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Abstract

Our model here, the Skyrme-Wess-Zumino model, is Skyrme lagrangian sup-
plemented with the Wess-Zumino anomaly term. It is commonly believed that
spin-half octet and spin three-half decuptet are the lowest dimensional repre-
sentations that the three-flavour Skyrmions would correspond to. We study the
effect of including the electric charges consistently in these analysis. We show
that indeed this leads to significant improvement in our understanding of proper
reprentations of two-flavour and three-flavour Skyrmionic representations.
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The topological Skyrme model of the 1960’s [1] has been focus of much
activity in recent years [2-12. The original Skyrme lagrangian needs to be sup-
plemented with a Wess-Zumino anomaly term to ensure proper quantzation
[2-6,10,11]. Our model here for three flavours shall be the original Skyrme
lagrangian plus the Wess-Zumino anomaly term and which we call the Skyrme-
Wess-Zumino model. As well known, Wess-Zumino anomaly term is non-vanishing
for three flavours and vanishes for two flavours. In this paper we discuss the
basic significance of this fact as to the octet and the decuptet representations
obtained in the three flavour Skyrme-Wess-Zumino model. We shall study the
electric charge for two-flavours and three-flavours and extract some interesting
and useful new information about their role in identifying the proper represen-
tations in our Skyrme-Wess-Zumino model.

Given an element U of SU(2),

Lµ = U†∂µU (1)

the Skyrme Lagrangian is given as [2-6],

LS =
fπ

2

4
Tr(LµL

µ) +
1

32e2
Tr[Lµ, Lν ]

2
(2)

Here the Skyrme topological current is,

Wµ =
1

24π2
εµναβTr[LνLαLβ ] (3)

On most general grounds this topological current is conserved, i.e. ∂µWµ =
0 and giving a conserved topological charge q =

∫
W0d

3x. This current is
independent of any WZ term that shall added below.

Here U(x) is an element of the group SU(2)F ,

U(x)SU(2) = exp((iτaφa/fπ), (a = 1, 2, 3) (4)

The solitonic structure present in the Lagrangian is obtained on making
Skyrme ansatz as follows [2-6].

Uc(x)SU(2) = exp((i/fπθ(r)r̂
aτa), (a = 1, 2, 3) (5)

This Uc(x) is called the Skyrmion. But on quantization, the two flavour
model Skyrmion has a well known boson-fermion ambiguity [2-6]. This is recti-
fied by going to three flavours. In that case we take,

U(x)SU(3) = exp[
iλaφa(x)

fπ
] (a = 1, 2..., 8) (6)

with φa the pseudoscalar octet of π, K and η mesons. In the full topological
Skyrme model this is supplemented with a Wess-Zumino (WZ) effective action
[2-6]

ΓWZ =
−i

240π2

∫
Σ

d5xεµναβγTr[LµLνLαLβLγ ] (7)
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on surface Σ. Thus with this anomaly term, the effective action is.

Seff =
f2
π

4

∫
d4x Tr [LµL

µ] + n ΓWZ (8)

where the winding number n is an integer n ∈ Z, the homotopy group of map-
ping being Π5(SU(3)) = Z.

Write effective action as,

Seff =
f2
π

4

∫
d4x Tr [∂µU∂

µU†] + n ΓWZ (9)

Taking Q as charge operator, under a local electro-magnetic gauge transfor-
mation h(x) = exp(iθ(x)Q) with small θ, one finds

ΓWZ → ΓWZ −
∫
d4x∂µxJ

µ(x) (10)

whee Jµ is the Noether current arising from the WZ term. This coupling to the
photon field is like,

Jµ =
1

48π2
εµναβTr[Q(LνLαLβ −RνRαRβ)] (11)

where Lµ = U†∂µU , Rµ = U∂µU
†. With the electromagnetic field Aµ present,

the gauge invariant form of eqn. (8) is,

ˆSeff =
f2
π

4

∫
d4x Tr [LµL

µ] + n ˆΓWZ (12)

This means that when replacing the LHS in eqn. (10) by ˆΓWZ , then the
RHS has two new terms involving FµνF

µν . This allows us to interpret Jµ with
the current carried by quarks [2-6]. With the charge operator Q, Jµ is found to
be isoscalar. To obtain the baryon current from eqn. (11), one replaces Q by
1
Nc

( where Nc is the number of colours in SU(Nc) - QCD for arbitrary number
of colours), which is the baryon charge carried by each quark making up the
baryon. For total antisymmetry, Nc number of quarks are needed to make up a
baryon. Then nJµ → JBµ gives,

nJBµ (x) =
1

48π2

(
n

Nc

)
εµναβTr[(LνLαLβ −RνRαRβ)]

=
1

24π2
εµναβTr[LνLαLβ ] (13)

This is the same as the topological current of Skyrme as given by eqn. (3).
Thus the gauged WZ term gives rise to Jµ(x) which in turn gives the baryon
charge. Thus though the WZ term ΓWZ is zero for two-flavour case, but Jµ(x)
still contibutes to the two-flavour case.

Next we embed the SU(2) Skyrme ansatz into U(x)SU(3) as follows for the
SU(3) Skyrmion [10],
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Uc(x)SU(2) → Uc(x)SU(3) =

 Uc(x)SU(2)

1

 (14)

Next we insert the identity,

U(~r, t)SU(3) = A(t)U(~r)SU(3)
c A−1(t) A ∈ SU(3)F (15)

where A is the collective coordinate. Note that U(~r, t) is invariant under,

A→ AeiY α(t) (16)

where

Y =
1

3

 1 0 0
0 1 0
0 0 −2

 (17)

With this the quantum degrees of freedom manifest themselves in the WZ
term ( eqn. (7) ) as,

LWZ = −1

2
NcB(Uc)tr(Y A

−1A) (18)

where B(Uc) is the baryon number (winding number) of the classical configura-
tion Uc. The gauge invariance leads to changing LWZ to

LWZ → LWZ +
1

3
NcB(Uc)α̇ (19)

In the quantized theory A and Y are operators and from Noether’s theorem
one obtains ( with Ψ as allowed quantum state )

ŶΨ =
1

3
NcBΨ (20)

This gives the right-hypercharge,

YR =
1

3
NcB (21)

where the baryon number B and colour Nc are integers [2-6,10].
It is important to remember that this right-hypercharge eqn (21) was dic-

tated by having defined SU(2) embedding in SU(3) as given in eqn. (14) [2,3].
With B = 1 and Nc = 3 one gets YR = 1. This identifies the nucleon hyper-
charge with the body-fixed hypercharge YR. Ultimately one obtains a tower of
irreducible represenatations: (8,1/2), (10,3/2), 10,1/2), 27,3/2), .... of which the
lowest octet and decuptet are identified with the observed low energy baryons
[2-6,10,11]. Hence we get all the low dimensional fermions as in the quark model.

We now study the significance of the above fact, that the Wess-Zumino term
provides only isoscalar electric charge. Hence let us next look at the structure
of the electric charge in the SU(2)F SWZ model. It has been pointed out by
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Balachandran et. al. [10, p. 176] that this has not been paid the attention it
deserves. This because as we show below, it presents a serious challenge to the
Skyrme lagrangian for two flavours. Following Balachandran et. al. [10], we
define the electric charge operator in SU(2) as,

Q =

(
q1 0
0 q2

)
(22)

It induces the following transformation,

U(x)→ eiε0ΛQU(x)e−iε0ΛQ = e
iε0Λτ3(q1−q2)

2 U(x)e
−iε0Λτ3(q1−q2)

2 (23)

where ε0 is the electromagnetic coupling constant. The Noether current associ-
ated with the above symmetry is,

Jemµ
ε0

=
iF 2
π

8
Tr Lµ(Q− U†QU)− i

8ε20
Tr [Lν , Q− U†QU ][Lµ, Lν ] (24)

We obtain the gauge theory by replacing

∂µU → DµU = ∂µU − iε0Λµ[Q,U ] (25)

To obtain constraints on charges in eqn. (22), first expand on pion fields as,

Jemµ = −iε0(q1 − q2)(π−∂µπ+ − π+∂µπ−) + ... (26)

From pion charges one gets

(q1 − q2) = 1 (27)

Next the charges of baryons N and ∆ with B=1 charge on using eqn. (15),

Q =

∫
d4x Jem0 (~x, t) = ε0Lα TrταQ (28)

From eqn. (22) we get,

Q = ε0(q1 − q2)L3 (29)

On using eqn. (27),

Q = ε0L3 (30)

L3 is the third component of the isospiun operator, we get (in units of ε0),

Q(proton) = +
1

2
and Q(neutron) = −1

2
(31)

This is in disagreement with experiment. Thus the Skyrme Lagrangian eqn.
(2) fails to provide correct electric charges to proton and neutron. As such this
should be construed to mean that just the Skyrme lagrangian in itself, is not
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enough to give consistent description of the B=1 nucleon. However note that
the Skyrme lagrangian provides pure isovector charges of proton and neutron.

Thus as electric charge of proton and neutron are more than what is provided
above, it needs another term to pull it out of this conundrum. And indeed we
have the additional WZ term to do the job. Again let the field U be transformed
by an electric charge operator Q as, U(x)→ eiΛε0QU(x)e−iΛε0Q,

Making Λ = Λ(x) a local transformation the Noether current is [10]

Jµ
em(x) = jµ

em(x) + jµ
WZ(x) (32)

where the first one is the standard Skyrme term and the second is the Wess-
Zumino term

jµ
WZ(x) =

ε0Nc
48π2

εµνλσTrV
νV λV σ(Q+ U†QU) (33)

Remember that even though the WZ term vanishes for two flavours, its
resulting contribution to electric chaege does not. This term was of course
missing in the original version of the Skyrme Lagrangian (eqn. (2)).

One finally obtains [10, p. 208],

jµ
WZ(x) =

ε0
2

(q1 + q2)NcJµ(x) (34)

The WZ term correction to the electric charge is therefore,

ε0
2

(q1 + q2)Nc

∫
J0(x)d3x (35)

Using eqn. (15) above,

ε0
2

(q1 + q2)NcB(Uc) (36)

Remember the right hypercharge YR = 1 in eqn. (21) and subsequently B=1
for Nc = 3. Note also the baryon in the Skyrme model with B=1 now as per
eqn. (13) has three quarks. We thus obtain the charges of N and ∆ if we put,

q1 + q2 =
1

3
(37)

Along with eqn. (27), we obtain the charges as,

q1 =
2

3
, q2 = −1

3
(38)

It is amazing that we are getting the fractional quark charges in the SU(2)F
group itself. These fractional charges are those of u- and d- quarks which form
fundamenatal representation of the group SU(2). This is opposite to what
happens in the SU(3)F quark model. In the quark model, in the smaller SU(2)-
isospin group, one gets no fractional charges, and one has integral charges for
nucleon N = ( pn ). One has to go to higher group SU(3)F , to be able to get
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fractional charges for the quarks in the quark model. This is a major difference
between the quark model and the topological Skyrme-Wess-Zumino model here.

However most important to note that for the SU(2) case, the Skyrme La-
granguian (without the Wess-Zumino term) gave us pure isovector charges for
proton and neutron (as clear from eqns. (27) and (31)). And next ,the Wess-
Zumino term, as clear from eqn. (37), gave us pure isoscalar charge. Then the
correct quark charges (as in eqn. (38) are obtained only after including both
the original Skyrme lagrangian plus the Wess-Zumino anomaly term.

Rememeber above in eqn. (11) and (13) the baryon number B was related to
charge Q because as stated there, the electric charge in the Wess-Zumino term
was pure isoscalar. This is what we have found for two flavours as above.

Next as Qp = q1 + q1 + q2 ; Qn = q1 + q2 + q2, hence necessarily due to
eqns. (27) and (37) one has the main result for nucleon charge in Skyrme-Wess-
Zumino model:

Qp −Qn = 1 (isovector); Qp +Qn = 1 (isoscalar) (39)

Again note that here no Gell-Mann-Nishijima expression ( of quark model )
for electric charge of proton and neutron, but quantized isovector and isoscalar
charges of the nucleon. From these skyrmions, using Z=1 for proton and N=1
or neutron the charges are

Q(p) =

(
Z = 1

2

)
isovector

+

(
Z = 1

2

)
isoscalar

Q(n) = −
(
N = 1

2

)
isovector

+

(
N = 1

2

)
isoscalar

(40)

Hence as per these skyrmions, this model gives right away the charge of a
nucleus for arbitrary number of Z protons and N neutrons as,

Q =
Z −N

2
+
Z +N

2
= T3 +

A

2
(41)

This well known charge of the nucleus is obtained here, as nucleus is treated
as made up of Z-protonic skyrmions and N-neutronic skyrmions. Note that we
have obtained the fundamental nuclear charge equation (eqn. (41)), directly
in terms of the atomic mass number A [12], as a direct and basic result of
the Skyrmion in the Skyrme-Wess-Zumino model. To belabour the point, this
cannot be done for pure Skyrme model without the addition of the Wess-Zumino
anomaly term. This is thus the proper representation of the Nucleon in the
nucleus as per the SWZ model.

Next, in going to SU(3)F , let the field U in eqn. (6) be transformed by an
electric charge operator Q as,

U(x)→ eiΛQU(x)e−iΛQ (42)

where the charges are counted in units of the absolute value of the electronic
charge.
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Making Λ = Λ(x) a local transformation, the Noether current is [10]

Jµ
em(x) = jµ

em(x) + jµ
WZ(x) (43)

where the first one is the standard Skyrme term and the second is the Wess-
Zumino term

jµ
WZ(x) =

Nc
48π2

εµνλσTrL
νLλLσ(Q+ U†QU) (44)

In the standard way [10], we take the U(1) of electromagnetism as a subgroup
of the three flavour SU(3). Its generators can be found by the canonical methods.
As the charge operator can be simultaneously diagonalized along with the third
component of isospin and hypercharge, we write it as

Q =

 q1 0 0
0 q2 0
0 0 q3

 (45)

The electric charge of pseudoscalar octet mesons demand,

q1 − q2 = 1, q2 = q3 (46)

Hence one obtains

Q = (q2 +
1

3
)13x3 +

1

2
λ3 +

1

2
√

3
λ8 (47)

Now we use U = A(t)Uc(x)A(t)−1 where A is the collective coordinate. We
obtain the B=1 electric charge from the Skyrme term in terms of the left-handed
generators Lα only as

Qem =
1

2
(L3 − (A†λ3A)8

NcB(Uc)√
3

) +
1

2
√

3
(L8 − (A†λ8A)8

NcB(Uc)√
3

) (48)

The Wess-Zumino term contributes

QWZ = NcB(Uc)(q2 +
1

3
+

1

2
√

3
(A†λ3A)8 +

1

6
(A†λ3A)8) (49)

Hence the total electric charge is [10]

Q =
1

2
L3 +

1

2
√

3
L8 + (q2 +

1

3
)NcB(Uc) (50)

The last term vanishes once we take the down quark charge q2 = − 1
3 [10, p.

210] and one is left with the Gell-Mann-Nishijima expression of charge as

Q = t3 +
Y

2
(51)

This gives the electric charges of all the members of the baryon octet.
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But this is precisely what we do not want! As we saw above, the SU(2)
nucleon charges are given in the Skyrme-Wess-Zumino model as isoscalar and
isovector charges. Those are the properly quantized charges. The SU(3) rep-
resentation which should carry along these nucleon charges - demands non-
compliance with Gell-Mann-Nishijima electric charges and should be consistent
with separately quantized isovector and isoscalar charges. Out of all the mem-
bers of the octet representation, the only one which has this property is Λ. Thus
the SU(3) skyrmion is not octet or decuptet, or any member of the infinite lad-

der, but the spin half fermion S =
(
p
n
Λ

)
This is the long-ago discarded Sakaton

of SU(3) [13,14].
Note that Sakata [13] had extended the group SU(2)I to SU(2)I × U(1)Y ,

and had taken Λ as a representation of the U(1) group. Thus it was natural to

take S =
(
p
n
Λ

)
as the fundamental representation of a larger SU(3)F group [14].

It is called Sakaton in anology with Nucleon of the isospin group. Note that
the charges in Sakaton are all integral: 1,0,0 respectively. The Sakata Model
predicted the mesons correctly as composites: 3× 3̄ = 1 + 8. However it failed
to describe the baryons as 3 × 3 × 3̄ = 3 + 3 + 6 + 15. Also as both p and Λ
are neutral members of the fundamental triplet in Sakata model, they should
have the same magnetic moment, µΛ = µn. This fails to match the expariment
where, µΛ = −0.613 and µn = −1.913 in units of e~

2mpc
, where mass is that of

proton. Thus the fundamental triplet Sakaton was rejected.
However in our Skyrme-Wess-Zumino model with minimal symmetry break-

ing [2,5], the masses are: ms = m0 , and (mu = md) = mo + aY . With ’a’
as negative in magnitute, ms > (mu = md). Hence magnetic moments of our

skyrmionic Sakaton, S =
(
p
n
Λ

)
are succssfully obtained as [7],

Baryons SWZ model experiment

p (4µu−µd)
3 2.793

n (4µd−µu)
3 −1.913

Λ µs −0.614

(52)

Physically as of now, one had assumed that hypernuclei reflect the presence
of hyperons, arising in the spin 1/2 octet, in the nucleus. However, this picture
is unable to explain as to why the hypernuclei observed experimentally upto
now [15], are predominantly made up of Λ’s only - fortyone have a single Λ
present, three have two-Λ and only one has a Σ meson? Our model here shows
that actually the hypernuclei are a manifestation of the presence of Sakatons
in a nucleus. Hence it predicts that strangeness in nuclei should arise from the
Sakatons. Thus the puzzling presence of only the Λ’s in hypernuclei is actually
a confirmation of our model.
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