# Electron carries "hidden" 31,6 GW field energy vortex

### U. Kayser-Herold

#### August 15, 2018

#### Abstract

An electron is enveloped by a "hidden" electromagnetic field-energy circulation vortex of  $\approx 31, 6$  GW passive power determined by the Poynting-vector field existing around an electron. The energy vortex is most intensive in the proximity of classical electron radius, with maximum in its equatorial plane.

A thoretical upper limit of such (non-usable) passive energy circulation is analytically determined by integration of the Poynting-vector field over a specific plane of reference. The result highlights a new singularity problem of classical electron theory.

## 1 Introduction

According to the Abraham-Lorentz conjecture [[1]] classical electron mass  $m_e$  is identical with its relativistic electromagnetic field-mass. One particular consequence is that its spin-angular momentum  $\hbar/2$  is "hidden" electromagnetic field angular momentum. [2] [3] [4]

This is to focus on a similar implication resulting from the fundamental rule that superimposed electro- and magnetostatic fields  $\vec{E}$  and  $\vec{H}$  - like those surrounding an electron - generate electromagnetic energy-flux vortices of local intensity given by the Poynting-vector

$$\vec{S} = \vec{E} \times \vec{H} \quad [Wm^{-2}] \tag{1}$$

The task thus is to determine total electromagnetic field energy flux or passive power P [W] circulating around an electron as an energy-vortex, by integration of the Poynting-vector field (1) over a given reference plane  $p_e$  throughout the whole electromagnetic field surrounding the electron. The term "passive" power means idle power circulating loss-free in a closed (shortcut) loop through vacuum space. Passive power thus can neither be extracted nor technically used. Note that in the proximity of classical electron-radius  $r_e$  the electric and magnetic field strengths  $\vec{E}$  and  $\vec{H}$  are close to their theoretical upper limits (e.g. Schwinger-Limits) given by vacuum-polarization effects. [5]

## 2 Classical electromagnetic vacuum-field

The classical electron model which this article refers to is a point-like charge e of mass  $m_e$  and a magnetic dipole-moment  $\mu_B$  (magneton), included in a sphere of a theoretically determined (classical) electron radius  $r_e$ . The electrons vacuum-field thus comprises an electrostatic Coulomb-field  $\vec{E}$  superimposed to a magnetostatic dipole-field  $\vec{H}$ .

#### 2.1 Frame of reference

For the analysis let a free electron be located at the origin 0, 0, 0 of an orthonormal x - y - z frame and its magnetic dipole-axis be aligned with the z-axis. The reference plane  $p_e$  for determination of total power-flux P is coplanar with the x - z plane (x > 0) with normal unit-vector of  $p_e \vec{n} \parallel \vec{u}_y$ . Further, the radius unit-vector  $\vec{u}_r \perp \vec{n}$  and the angular unit-vector  $\vec{u}_{\Theta} \perp \vec{u}_r$ . The coordinates of a point in the x - z plane will be given by their radial component  $r = \sqrt{x^2 + z^2}$ and their polar-angle  $0 \leq \Theta \leq \pi$ , where  $x = r \sin \Theta$  and  $y = r \cos \Theta$ .

#### 2.2 Electrostatic Coulomb-field

For a point-like object with charge e and radius  $r_e$  its electric vacuum-field can be approximated by the Coulomb-law

$$\vec{E} \approx \frac{e}{4\pi\epsilon_0 r_e^2} \vec{u_r} \tag{2}$$

#### 2.3 Magnetostatic dipole field

The vacuum field  $\hat{H}$  of a point-like dipole like the magneton  $\mu_B$  is approximated by a classical dipole-field

$$\vec{H}_{(\vec{r},\vec{\Theta})} \approx \frac{\mu_B}{4\pi r^3} \Big( 2 \cos \Theta \vec{u}_r + \sin \Theta \vec{u}_\theta \Big)$$
(3)

 $\mu_B$  is the electron-magneton.

#### 2.4 Poynting-vector field

The total rate of electromagnetic energy flux or power P [W] around an electron results from its Poynting-vector field  $\vec{S}_{(\vec{r},\vec{\Theta})} = \vec{E}_{(\vec{r},\vec{\Theta})} \times \vec{H}_{(\vec{r},\vec{\Theta})}$  (1) which has to be determined - at any point on the x - z plane - as a function of r and  $\Theta$ . Then,  $\vec{S}$  has to be integrated over the whole +x - z plane, with radial integration-limits  $r_e \leq r < \infty$  and angular integration limits  $0 \leq \Theta \leq \pi$ . Note that that  $\vec{E} \perp \vec{n}$ ,  $H_{\Theta} \vec{\Theta} \perp \vec{E}$  and  $\vec{S} \parallel \vec{n}$  prevail in the x - z plane.

It can be anticipated that the Poynting-vector field  $\vec{S}$  resembles coaxial circles centered on the dipole-axis (z-axis) indicating circulating electromagnetic

power. These circles would pass  $\perp$  through the x - z plane

Let us now substitute with (2) and (3) in (1):

$$\vec{S}_{(r,\Theta)} = \frac{1}{16\pi^2} \left( \frac{e}{\epsilon_0 r^2} \vec{u}_r \times \frac{\mu_B}{r^3} (2\cos\Theta \,\vec{u}_r + \sin\Theta \,\vec{u}_\Theta) \right) \tag{4}$$

## 3 Total electromagnetic passive power

To determine the total rate of electromagnetic energy-flux or passive power P [W] through the x - z plane the energy-flux through each surface-element da has to be integrated over the whole x - z plane, as a function of r and  $\Theta$ . Let

$$da = r \, d\Theta \, dr \tag{5}$$

Hence

$$dP = \vec{S} \, \vec{n} \, da = \vec{S} \, \vec{n} \, r \, dr \, d\Theta \tag{6}$$

Substitution with (4) in (6)

$$dP = \frac{1}{16\pi^2} \left( \frac{e}{\epsilon_0 r^2} \vec{u}_r \times \frac{\mu_B}{r^3} (2\cos\Theta \,\vec{u}_r + \sin\Theta \,\vec{u}_\Theta) \right) \vec{n} \, r \, dr \, d\Theta \tag{7}$$

Substitution with

$$\mu_B = \frac{e\,\bar{h}}{2m_e} \tag{8}$$

in (7)

$$dP = \frac{e^2\hbar}{32\,\pi^2\,\epsilon_0\,r^4m_e} \Big(\vec{u}_r \times (2\cos\Theta\,\vec{u}_r + \sin\Theta\,\vec{u}_\Theta)\Big)\vec{n}\,dr\,d\Theta \tag{9}$$

Note that  $(\vec{u_r} \times 2\cos\Theta \vec{u_r}) = 0.$ 

An inspection of (9) reveals that it includes factors common with the definition of classical electron radius  $r_e = e^2/4 \pi \epsilon_0 m_e c^2$  which can be transformed into

$$\frac{e^2}{4\pi\epsilon_0 m_e} = r_e c^2 \tag{10}$$

delivering a useful substitution in (9). Execution of the vector-product (9) yields

$$dP = \frac{r_e \, c^2 \, \hbar}{8\pi \, r^4} sin \, \Theta \ dr \, d\Theta \tag{11}$$

Total electromagnetic power P thus is

$$P = \int_{r_e}^{\infty} \int_0^{\pi} dP = \frac{r_e c^2 \hbar}{8\pi} \int_{r_e}^{\infty} r^{-4} dr \int_0^{\pi} \sin \Theta \, d\Theta$$
(12)

$$P = \frac{c^2 \hbar}{12 \pi r_e^2} \approx 31,6 \, GW$$
 (12a)

## 4 Conclusions and Comment

The unexpectedly large magnitude of a "hidden" electromagnetic field energycirculation vortex power  $P \approx 31, 6 \, GW$  is mainly attributable to the denominator in (7) (inverted square of classical electron radius):  $(r_e^2)^{-1} = 1, 26 \cdot 10^{31}$ , as well as by the factor  $c^2 \approx \cdot 10^{17}$  in the nominator of (11) and (12). Note that in (11) the denominator is  $r_e^{-4} \approx 1,587 \cdot 10^{62}$ . Three quarters of the energy vortex are located in a spherical shell between  $r_e$  and  $2r_e$ .

From a heuristic point of view it can be conjectured that electromagnetic field energy and its assignable photons propagate (rotate) with c, in accordance with the Poynting-vector. Hence vacuum field-energy and its relativistic (photon) mass would circulate around the electron with a maximum frequency  $f_e$  along a circle of radius  $r_e$ :  $f_e \approx c/2\pi r_e \approx 3 \cdot 10^8 \cdot 0.57 \cdot 10^{15} \approx 1.7 \cdot 10^{22} s^{-1}$  This also means that roughly  $1, 7 \cdot 10^{22}$  electron-masses  $m_e \approx 9, 1 \cdot 10^{-31}$  kg would pass through the x - z- plane per second. The circulating power of  $31, 6 \cdot 10^9 W$  would have a relativistic mass-flux equivalent of  $\dot{m} \approx P/c^2 = 3, 16 \cdot 10^{10}/10^{17} \approx 3, 16 \cdot 10^{-7} kg s^{-1}$  or an equivalent number of electrons per second of  $\dot{n} \approx 3 \cdot 10^{-7}/9, 1 \cdot 10^{31} \approx 3, 3 \cdot 10^{23} s^{-1}$  traversing the x - z plane. Note that both of the above figures are of similar order of magnitude  $\approx 10^{22}$  to  $\approx 10^{23}!$ 

Obviously (6) defines a new singularity problem of classical electron-theory, which would lead to infinite amount of energy-circulation for  $r_e \rightarrow 0$ .

Consideration of vacuum-polarization might substantially reduce, but not eliminate above result.

The large amount of passive energy flux  $\approx 31,6 \, GW$  can be interpreted as a theoretical upper limit of electromagnetic energy flux.

## References

- [1] [1]] Jackson, J.D. (1998): Classical Electrodynamics (3rd ed.). New York: John Wiley Sons. ISBN 978-0-471-30932-1;
- [2] [2] McDonald, K.T: Electromagnetic Field Angular Momentum http://www.physics.princeton.edu/ mcdonald/examples/lfield.pdf
- [3] [3] Blinder, S M: Singularity-free electrodynamics for point charges and dipoles: a classical model for electron self-energy and spin. Eur. J. of Phys. 24 (2003) 271-275;
- [4] [4] Kayser-Herold, U: Electron spin 1/2 is "hidden" electromagnetic angular momentum.
- [5] [5] Schwinger-Limit;