Turbulence in Fluid FlowAnalyzed Simply

"5% of the people think; 10% of the people think that they think; and the other 85% would rather die than think."----Thomas Edison

"The simplest solution is usually the best solution"---Albert Einstein

Abstract

The fluid flow in the Navier-Stokes solution may be characterized as follows. The *x*-direction solution consists of linear, parabolic, and hyperbolic terms. The first three terms characterize polynomial parabolas. The characteristic curve for the integral of the *x*-nonlinear term is a radical parabola. The integral of the *y*-nonlinear term is similar parabolically to that of the *x*-nonlinear term. The integral of the *z*-nonlinear term is a combination of two radical parabolas and a hyperbola. The polynomial parabolas alone produce laminar flow. It is illustrated that the polynomial parabolas, the radical parabolas and the hyperbola branches working together produce turbulence, rotation, swirling, and chaos

Introduction

Solutions of the Navier-Stokes Equations (x-direction)

See also viXra:1706.0193 and viXra:1512.0334

Solutions

$$\begin{aligned} V_x &= -\frac{\rho g_x}{2\mu}(ax^2 + by^2 + cz^2) + C_1x + C_3y + C_5z + fg_xt \pm \sqrt{2hg_xx} + \frac{ng_xy}{V_y} + \frac{qg_xz}{V_z} + \frac{\psi_y(V_y)}{V_y} + \frac{\psi_z(V_z)}{V_z} + C_9 \\ P(x) &= d\rho g_xx; \quad (a+b+c+d+h+n+q=1) \quad V_y \neq 0, \ V_z \neq 0 \end{aligned}$$

Summary for the fractional terms of the x-direction

$$\frac{ng_x y}{V_y} \text{ and } \frac{qg_x z}{V_z} \text{ in terms of } x, y, z \text{ and } t \text{ (for Case 3)}$$

$$\frac{ng_x y}{V_y} = \frac{-(ng_x)(-\frac{\rho g_z}{2\mu}(\beta_1 x^2 + \beta_2 y^2 + \beta_3 z^2) + C_1 x + C_3 y + C_5 z + \beta_5 g_z t \pm \sqrt{2\beta_8 g_z z})}{\beta_7 g_z}$$

$$\frac{qg_x z}{V_z} = \frac{-(qg_x z)\{[(\beta_7 g_z y)(-\frac{\rho g_x}{2\mu}(ax^2 + by^2 + cz^2) + C_1 x + C_3 y + C_5 z + fg_x t \pm \sqrt{2hg_x x}] - [CE]\}}{(\beta_7 g_z y)(qg_x z - \beta_6 g_z x)}$$

$$(CE = -(ng_x y)(-\frac{\rho g_z}{2\mu}(\beta_1 x^2 + \beta_2 y^2 + \beta_3 z^2) + C_{14} x + C_{15} y + C_{16} z + \beta_5 g_z t \pm \sqrt{2\beta_8 g_z z})$$

For communication purposes, each of the terms containing the even powers x^2 , y^2 and z^2 will be called a polynomial parabola, and each of the terms containing the square roots

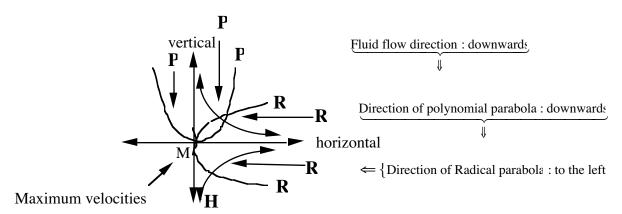
 $\pm \sqrt{x}$, $\pm \sqrt{y}$ and $\pm \sqrt{z}$ will be called a radical parabola. Also, each of the terms containing variables in the denominator will be called a hyperbola. The terms, polynomial parabola, radical parabola and hyperbola will be used interchangeably with what produces these profiles.

Turbulence Occurrence

In the Navier-Stokes solutions, during fluid flow, the polynomial parabolas, the radical parabolas, and the hyperbolas are present at any speed. The polynomial parabolas are prominent and dominate flow while the radical parabolas are dormant at low speeds, and consequently, the flow is laminar. At a low speed, a radical parabola (or a polynomial parabola susceptible to radicalization) is not very active, since the radicand of the parabola is small and consequently, the square root is small.

When the speed becomes large, and certain Reynolds numbers are reached, the "x" in $\sqrt{2hg_x x}$ becomes large and therefore the radical parabola becomes active. Note that the radical parabola will be moving at right angles to the direction of fluid flow, the direction of which is also that of the axis of symmetry of the dominating polynomial parabola. In the figure below, assume that flow is downwards. Then while the axis of symmetry of the polynomial parabola (P) is in the vertical direction, the axis of symmetry of the radical parabola (**R**) would be in the horizontal direction (that is, at right angles to fluid flow direction). Also, note the branches of the hyperbola (H) in the first and fourth quadrants. For each branch of the hyperbola, one end becomes asymptotic to the axis of symmetry of the polynomial parabola, while the other end becomes asymptotic to the axis of symmetry of the radical parabola, and thereby "interlocking" the polynomial parabola and the radial parabola together.

Velocity Profles



P--Polynomial parabola; R--Radical parabola; H--Hyperbola;

Maximum velocies at M

Therefore, the polynomial parabola, the radical parabola and the branches of the hyperbola become connected together to form a system such that any changes in one of them affect the behavior of the others. Any action that increases the flow velocity such that certain Reynolds numbers are reached, increases the "x" in $\sqrt{2hg_x x}$ and consequently, increases the effect of the radical parabola which is in direction at right angles to the fluid flow direction. The radical parabolas would be moving, from various positions, to the left or to the right, at right angles to the direction of fluid flow, noting that the direction of fluid flow is the direction of the polynomial parabolas, and at the same time, the hyperbolas will be moving asymptotically to fluid flow direction and asymptotically to direction of the radical parabola as in the figure. Thus, while the dominating polynomial parabolas are moving downwards, and the radical parabolas are moving at right angles to direction of fluid flow, the hyperbolas would be moving asymptotically to the axes of symmetry of the polynomial and radical parabolas, resulting in deviation from laminar flow and producing flows such as vortex flow, swirling flow, and turbulent flow. Imagine the polynomial parabolas pushing downwards, while the radical parabolas are pushing to the left, with the hyperbola halves pressing against the axes of the parabolas and the resulting deviation from laminar flow to turbulence and chaos.

Adonten