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We construct time arrow spinor states and define for them a Stern–Gerlach analogue Hamiltonian.
The dispersion relations of the allowed modes are derived in a few special cases. We examine
experimental data regarding negative frequency resonant radiation and show that the energy shift of
the negative frequency mode is on the characteristic scale of the energies of the new Hamiltonian. We
describe the similitude of the modified cosmological model (MCM) and the Stern–Gerlach apparatus,
and we also show how the Pauli matrices are well-suited to applications in MCM cosmology. Complex
and quaternion phase are combined in the wavefunction to generate new multiplectic structures. The
principles described in this paper are oriented toward a time circuit application so we briefly describe
an electrical circuit whose constructive elements elucidate the requirements needed for a working
time circuit. The algebraic graph representation of electrical nodes with different electric potentials
is replaced with time nodes that have different times in the time circuit graph.

TIME ARROW SPINORS

To obtain a cosmological role for the Pauli matrices,
we will consider that time in the MCM should be de-
scribed with spinors. This follows from [1, 2] wherein we
proposed that the x0 of xµ spacetime should be taken
as the superposition of two time components. For this
application we will write x0 ≡ t? or χ5

∅ ≡ t? [3] and say
that t? is the superposition of t±, as in figure 1. In this
way, we derive an analogy with a generalized spin-1/2
state being written as the superposition of spin-up and
spin-down eigenstates. The idea to define a superposi-
tion time first arose in response to a question raised by
Ashtekar and Singh in reference [4]. They wrote,

“Can we extract, from the arguments of
the wave function, one variable which can
serve as emergent time with respect to which
the other arguments evolve? Such an inter-
nal or emergent time is not essential to ob-
tain a complete, self-contained theory. But
its availability makes the physical meaning
of dynamics transparent and one can extract
the phenomenological predictions more eas-
ily. In a pioneering work, DeWitt proposed
that the determinant of the 3-metric can
be used as internal time [5]. Consequently,
in much of the literature on the Wheeler-
DeWitt (WDW) approach to quantum cos-
mology, the scale factor is assumed to play
the role of time, although sometimes only im-
plicitly. However, in closed models the scale
factor fails to be monotonic due to classical
recollapse and cannot serve as a global time
variable already in the classical theory. Are
there better alternatives at least in the sim-
ple setting of quantum cosmology?”

As a simple superposition of t±, t? may or may not
contain the requisite freedom such that all other dynam-
ical quantities can evolve with respect to it. The DeWitt
emergent time can be used as an effective emergent time
in non-closed models but it contains nothing more than

was in 3-metric so it cannot be a truly emergent, glob-
ally functional emergent time. Likewise with t?, as a
superposition it is constrained to contain not more in-
formation than was in its constructive elements. How-
ever, later in this paper we will show that t? is, indeed,
fully dynamical and contains more information than is
in t±. This will depend on a lattice construction whose
global phase relationships are constrained by a normal-
ization condition on t?. The lattice construction will be
such that t± can each individually be taken as t′? which
is the superposition of some other t′±. Those, in turn,
can be labeled t′′? and decomposed as t′′±, and on and
on, such that the phase and magnitude of everything in
the lattice is eventually constrained by the way it will
contribute to the normalized top-level t?. In this way,
t? will be an emergent time with respect to which all of
the other arguments evolve.

DeWitt has shown [5] that the determinant of the 3-
metric can be used as an emergent time in certain limit-
ing conditions. Therefore, consider the always Euclidean
3-spaces in Σ± [6] spanned by χa± with a ∈ {2, 3, 4}.
These spaces are identically flat in the chirological met-
rics Σ±ab [7] but they are de Sitter (dS) and anti-de Sitter

(AdS) spaces in the chronological metrics g±ij . Therefore,

while they both evolve with the same t? ≡ x0, we may
construct two distinct t± with det g±ij because g−ij is the

spatial part of anti-de Sitter space and g+
ij is the spatial

part of de Sitter space. In turn, when we use t± to con-

FIG. 1. This figure demonstrates that time t? is the super-
position of two time components t±.
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struct t?≡χ5
∅, either as a sum, tensor product, or other

operation, they will have unequal contributions. This re-
flects the original comments regarding figure 1: the sys-
tem supports a parity violating field theory due to the
due the separation of a closed interior region from an ex-
terior open neighborhood of transfinite infinity [6, 8–11].
In this paper, we will consider the non-relativistic limit
without asymmetrical contributions from dS and AdS.

The MCM superposition time t? was constructed in
response to the question posed by Ashtekar and Singh
but the construction has its own independent physical
motivations. These were first described in [1] and are
described at length in [2]. Restated here: consider some
universe U created in a big bang. All of the pi momenta
in that universe are conserved with respect to the zero
momentum that existed before the big bang, i.e.: the
momentum of the part of U moving to the left is equal
to the momentum of the part moving to the right, and
the same for the forward/backward and up/down spatial
dimensions. However, the p0 part of the 4-momentum
is positive-definite in U when time always increases in
magnitude [12] or, equivalently, in the convention where
binding energy is always negative. Since this quantity
p0 is positive-definite everywhere in U , it has nothing
negative to balance it out. This contrasts the pi mo-
menta wherein a galaxy floating to the left has negative
momentum with respect to a galaxy floating to the right.

Where did this anomalous increment of 4-momentum
p0 > 0 come from and why did the universe decide not
to conserve momentum at the big bang? While ΛCDM
cosmology is quite happy to violate the law conservation
of momentum, we do not do so in the MCM. Therefore,
let two universes U and Ū originate in the big bang sin-
gularity, not just one. The time axes of these universes
are t± such that t+ increases in the opposite direction
to the increase of t−. Since time flows in the opposite
direction in Ū , the ADM positive-definiteness theorem
[12], and all other theorems demonstrating the positive-
definiteness of p0, will show that the p0 component of the
4-momentum of Ū is negative-definite. Combining U and
Ū , the MCM system conserves momentum and is, there-
fore, obviously better than ΛCDM, in every conceivable
way, at all times. N.b.: we have derived a requirement
for Ū following exactly that logical deduction which led
Pauli to hypothesize neutrinos.

The only modification that the MCM makes to the
ΛCDM cosmological model is to let there be two uni-
verses that strictly conserve momentum instead of a sin-
gle universe which does not conserve momentum at its
origin. Since one universe is behind the CMB with re-
spect to the other one, there is little reason to think
that the presence of the second universe would disrupt
the ΛCDM description of the first. As an exception to
this generality, we have demonstrated that the gravity of
the second universe can lead to dark energy effects in the
first [1, 2, 13]. Therefore, where dark energy is a mystery
in ΛCDM, it is not a mystery in the MCM. Likewise, the
polarization of the multipole moments of the CMB are
not explained in ΛCDM yet they may be derived in the

MCM through the symmetry axis between U and Ū .
Through conservation of momentum we derive two

times t± pointing in opposite directions from the big
bang. We obtain the superposition time t? from t± via
a quantum mechanical argument: the observer is un-
able to determine if he is in the universe with forward
time or backward time. To an observer in either uni-
verse, time in that universe is forward and the other is
backward. This is in complete analogy with quantum
mechanical spin: if the quantum observer cannot deter-
mine whether a two-state spin system is in the spin-up
or spin-down eigenstate then he must write the state as
a superposition

∣∣ψ±〉 = c↑
∣∣ ↑ 〉+ c↓

∣∣ ↓ 〉 . (1)

Adapting from electron to universe, we write

∣∣t?〉 = c+
∣∣t+〉+ c−

∣∣t−〉 . (2)

with eigenspinors

∣∣t+〉 =

(
1
0

)
, and

∣∣t−〉 =

(
0
1

)
. (3)

We are well-motivated to apply this principle of superpo-
sition in the cosmological setting because the MCM uses
the two universes U and Ū as two quanta of spacetime.
If U is a particle then Ū is its anti-particle and the big
bang was an ordinary field fluctuation. Incidentally, we
also use this construction to shed light on the imbalance
in the universe of the ratio of baryons to anti-baryons
[13]. U has a positive baryon number B and Ū has a
negative baryon number −B so that the MCM cosmol-
ogy is baryon neutral, as expected but not evident in
ΛCDM. It is only when ΛCDM decides to throw out the
law of conservation of momentum that the anomalous
non-zero baryon number is observed.

In the original formulation of the MCM, the bounce
only happened at the big bang. As the model developed,
the bounce was moved to the singular present moment
instead of some singularity long ago and far away. The
reasoning for this change appeared in [1] and is thus: if
t? is a superposition of t± then we must be able to de-
compose it into its fundamental pieces at t? = t0, not
only at t? = 0. The MCM unit cell, figure 2, embod-
ies the concept of a singularity in every moment when
there is an interaction with a singularity ∅ between ev-
ery two adjacent moments of physical time H1 and H2.
When each unit cell contains a singularity, that makes
it completely clear what it means to move the big bang,
or the big bounce, from the beginning of the universe
into any given moment. The MCM unit cell only de-
scribes U at the bounce and, in the present study, we
want to include U and Ū , as in figure 3. Figure 3 shows
two universes going through a simultaneous big bounce
rather than having a common origin in a non-bouncing
big bang [13]. While we will work with representations
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FIG. 2. In each transit of the unit cell of the MCM cos-
mological lattice, the trajectory along χ5 “bounces” off of a
singularity of infinite curvature at ∅. H1 and H2 are two
adjacent moments of a single universe and in this paper we
will consider two universes moving oppositely through time,
both bouncing off the same singularity ∅.

FIG. 3. This figure shows the directions of the arrows of the
three primary time components. U evolves forward in both
t? and t+, and Ū evolves forward in t? and t−, which is to
say that Ū evolves backwards in t+. U1 and U2 are like the
Σ± that appear in figure 2.

like figure 3 in this paper, the inclusion of ∅ in figure 2
gives a good motivation for bouncing: the ∅ singularity
can’t be a big bang because H1 precedes it.

Σ± are joined on a topological singularity [10, 14],
but general relativity says that topological singularities
are black holes which should capture geodesics from Σ+

without continuing them into Σ−. As a fine point, if χ5
−

is opposite time with respect to χ5
+ then the singularity is

a white hole in Σ− and we are well-motivated to consider
the extension of the trajectory through ∅ as per usual in
the Penrose diagram of a black hole. Indeed, one might
build a condition of identical topological flatness in the
bulk [6, 11] through the superposition of a black hole and
a white hole, or a pair of singularities of infinite positive
and negative curvature.

Another point that must be addressed before moving
on is the reconciliation of the different time schemes
in figures 1 and 3 relative to that in figure 2. For the
purposes of this paper, we will work in the convention of
figure 3 but the rectangular unit cell of figure 2 neither
shows x0 leading to ∅, as in figure 3, nor does it show
t± meeting up with t? twice, as in figure 1. On the
latter, if the χ5

± of figure 2 continue into adjacent unit
cells then they will meet H a second time, and we can

write off the discrepancy to the non-circular resolution
of the periodic boundary condition. Insofar as figure
2’s x0 does not lead to ∅, if we take χ5

+ pointing to
∅ as t? then we can take ±x0 as the t± components.
Here we refer to the concept mentioned above that
every time component must have a t? representation as
the superposition of t± pieces. Indeed, the dynamical
objects of general relativity are 3-spaces and we must be
allowed to propagate them along the x0 or χ5

+ directions
without disrupting the structure of the theory. Taking
χ5

+ as t? is fully self-consistent when the momentum
of the universe evolving with +x0 is exactly offset by
the momentum obtained from the universe evolving
with −x0 normalized such that p0 is negative-definite
there. Note how the concept of infinite complexity
[1] is demonstrated when every time piece has a t?
representation as the sum of t± contributions.

PAULI MATRICES

Consider the Pauli matrices

I ≡ σ̂0 =

(
1 0
0 1

)
(4)

σ̂1 =

(
0 1
1 0

)
(5)

σ̂2 =

(
0 −i
i 0

)
(6)

σ̂3 =

(
1 0
0 −1

)
. (7)

Before we examine how the well-known algebra of spin-
1/2 should be extended to our time arrow spinors, we
should examine the Pauli matrices at their most funda-
mental level. They are like a complexified superset of the
2D permutation matrices, of which there are only two:

P1 =

(
1 0
0 1

)
, and P2 =

(
0 1
1 0

)
. (8)

P1 is the identity, which we write as σ̂0, and σ̂1 = P2.
σ̂2 is like P2 with some extra phase and σ̂3 is like P1

with some extra phase. If we are to interpret the Pauli
matrices as complexified permutation matrices, which is
what they plainly are at the most fundamental level of
linear algebra, then it begs the question: permutations
of what?

To begin, consider the time arrow conventions for
{t−, t?, t+} in figure 3. The eventual aim in this rep-
resentation, beyond the scope of this paper, would be to
construct a cosmological time circuit akin to that which
can be solved with linear algebra in the way that one
solves Kirchoff’s laws in an electrical circuit. The com-
plete circuit would have many instances of the bounce
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complex, figure 3, joined horizontally and vertically, and
the “law” enforced by the algebra would be that there is
a path somewhere in the circuit of forward flowing time
in a state of unitarity. One might notice that such a
circuit would always contain exterior legs connected to
more bounce complexes, but we would invoke the MCM
principle that considers at most three simultaneous lev-
els of ℵ [6, 8–10]. This would constrain the diagram
not to extend out infinitely when we exclude legs too far
removed from the top-level t? path.

In figure 3, the universe U moves forward in time ac-
cording to both t? and t+, and Ū moves in reverse time
with respect to t+ and forward with respect to t? and
its own time t−. If we put Ū moving backward with
respect to t? then it would move forward in t+. That
might be acceptable but it is not the convention that
we will consider here. Naively, when a U plane wave
is incident on the bounce from the top left, it can only
come out on the bottom right leg of the the diagram be-
cause of the forward-only time evolution conditions on
t? and t+ individually. However, when the MCM in-
cludes dynamical process proportional to the advanced
and retarded times [15], we must consider backscatter-
ing through time, into the other universe. Therefore, we
will consider that the probability density incident on the
bounce from U1 can scatter into any of the other three
legs. We should not consider backscattering along the U1

leg because of the forward-only time evolution condition
in any given universe. Anything moving backward along
U1 must have originated in Ū and presently we consider
only a source in U1 moving toward ∅. Since ∅ is a sin-
gularity of both infinite positive curvature and infinite
negative curvature, it is not outlandish to consider that
time gets mixed up when two topologically independent
universes scatter there. In [16], we discussed the mixing
of timelike and spacelike components of ei(ωt−kx) at the
boundary of Σ± as relates to their respective O(1,4) and
O(2,3) topologies, and if we add an extra universe built
on Σ̄± then we will have even more channels for mixing.
Spacelike and timelike regions are usually separated by
a conformally invariant lightlike region [17] but these
topological sectors are merged in ∅ due to the infinite
curvature.

Plane waves are like bosons and we need to develop
the MCM spinor component whose origin was indepen-
dently motivated in [18]. Since a universe is more like a
matter particle than a force-carrying particle, it should
be fermionic in nature, i.e.: spinor-valued. The time
arrow spinor defined along each leg of the bounce com-
plex (figure 4) will tell us how t? transforms across the
bounce. Therefore, consider a spinor wave Ψ = eikx|t?〉
incident on the bounce from U1. We take eikx as totally
generic and not referring specifically to one coordinate
sector of the MCM unit cell or another, and we condense
ωt− kx into the 4-vector notation kx. With a spinor in
place, we should examine what the Pauli matrices do
to it. Before we do that, let us examine figure 4 and
make a prediction based on purely physical motivations.
For obvious reasons, we have assigned σ̂0 ≡ I to the U1

leg. What about the others? If we want our initial state
in the t? channel to be fully specified by U1 then we
should make the Ū1 piece imaginary with the σ̂2 matrix.
This gives a sector of t? leading into the bounce which
is completely determined by U1 even while Ū1 exists in
a parallel sector. Our t± spinors are eigenstates of the
σ̂3 matrix and, therefore, we should assign σ̂3 to the U2

leg. If we start with t+ or t− in U1, and then nothing
happens as it moves from H1 to H2, we need to get that
same state out, and that requires that it be an eigenstate
of the operator that sends it to U2. By default, we have
no choice but to attach σ̂1 to the Ū2 leg.

With our physically motivated expectations defined,
we write the total set of operations as

σ̂0

∣∣t±〉 =
∣∣t±〉 (9)

σ̂1

∣∣t±〉 =
∣∣t∓〉 (10)

σ̂2

∣∣t±〉 = ±i
∣∣t∓〉 (11)

σ̂3

∣∣t±〉 = ±
∣∣t±〉 (12)

As expected, |t±〉 are eigenspinors of σ̂3 but not σ̂1 or
σ̂2. If t? is incident on the bounce, t? being some com-
bination of t±, and it comes out on the σ̂3 leg, as in
equation (12), then the t+ component has moved for-
ward in time and the t− component has moved in the
opposite direction to increasing t−, thus the −1 eigen-
value. If it comes out on the σ̂1 or σ̂2 legs, then t±→ t∓.
This condition will imply that the timewave has left the
universe and gone into the other universe whose time
arrows are reversed with respect to the first one. On
the σ̂1 leg, t? continues to increase so there is no sign
or phase change attached to the swapped components.
For scattering into the σ̂2 leg, the wave has to begun
to propagate oppositely through t? and oppositely with
respect to the forward flowing time t− of Ū . Therefore,
the Ū1 leg must be imaginary to circumvent the forward-
only time law in the top-level t?. Overall, when we put
a superposition of t± in, we will always get a superposi-
tion of t± out. In the special case when t± have equal
coefficients in |t?〉, then |t?〉 is an eigenspinor of σ̂1 so
that case deserves special attention.

There is an interpretive difficulty with t? along the U2

FIG. 4. This figure shows how the Pauli matrices σ̂i assign
the permutations of the time arrows along the three possible
exits.
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leg because |t?〉 is not an eigenspinor of σ̂3 even while
|t±〉 are. The U1 state that entered the bounce was

∣∣t?〉 = c+
∣∣t+〉+ c−

∣∣t−〉 , (13)

but, using equation (12), the state that exits the bounce
along U2 is

σ̂3

∣∣t?〉 = c+
∣∣t+〉− c−∣∣t−〉 . (14)

Therefore, the proposed process does not preserve a
static t? ground state. To develop a solution, note that
where the bounce complex is clearly amenable to circuit
analysis, the four-legged bounce configuration was pro-
posed in [13] in no small part because it is amenable to
analysis in QFT. The bounce complex is like a Feynman
diagram with four legs meeting at a vertex. A typi-
cal rule in diagrammatic QFT is that one must consider
all permutations of a given diagram. Therefore, switch
one of figure 4’s legs around to get figure 5. The rear-
ranged scheme of figure 5 is very much like figures 6 and
7 which first appeared in [2] to describe the decompo-
sition of t? into its t± components within the bulk of
the unit cell. Indeed, the σ̂2 leg is the imaginary piece
and, in [2], we showed that figure 6 should be like figure
7 wherein the non-H bulk of the unit cell is imaginary.
This is also well-aligned with the definition for complex
numbers z = x0 ± iχ5

± [10] which translates roughly as
z= t? ± it±.

Using the identity that σ̂2
2 =I, we can apply σ̂2 to the

imaginary σ̂2 leg of figure 5 to preserve Ψ across a double
bounce via

σ̂2
2

∣∣t?〉 =
∣∣t?〉 . (15)

This fixes the signage problem of equation (14). Indeed,
where we have a curved leg on the left of figure 5, we
might replace that with a straight leg and say that it is
the superposition of t± components from U1 and Ū1. As
we have operated on the σ̂2 leg with σ̂2 to demonstrate
the imaginary throughput, we could likewise achieve this
by applying σ̂1 to the σ̂1 leg or σ̂3 to the σ̂3 leg because
all of the Pauli matrices have the property σ̂2

µ=I. How-
ever, where the σ̂1 and σ̂3 legs will meet other bounce
complexes in a more complex circuit, as in figure 8, the
imaginary σ̂2 channel will not.

Figure 8 brings us back to the question raised by
Ashtekar and Singh about the construction of an emer-
gent time. Superficially, one might argue that a super-
position time adds nothing new but figure 8 shows how
the t? path can be used to normalize all other time ar-
rows in the lattice. Whatever the interactions are, t?
needs to be preserved with unchanging coefficients for
t±. Physically, this represents the normalization of the
4-velocity which causes time to pass always at the same
rate in an inertial frame. While figure 8 is only a qual-
itative description, it defines the mechanism by which
one path through the time circuit will be the “emergent

FIG. 5. In this figure, the imaginary phase of σ̂2 is used to go
into the bulk space between t±. This operation is well-suited
to be such that the operand of σ̂i is in H and the output in
the bulk of the MCM unit cell. Here we have the potential
to inflate a unit cell without having to evolve across it as
~σi→{2̂, Φ̂, î}.

FIG. 6. This figure demonstrates the decomposition of t? in
H into its spinor basis components during transit of the unit
cell. Note that where figure 3 is like the the QFT diagram of
two particle scattering, this figure is like a photon decaying
to an electron and a positron before annihilating to another
photon.

FIG. 7. This figure demonstrates the decomposition of t?
in H into its eigenspinor components during transit of the
unit cell. This necessarily relies on a construction of complex
numbers z=x0 + iχ5

± [9, 10] where the path over i is like an
effective superposition of t± even when they are separated.
Every string of time can have a representation as t± but the
red i path might not be constructed from the t± of figure 6. t?
along i could equally well be constructed as the superposition
of t′± comprising a circle perpendicular to the plane of the
page.

time” with respect to which all other times evolve. When
we consider figure 1 and there are only three time com-
ponents, t? does not contain more information than was
in t±. On the other hand, in a representation like figure
8, there will be free legs on the exterior of the circuit and
everything between those legs and the t? path of U will
be defined such that t? is maintained in a steady state on
every other level of ℵ. We say every other level instead
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FIG. 8. This figure describes a general mechanism through
which a trajectory of timelike evolution in Minkowski space
H can enter the cosmological lattice. The foreground/back-
ground component on the right is evocative of the MCM
idea to couple a gravitational background through dynam-
ics rather than take QFT on an uncoupled spacetime back-
ground which does not properly gravitate. In the conformal
coordinates of [10], the circles would be replaced with squares
and the characteristics of convexity and concavity would be
washed out. We expect that the precise connection between
gravitation and electromagnetism should be inherited from
the Kaluza–Klein theory [6, 19] which constrains 5D matter-
energy in the bulk with a vanishing Ricci tensor. Gravita-
tional waves satisfy RAB = 0 so that will be a good chan-
nel through which a gravitational background can perturb a
quantum state, and vice versa. In general, the qubit enters
the lattice via the introduction of a quaternion phase whose
commutation relations are those of the three Pauli matrices,
up to a phase. Therefore, one is invited to consider three si-
multaneous levels of ℵ, each defined with a quaternion phase,
as an advanced foreground, a middle whose observables are
described with the Schrödinger operator ∂t acting on states
in Hilbert space, and a retarded background.

of every level because |t?〉 is an eigenspinor of σ̂2 only,
not σ̂i. Superficially this seems to require two bounces
in each unit cell but we might invoke some double count-
ing for U and Ū , or for a black/white hole pair in Σ±.
Later, we will give an even better reason for using two
Pauli matrices.

Take special note of the operators σ̂2
i which preserve

a steady state of t?. In the case of angular momentum
eigenspinors, the representation is an eigenspinor of σ̂z
and also the total angular momentum operator

~σ2 ≡ σ̂2
1 + σ̂2

2 + σ̂2
3 . (16)

Since our time arrow spinors are exactly the same as
spin-1/2 angular momentum spinors, even when t? is
not an eigenspinor of σ̂3, it is an eigenspinor of σ̂2

i . This
is written as

σ̂2
1

∣∣t?〉 =
∣∣t?〉 (17)

σ̂2
2

∣∣t?〉 =
∣∣t?〉 (18)

σ̂2
3

∣∣t?〉 =
∣∣t?〉 . (19)

Any of these channels will preserve |t?〉 across the bounce
but the σ̂2

2 channel is favored. Having demonstrated the
eigenvalue relationships of both σ̂3 and σ̂2

i , and to some
extent σ̂1 when t± have equal coefficients in t?, we see
that the analogy between our time arrow spinors and
the angular momentum system in quantum mechanics
is quite robust. Therefore, we should also consider the
ladder operators

σ+ = σ1 + iσ2 =

(
0 2
0 0

)
, (20)

and

σ− = σ1 − iσ2 =

(
0 0
2 0

)
. (21)

These operators give

σ̂+

∣∣t+〉 = 0 (22)

σ̂−
∣∣t+〉 = 2

∣∣t−〉 (23)

σ̂+

∣∣t−〉 = 2
∣∣t+〉 (24)

σ̂−
∣∣t−〉 = 0 , (25)

so for t? we have

σ̂±
∣∣t?〉 = 2c∓

∣∣t±〉 (26)

What does this tell us? Superficially it looks useful for
converting t? to t± in the infinite complexity decomposi-
tion of the total time circuit. What about the concepts
of raising and lowering? Can we use the raising and
lowering operators to raise and lower the level of ℵ?

Writing the spin-up/down states in the more-complete
|j,m〉 formalism we have

∣∣ ↑ 〉 =

∣∣∣∣12 , 1

2

〉
, and

∣∣ ↓ 〉 =

∣∣∣∣12 ,−1

2

〉
. (27)

Then

σ̂±

∣∣∣∣12 ,∓1

2

〉
= 2

∣∣∣∣12 ,±1

2

〉
(28)

We can use the m quantum number to put the level of
ℵ into the state as Φ̂m+1/2 and ignore the j quantum
number to write
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∣∣t?〉 = c+
∣∣t+〉+ c−

∣∣t−〉
= c+

∣∣∣∣12
〉

+ c−

∣∣∣∣− 1

2

〉
= c+

∣∣Φ̂1
〉

+ c−
∣∣Φ̂0
〉
. (29)

Since the m is unknown in the superposition state, that
is like an observer in H being unable to determine his
absolute level of ℵ [10, 20]. In [2, 10], we made a strong
argument that t? is for even levels of ℵ and that t± is for
odd levels but equation (29) does not agree with the idea
to put t? on even levels of ℵ and t± on odd levels. How-
ever, in [10], we made the case that the MCM might not
always rely on adjacent levels of ℵ and that sometimes it
should use two objects on the same level. If we did want
to preserve the interpretation that t± live on odd levels
of ℵ, and not one odd and one even, as in equation (29),

then the level of ℵ should appear as Φ̂2m such that

∣∣t?〉 = c+
∣∣Φ̂1
〉

+ c−
∣∣Φ̂−1

〉
, (30)

and

σ̂±
∣∣t?〉 = 2c∓

∣∣Φ̂±1
〉
. (31)

In the above, we have neglected the plane wave part
of the state. If we multiply our Pauli eigenspinors by
ψ=eikx then

∣∣ψ; t+
〉

=

(
eikx

0

)
, and

∣∣ψ; t−
〉

=

(
0
eikx

)
.

(32)
Furthermore, as in [10], we should replace the imaginary
number i in ψ with a quaternion. This yields six spinors

∣∣ψ; t+, î
〉

=

(
eikx

0

) ∣∣ψ; t−, î
〉

=

(
0
eikx

)
∣∣ψ; t+, ĵ

〉
=

(
ejkx

0

) ∣∣ψ; t−, ĵ
〉

=

(
0
ejkx

)
(33)

∣∣ψ; t+, k̂
〉

=

(
ekkx

0

) ∣∣ψ; t−, k̂
〉

=

(
0

ekkx

)
,

whose complexity exceeds that of the canonical Pauli
spinors. Whatever kind of cosmological lattice site
[11, 21] we use for |t?〉, meaning the label from among

{̂i, Φ̂, 2̂, π̂} attached to the σ̂0 leg of the bounce complex,
these six spinors should represent the other three kinds
of sites on two levels of ℵ. If one of those levels is the
same as t?’s then we have four interacting sites on a sin-
gle level, and a selection rule which says that one site
has to go into another kind of site when it changes levels
of ℵ. If the two levels of ℵ encoded on the spinor are one
higher and one lower then we maintain the selection rule:
the σ̂0-site can’t go to the σ̂0-site on an adjacent level

of ℵ. It would have to go to a σ̂i-site and it remains to
be clarified how the Pauli-labeled sites should be labeled
with {̂i, Φ̂, 2̂, π̂}. The second case in which neither of t±
share a level of ℵ with t? might indicate that one kind of
ontological site lives on even levels while the other three
live on odd levels. We might even adjust the level of ℵ
in the dual vector of the bra-ket formulation so that a
single site on the even level of ℵ of |t?〉, call it the π̂-site

for example, would be complemented with the {2̂, Φ̂, î}-
sites from

〈
t?
∣∣ whose base level of ℵ is odd. This latter

option to put the bra on a higher level of ℵ than the ket
strongly agrees with the MCM bra-ket formalism devel-
oped in [22].

By including the quaternions in our definition of a
plane wave, we add a new phase channel which should, in
principle, add a lot to the spinor problem. For instance,
where the classical bit is well-described with | ↑〉=1 and
|↓〉=0, the three orthogonal components of eukx are well-
suited to describe a quantum bit having three states: 1,
0, and their superposition. For instance, one might write

∣∣ψ; t+, î
〉

=

(
eikx

0

)
=

(
cos(kx) + i sin(kx)

0

)
=

(
cos(kx)− iσ̂1 sin(kx)

0

)

=

 cos(kx) −i sin(kx)
−i sin(kx) cos(kx)

0 0
0 0

 , (34)

and then write three unique states as some combination
of the spin-up and spin-down channel in each quater-
nion phase, possibly their tensor product yielding 4 × 4
matrices. Therefore, when the third state of a quantum
bit is normally taken as a superposition which is linearly
dependent on the other two, here we have the option
to define three unique, independent matrices. This du-
ality between two-fold and three-fold representations is
mildly evocative of a supersymmetry between spin-1/2
and spin-1.

Note well: we can uniquely label the spinors as
{̂i, Φ̂, 2̂, π̂}-sites in the MCM lattice hypercosmos [6].
|t?〉 is one kind of lattice site, call it ê0 and the three
quaternion phases on the eigenspinors are the other
three kinds of lattice sites êi on two distinct levels of
ℵ. Above we considered the cases when the m + 1/2
quantum number dictates two adjacent levels of ℵ,
and also when the 2m quantum number gives one
higher level and one lower. We could also devise a
scheme for two higher levels with another function of m.
Whatever the technical nuance is, the algebra contains
a selection rule that one kind of site can’t transition
to the same kind of site on the next level of ℵ, and
that is quite similar to the ∆l transition law in atomic
physics. As we will want to increase the level of ℵ by
more than one or two in a realistic application, that
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will require algorithmic renormalization which may be
non-trivial in the quaternion phase. If we work in the
most natural convention where the two distinct levels
of ℵ are those above and below that of t? then we will
have to implement the normalization procedure in every
application of M̂3 because its output is two levels of ℵ
higher than its input.

STERN–GERLACH COSMOLOGY

The representation in figure 9 is evocative of the
Stern–Gerlach experiment: one of the simplest experi-
ments that demonstrate quantized spin. In the simplest
variant of the experiment, an unpolarized beam of spin-
1/2 silver atoms enter a region of inhomogeneous mag-
netic field. The energies of the spin-up and spin-down
states are lowered via deflection in different directions
through the magnetic field and then one is able to ob-
serve two separate splotches of silver on a plate at the
end of the device. This is like the left side of figure
9. The so-called fancy Stern–Gerlach experiment adds
more than one magnetic field. If it is exactly opposite to
the first field then the beam will be recombined at the
end of the device. Recombination can be derived from
any arrangement of the fields when the integrated effect
through the entire device is zero.

Now, we will demonstrate that the MCM unit cell is
such that the analogue Stern–Gerlach apparatus is ex-
actly the one which separates components and then re-
combines them so that the beam out is the same as the
beam in. First, we need to show that the analogue field

is inhomogeneous because the inhomogeneity of the ~B
field is required for splitting in the lab experiment. The
MCM Kaluza–Klein scalar field [6, 10, 19] is

φ2
±(χ5

±) = χ5
± , (35)

so it does have the requisite inhomogeneity

∇φ± 6= 0 , (36)

built into it. This inhomogeneity would be preserved
through a spin upgrade if we matched the spin of φ± to

that of ~B. φ± are oppositely signed in Σ± so the effect
in one part of the bulk will be offset by the effect in the
other part. To show that the effects in Σ± are exactly
opposite such that the beam is perfectly recombined on
H2, first consider that

χ5
− ∈ [−1, 0) , and χ5

+ ∈ (0,Φ] , (37)

would indicate unequal contributions from Σ±. These
are the χ5

± around one instance of H, corresponding to

Σ±1 . When crossing the unit cell from H1 to H2, we go

through χ5
+ in Σ+

1 and χ5
− in Σ−2 , as in figure 2. Since

Σ−2 is on a higher level of ℵ, the size of the box has grown
by Φ [10] giving

χ
5 {2}
− ∈ [−Φ, 0) . (38)

Therefore, we have everything needed to construct a
cosmological Stern–Gerlach system inside the unit cell
which will separate the t± components in the bulk and
then recombine them on H2.

If χ5
− is to be reverse time with respect to χ5

+, meaning
that it decreases from ℵ to H2, then

χ
5 {1}
− ∈(0, 1] . (39)

In that case, we will achieve χ5
±>0 in full analogy with

the y± variables of hypercomplex ?C-numbers [9, 10]

z = x± iy± ←→ z = x0 ± iχ5
± . (40)

When we make this change to the domain of χ5
−, we can

maintain all previous relationships by adding a minus
sign where required, such as into the conformal coor-
dinate x5

− < 0 which acts as the parameter of negative
curvature in anti-de Sitter space [10]. Furthermore, the
unit cell centered on ∅ may contain Σ+ and Σ− taken
from U and Ū individually instead of both from a sin-
gle universe. This mechanism of sampling from separate
universes was suggested in [23] as a way to construct
anti-symmetric spatial wavefunctions from symmetrical
spaces. This contrasts the strict conception of figure 2
as the U1 and U2 legs of the bounce complex. Indeed,
when Σ± are already on different levels of ℵ, it is natural
to consider a unit cell constructed with

Σ+
{1}∪ Σ−{2} ←→ Σ+

{1}∪ Σ̄−{2} . (41)

This is very natural in the case where t± have equal
coefficients in t? because |t?〉 becomes an eigenspinor of
the σ̂1 operator which sends U1 into Ū2.

FIG. 9. This figure demonstrates a Stern–Gerlach cosmol-
ogy in which the inhomogeneous ~B field is replaced with the
Kaluza–Klein scalar field φ±. When the φ± are oppositely
signed in Σ±, the Stern–Gerlach analogue effect separates t±
and then recombines them.
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Figure 10 demonstrates a few variants of the Stern–
Gerlach experiment. On the first row, a beam is split
into its spin-up and spin-down components, and the spin-
down piece is sent into a beam dump. The spin-up po-
larized beam moves through another region of the same
magnetic field and, as expected, the output beam con-
tains no spin-down component. On the second row of
figure 10, the polarized beam enters a region containing
a different magnetic field, and the output beam contains
spin-up and spin-down components written in the eigen-

basis of σ̂1. This demonstrates that the z-directed ~B
field labeled to the left with σ̂3 did not select for spin
with respect to x. On the third row, the spin-down com-
ponent with respect to x is sent to a beam dump and
then the spin-up x-polarized beam enters a region con-
taining the original magnetic field which separates again
with respect to z. Even though the beam that enters the
third magnetic field was already selected to have only
spin-up states with respect to both x and z, the output
beam contains spin-up and spin-down components with
respect to z.

When we build the time circuit, this effect should be
implemented such that correlations are washed out when
they are separated by more than two levels of ℵ. In the
cosmological analogue of figure 10’s third row, we would
consider t? on Φ̂0 as the leftmost beam source σ̂0. When
t? on even levels of ℵ becomes t± on odd levels, the

beam exiting the first σ̂3 apparatus is on Φ̂1. Then the
beam exiting the σ̂1 apparatus is like the part of the
time circuit on Φ̂2. Beyond the second σ̂3 apparatus,
the logical coherence dissolves and that is well-suited to
analogy in the hypercomplex analysis which considers at
most three simultaneous levels of ℵ [8, 10]. Consider-
ing the third row, note that the input beam is like t?
and the magnetic field separates it into t± components.

FIG. 10. This figure demonstrates the kernel of the quantum
weirdness of the Stern–Gerlach experiment. On the bottom
row, a beam which has been selected to only have spin-up
components with respect to the z direction is observed to
contain an anomalous spin-down component. The cosmolog-
ical analogue should enforce the loss of correlations across
levels of ℵ separated by more than Φ̂2. However, regarding
loss of correlations, we should to examine whether or not the
algebraic property of quaternions ijk = −1 allows for a re-
verse passthrough channel through which information might
be recovered.

Then we treat t+ as t′? and decompose that into its t′±
components. Then we treat t′+ as t′′? , etc.

When one examines figure 10 and asks, “Why isn’t
Φ̂3 correlated with Φ̂1?,” the answer should be that the
polarization of the Φ̂1 beam is impossible to know with-
out filtering the Φ̂0 beam. It is, therefore, impossible to
consider Φ̂1 in the absence of its correlation with Φ̂0.

THE MCM HAMILTONIAN

The Stern–Gerlach experiment is described with the
Pauli equation

i
∂

∂t

∣∣ψ±〉 =

{
1

2m

[
~σ ·
(
p̂x − q ~A

)]2
+ qA0

}∣∣∣∣ψ±〉 , (42)

where Aµ is an electromagnetic 4-vector potential, ~A≡
Ai, and ψ± is a two-component spinor. This is the sim-
plest extension of the Schrödinger equation to include
spin-1/2. The Stern–Gerlach interaction is isolated from
the Schrödinger part as

ĤSG = − q

2m
~σ · ~B . (43)

This follows from identity

(
~σ · ~F

)2
= ~F 2 + i~σ ·

(
~F × ~F

)
, (44)

where ~F × ~F doesn’t identically vanish due to the oper-

ator properties of ~p=−i~∇ in ~F =~p− q ~A.
We have time arrow states |t±〉, not spin states |ψ±〉,

so what should be the cosmological analogue of equa-
tions (42) and (43)? We need to closely examine the

∂t operator, the charge q, the mass m, and the field ~B
to determine their cosmological analogues. First con-
sider the Schrödinger equation’s derivative with respect
to t. This t is like the “emergent” time described above
because everything else in the quantum theory evolves
according to it but it is not emergent; it is purely ex-
ternal. In the Schrödinger (Pauli) equation, t is strictly
x0. We may separate the Schrödinger operator ∂t from
the t± components with a definition that χ5

∅ is the ran-
dom superposition of χ5

± while x0 is the special top-level
time with respect to which all other things evolve, or
vice versa. For instance, if we choose χ5

∅≡ t? then t? is
unlike the t≡x0 in the Schrödinger operator ∂t. When
we choose one of {x0, χ5

∅} for one purpose, the other is
left for the other. This construction is ready-made for
experimental applications whose formalism doesn’t allow
us to mess with x0≡ t. Therefore, we should replace ∂t
with cases for ∂0 and ∂5.

The charge q in the Stern–Gerlach Hamiltonian should
be replaced with p0. The energy p0 is oppositely signed
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in U and Ū as required to achieve two opposite deflec-
tion directions within the bulk of the MCM unit cell. In
the quantum theory, p0 will be an operator and its re-
turned value will be oppositely signed when it operates
on |t±〉. When p̂0 → −i∂0 is the timelike part of the
4-momentum, we can separate this piece from the time
derivative ∂t which is built into the Schrödinger equation
by relabeling it p5 corresponding to χ5

±. We might also
leave it as p0 and replace x0 in the time derivative with
χ5
∅. We want to make sure that p0 becomes something

not identical to the ∂t Schrödinger operator. As we have
the freedom to study general relativity as the propaga-
tion of a spacelike 3-space along either of {x0, χ5

±, χ
5
∅},

so too do we have the freedom to evolve a quantum state
with a Schrödinger equation whose derivative ∂t is with
respect to any of {x0, χ5

±, χ
5
∅}.

The cosmological analogue of ~B should be like the

Kaluza–Klein scalar field φ±, as in figure 9. Where ~B
is a spin-1 field, we might upgrade φ± to spin-1 via the
inclusion of polarization quaternions {i, j,k}. The cos-
mological Stern–Gerlach analogue Hamiltonian can be
fully specified with quaternions because the Pauli matri-
ces are isomorphic to the quaternions with

i2 = j2 = k2 = −1 ←→ σ̂2
i = σ̂0 , (45)

and

ijk = −1 ←→ σ̂1σ̂2σ̂3 = iσ̂0 , (46)

altogether implying that

ûi ←→ −iσ̂i , and 1̂ ←→ I , (47)

with ûi∈{i, j,k}. When we implement the intermediate
renormalization which allows us to go to a second higher
level of ℵ while the spinor algebra gives one higher level
and one lower, we would be well-motivated to consider
a relationship

q̂µ ←→ −iσ̂µ , (48)

that carries the imaginary part into the Pauli identity
via q̂µ∈{1̂, i, j,k}. Indeed, note that

(
ijk
)2I = I , and

(
σ̂1σ̂2σ̂3

)2
= −I , (49)

gives a natural channel for an extra layer of phase. We
will revisit these complex phase issues in the quaternion-
dedicated section.

Regarding the cosmological analogue of ĤSG, let

~σ → iû1 , and ~B → iφ±û2 , (50)

so that we arrive at

ĤΣ±

MCM =
p̂0

2m
û1φ±û2 . (51)

We have included the i in the ~B part of definitions (50)
to keep the energy real and we could add a minus sign as
needed. Noting that p0 =E and that the non-relativistic
energy of our non-relativistic Pauli spinors is E =m in
units where c2 =1, we may simplify the MCM Hamilto-
nian as

EΣ±

MCM =
1

2

∣∣ û1φ±û2

∣∣ . (52)

EMCM is minimized inH at χ5
±=0 through the definition

φ2
± = χ5

± [10, 16, 19, 24]. Note the agreement with the
MCM description of the maximum action path [6, 11, 25]
as the one which pulls a trajectory out of H1 and across
hyperspacetime until it falls into another minimum inH2

on a higher level of ℵ (where χ
5 {2}
± = 0.) In equations

(51) and (52), we use the notation that an arbitrary,
unhatted, non-unit quaternion is

q = u01̂ + u , with u=cii + cjj + ckk , (53)

while {i, j,k} are identically unit quaternions. We only

put the unit quaternion û into ĤMCM and not the more
general q̂ because 1̂ is reserved for the Schrödinger part
of the total Hamiltonian in the Pauli equation. This is
demonstrated in

i
∂

∂t

∣∣ψ±〉 =

{[(
p̂x − q ~A

)2
2m

+ qA0

]
1̂− q

2m
~B · ~σ

}∣∣∣∣ψ±〉 .

(54)
When developing the rudiments of the time circuit in

figure 5, we found that we needed to use two Pauli matri-
ces to preserve |t?〉. Now we see that two quaternions ap-
pear in the Stern–Gerlach analogue Hamiltonian, equa-
tion (52). The specific condition for preserving |t?〉 (with
unequal coefficients for t±) was that the two Pauli matri-
ces must be the same, i.e.: |t?〉 is an eigenspinor of σ̂2

i but
not σ̂j σ̂k for j 6=k. When we use the isomorphism with
the quaternion representation and set û1 = û2 in equa-
tion (52), we get a very familiar looking energy function.
When û is a 3-velocity in the bulk of the MCM unit cell
and the scalar field φ± is a mass analogue, equation (52)
becomes identically the kinetic energy. Indeed, when the
û are two unit quaternions, their product is very much
like the spatial 4-velocity which is normalized such that

UµUµgµν = −1 . (55)

If we replace the 3-velocity ~v in Uµ with û then time
stops for û1û2 = −1 which is the property of any two
like unit quaternions {i, j,k}.
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Equation (51) preserves the spin-0 character of the
Kaluza-Klein field. If we promote φ± to spin-1 then we
would write

~B −→ iφ± = iφi±i + iφj±j + iφk±k . (56)

In definitions (50), we multiplied a unit quaternion û by
a scalar φ± and now we consider a non-unit quaternion
φ±. Taking φ± and the long form of û1 from equations
(53), plugging them into equation (52) yields

ĤΣ±

MCM =
p̂0

2m

(
û1 × φ± −

3∑
n=1

cnφn±

)
. (57)

This follows from the property of quaternions

ij = k jk = i ki = j (58)

ji = −k kj = −i ik = −j ,

which translates to the Pauli matrices as

σ̂1σ̂2 = iσ̂3 σ̂2σ̂3 = iσ̂1 σ̂3σ̂1 = iσ̂2 (59)

σ̂2σ̂1 = −iσ̂3 σ̂3σ̂2 = −iσ̂1 σ̂1σ̂3 = −iσ̂2 .

In the Stern–Gerlach part of equation (54), there will be

at most three terms derived from ~σ · ~B: σ̂1Bx, σ̂2By,
and σ̂3Bz. In the cosmological analogue, equation (57),
there is a fourth term in û1û2. Since we are not consid-
ering an electromagnetic field at all in the cosmological
analogue, this fourth term should replace the qA0 term
in the Schrödinger part of equation (54).

The spin-1 formulation is not inherent to the Kaluza–
Klein field on which the MCM is constructed [19], and
the spin-1 formulation disrupts the eloquence of the ki-
netic energy formulation, equation (52), even while it is
essentially equivalent. Therefore, consider the changes
to the Stern–Gerlach Hamiltonian

~σ → iû1û2 , and ~B → iφ± , (60)

such that φ± remains scalar. This formulation which
upgrades the single Pauli matrix to a pair of quater-
nions demonstrates the cosmological complexification of
the Stern–Gerlach Hamiltonian. The vector product of

~σ and ~B gives at most three terms but the product of
two quaternions gives up to four terms. The total cos-
mological Hamiltonian is

ĤΣ±

MCM =
p̂2
x

2m
+

p̂0

2m
û1û2φ± , (61)

and the ± cases refer to the energies in Σ± respectively.
When we multiply out the quaternion product we get

ĤΣ±

MCM =
p̂2
x

2m
+

p̂0

2m
φ±
(
û1 · û2 + û1 × û2

)
. (62)

We extend the vector dot and cross products to quater-
nions as

û1û2 = û1 · û2 + û1 × û2 (63)

û1 · û2 = −
3∑

n=1

c1nc2n (64)

û1 × û2 = u3 = î (c12
c23
− c13

c22
) + ...

...+ ĵ (c13c21 − c11c23) + ...

...+ k̂ (c11c22 − c12c21) , (65)

and we will condense terms as

û1 · û2 =−Z , and u3 ≡ −i~σ , (66)

where ~σ is a non-unit Pauli matrix.
To crunch the Pauli equation with ĤΣ±

MCM , consider
only Σ+ to avoid ambiguity with the ± specifying the
ψ± → t± spinor (which contributes to the sign of p0).
The Hamiltonian is

ĤΣ+

MCM =
p̂2
x − p̂0φ+

(
Z + i~σ

)
2m

. (67)

It follows from equations (63) and (66) that

Z = 1 =⇒ ~σ = 0 (68)

and

~σ = σ̂3 =⇒ Z = 0 , (69)

so we will consider these simplifying cases when we de-
rive the dispersion relations of the modes allowed by the
MCM Hamiltonian. Furthermore, we consider only |t+〉.
We can put the pieces all together as

i
∂

∂χ5
∅

∣∣t+〉 =

(
p̂2
x − p̂0φ+

(
Z + i~σ

)
2m

)∣∣∣∣t+〉 . (70)

We have changed the Pauli equation’s ∂t to ∂5 to il-
lustrate propagation across the unit cell but we could
equally well leave it as ∂t and rewrite p0 as p5 such that

i
∂

∂x0

∣∣t+〉 =

(
p̂2
x − p̂5φ+

(
Z + i~σ

)
2m

)∣∣∣∣t+〉 . (71)

These two equations should describe chirological and
chronological evolution respectively. We will derive the
allowed frequencies and label them ωχ(Z) and ωx(Z).

The spinor is
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∣∣t+〉 =

(
ψ
0

)
, (72)

and ψ needs to depend on χ5 if equation (70) is to be
non-trivial. We will make a definition that

∂

∂χ5
∅
χ5
± ≡ ∂5χ

5
± = ±1 , (73)

and select a wavefunction

ψ = e−i(ωt−kx±χ
5
±) , (74)

which is very natural because χ5
± = 0 in H. A more

complete treatment would look at

ψ′ = e−u(ωt−kx±χ5
±) , (75)

and this formulation would necessarily require a revision
to the i attached to the Schrödinger operator ∂t.

The chirological Pauli equation gives

i
∂

∂χ5
∅

∣∣t+〉 =

(
−∂2

x + i∂0φ+

(
Z + i~σ

)
2m

)∣∣∣∣t+〉 (76)

∣∣t+〉 =

(
k2 + ωφ+

(
Z + i~σ

)
2m

)∣∣∣∣t+〉 . (77)

In the limiting cases of û1 and û2 parallel or perpendic-
ular we obtain

ωχ(1) =
2m− k2

φ+
(78)

ωχ(0) = i
k2 − 2m

φ+
. (79)

Neither of these look like the classical limit ω = k2/2m
(which follows from E = ~ω and p= ~k in units where
~ = 1.) The chronological Pauli equation, the one in
which we definitely should find the classical limit, is

i
∂

∂x0

∣∣t+〉 =

(
−∂2

x + i∂5φ+

(
Z + i~σ

)
2m

)∣∣∣∣t+〉 (80)

ω
∣∣t+〉 =

(
k2 + φ+

(
Z + i~σ

)
2m

)∣∣∣∣t+〉 . (81)

This gives

ωx(1) =
k2 + φ+

2m
(82)

ωx(0) =
k2 + iφ+

2m
, (83)

which obviously does contain the classical energy where
φ+ = 0. Since φ2

±(χ5
±) = χ5

±, φ+ = 0 in H and we see
that the Hamiltonian is completely robust. One notices

that we could use φ2
± as the cosmological analogue for ~B

instead of the linear incarnation φ±. In that case, there
would be some subtlety related to the definition of the
scalar field as

φ2
±(χ5

±) = χ5
± , or φ2

± ≡ χ5
± . (84)

In the former case, ∂5 will not operate on φ2
+ and we

obtain

ωx(1) =
k2 + φ2

+

2m
(85)

ωx(0) =
k2 + iφ2

+

2m
. (86)

However, when φ2
±≡χ5

± we get

i
∂

∂x0

∣∣t+〉 =

(
−∂2

x + i∂5χ
5
+

(
Z + i~σ

)
2m

)∣∣∣∣t+〉 (87)

ω
∣∣t+〉 =

(
k2 + i

(
Z + i~σ

)
2m

)∣∣∣∣t+〉 , (88)

which gives

ωx(1) =
k2 + i

2m
(89)

ωx(0) =
k2 − 1

2m
. (90)

This formulation does not seem particularly interesting
so we should assume that ∂5 does not operate on φ±.

These energies exhibit interest behavior in the limits

where the two unit quaternions in ĤΣ+

MCM are parallel
with Z = 1 or perpendicular with ~σ = σ̂3. For ωχ(Z),
the two cases give a totally real or totally imaginary
frequency. An imaginary frequency is likely associated
with propagation across the unit cell rather than within
a single universe. For ωx(Z), the classical limit exists in
both cases and it is modified with a real or imaginary
component. Namely, the totally real classical frequency
stays real and increases with φ+ when û1 and û2 are
parallel but the frequency becomes complex when they
are perpendicular. Therefore, the Z = 0 case of û1 per-
pendicular to û2 is a special case for the Hamiltonian in
the chirological evolution equation which uses ∂5 as the
Schrödinger operator. What does it mean if the two unit
quaternions are parallel or perpendicular? In the next
section, we will show how these can be lattice vectors
in a fractal hypercosmological lattice such that bispinor
structure allows for a Hopf fibration time circuit tem-
plate whose nodes should be constrained to have internal
multiplectic structure which is also a Hopf fibration.
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HOPF FIBRATION TIME CIRCUIT TEMPLATE

When one asks, “How can I put this on a computer?,”
a likely template is the R3 boundary condition defined
by the Hopf fibration. Most boundary conditions in R3

are available as software modules, and softwares for mod-
eling in 3D are well-known. In the original MCM con-
struction of the time circuit [1], we arranged the lattice
so that {t+, t?, t−} were parallels, meridians, and hyper-
meridians on the surface of a 3-sphere, as in figure 11.
These three types of circles, having infinite radii in their
incarnations as straight lines, meet at orthogonal triads
such that the cross product of any two different tangent
vectors at the point of intersection gives a tangent vec-
tor pointing along the third direction [1]. This is entirely
consistent with our intention to use the quaternions as
analogue velocities because a velocity is, by construc-
tion, the tangent vector to some curve. Therefore, when
we take û1 and û2 as the tangent vectors to parallels,
meridians, and hypermeridians meeting at cosmological
lattice sites, they will always be parallel or perpendicu-
lar giving the cases of Z∈{1, 0} considered above for the
MCM Hamiltonian because those three elements always
meet at right orthogonal vertices. Then, in the usual
way, the symmetries of the system can be represented
with energy functions of its lattice vectors [10, 26].

The Hopf fibration, which is visualized through its
stereographic projection into R3 as parallels, meridians,
and hypermeridians, is constructed by “fibrating” a cir-
cle from every point in S2. S2 is the topology of the
boundary of the dynamical 3-space, the closed or open
3D spatial part of dS, AdS, or Minkowski space, whose
quantum states are described with quantum mechanics
so the Hopf fibration is a natural construction on which
to consider a time circuit that can shift everything out
of spacetime, into hyperspacetime, along the added de-
gree of freedom afforded by the fibration. Indeed, we
described the overall process of M̂3 as a periodic orbit
of the Hopf fibration [17, 23, 27].

To understand a little about the physics of the Hopf
template for the time circuit, we need to examine what
a unit velocity is because usually velocities range over
a spectrum. Earlier we remarked that the unit velocity
condition is quite like the normalization of the 4-velocity

UµUµgµν = −c2 . (91)

When the observer is at rest, meaning the 3-velocity
~v = 0, the observer has unit 1-velocity in units where
c=1. The 1-velocity is the rate of passage of time as op-
posed to the rate of passage of length described by the
3-velocity. The fundamental principle of relativity is that
the 1-velocity is always constant in the observer’s iner-
tial frame. If, somehow, a physical observer had |~v|= c,
which is a unit velocity in units where c= 1, then time
would stop but relativity requires that an infinite amount
of kinetic energy is required to get a massive object all
the way up to v=1. This is also the reason why photons
don’t experience time and it seems like there is some in-
teresting connection between the three polarizations of

FIG. 11. This figure shows the projection of the Hopf fi-
bration into R3. We should use this structure as a template
for the time circuit wherein the quaternion phase indicates
whether a particular plane wave propagates along the cir-
cuit’s parallels, meridians, or hypermeridians. From left to
right across the bottom are blue meridians, green hyperme-
ridians, and red parallels, and there exist independent chan-
nels for a “second quantized” imaginary quaternion phase
within each quaternion phase.

the spin-1 photon and the three quaternion phases, and
also between the on-shell condition which eliminates one
polarization for the massless photon, and the dual condi-
tion that t? depends on t±. So, how shall we obtain unit
velocity? By moving along χ5

±, horizontally across the
unit cell, that sets automatically the 1-velocity to zero
via propagation along χ5

± orthogonal to x0. Therefore,
we obtain unit relativistic 3-velocities along that path
via the normalization of the 4-velocity. We have shown
that propagation along χ5

± from H1 to H2 must be faster
than light [26] so we are compelled to consider non-unit
quaternions which would denormalize the 4-velocity. We
will develop those non-unit quaternions now and then
show how they should be objects in the Hopf circuit.

In [22], we developed the matrix element of M̂3 as the
quaternion rotation of a ordinary rotation operator. The
unitary evolution operator that is constructed from the
quantum mechanical Hamiltonian is one such ordinary
rotation operator so we deemed to add complexity to the
formalism of quantum mechanics with
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〈
ψ
∣∣eiĤt∣∣ψ〉 −→

〈
ψ
∣∣e−û2θeiĤteû1θ

∣∣ψ〉 . (92)

This gives the MCM formalism which specifies the lattice
site through

〈
ψ
∣∣e−û2θeiĤteû1θ

∣∣ψ〉 =
〈
ψ;−û2θ

∣∣eiĤt∣∣ψ; û1θ
〉
, (93)

where θ ∈ {i,Φ, 2, π} [21, 26]. For instance, we might
define some lattice symmetry with non-unit quaternions
ûΦ≡ Φ. In this way, we can write the Φπ matrix element
of M̂3 as

〈
ψ
∣∣M̂3

Φπ

∣∣ψ〉 =
〈
ψ; Φ

∣∣eiĤt∣∣ψ;π
〉
. (94)

Therefore, where a quaternion rotation is strictly defined
by û−1

1 û1, we can make an analogue pseudo-quaternion
rotation of two unequal quaternions û−1

2 û1 by operat-
ing to the left and right in the bra-ket and then tak-
ing the inner product. Whatever the resultant phase
is, that defines the asymmetric pseudo-quaternion rota-
tion. Indeed, an octonion is comprised of two indepen-
dent quaternions but we want one real quaternion and
one imaginary, as detailed in a following section.

We have shown [21] that the dyadic tensor product

of the ontological basis {̂i, Φ̂, 2̂, π̂} with itself has sixteen
matrix elements, as does the Clifford algebra of the Dirac
equation. Likewise, equation (94) shows one of sixteen

matrix elements of M̂3. We are, therefore, invited to
consider cosmological lattice sites labeled with pairs from
the ontological basis instead of singles, so that there are
sixteen types of sites instead of only four. The non-
relativistic bispinor formulation of the MCM spinors is

∣∣ψ; t+, i
〉

=

 cos(kx) −i sin(kx)
−i sin(kx) cos(kx)

0 0
0 0

 , (95)

where, for example,

∣∣ψ; t?; Φ
〉
≡ Φ

∣∣ψ; t+, i
〉
⊗
∣∣ψ; t−, i

〉
, (96)

so that

∣∣ψ; t?; Φ
〉

=

 ΦC −iΦS 0 0
−iΦS ΦC 0 0

0 0 C −iS
0 0 −iS C

 , (97)

where C= cos(kx) and S= sin(kx). Therefore, when we
consider the relativistic limit in which the chronological
space without identical topological flatness begins to ex-
hibit its mode of curvature, our MCM spinors and oper-
ators are well-suited to matrix multiplication operations
with the elements of the bispinor Dirac theory. In the

non-relativistic limit of the Dirac equation, the bottom
two spinor components go to zero, but we have two or
four columns in our multiplectic state because we have
inflated the spinor with a quaternion instead of a sec-
ond spinor. When we add the quaternion phase to the
bispinor state of relativistic quantum mechanics, a.k.a
the quantum field theory of light and matter, in exten-
sion of what we have shown here for the non-relativistic
state, it is likely that the matrix objects will become
non-trivially more complicated. Indeed, if we onvoke the
octonions then it will become true that certain of the al-
gebraic properties cannot be represented with matrices.
However, if we the spectrum of our non-unit quaternions
does not generate and identical octonion then, by virtue
of the linearity of quantum mechanics, everything will
remain within the ordinary bounds of matrix algebra.

Now we have three types of plane wave states, and we
want each one to propagate along a different sub-circuit
of the the time circuit such that they interact at nodes.
The sub-circuits are the parallels, meridians, and hyper-
meridians, and, when we construct states |ψ; {2,Φ,π}〉,
we might use the labels on ψ to specify a particular sub-
circuit. First we will consider a node within a single
sub-circuit, that associated with i, such that the unit
quaternion velocities û1 and û2 are parallel but pointing
in opposite directions. This leads to

−ii = 1 . (98)

The quaternion phase is totally scrubbed. Now consider
a node at the intersection of two sub-circuits such that

ij = k . (99)

This tells us that the two plane waves which entered the
node along their respective sub-circuits will exit the node
along the third sub-circuit. Finally, when components
from all three sub-circuits meet at a node we get

ijk = 1 . (100)

Now further consider that the interaction with the
node is described with the inner product. Along a single
sub-circuit we get

〈
ψ; −i

∣∣ψ; i
〉

= 1 , (101)

but at the intersection of two sub-circuits we get

〈
ψ; j

∣∣ψ; i
〉

= −k . (102)

For the probability interpretation, these numbers need
to be in R but k 6∈R. This is evocative of an issue raised
in [22], namely regarding the difference between discrete
and continuous state spectra. For discrete states, we
have
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〈
ψn
∣∣ψ〉 = αn , (103)

and

P [ψn] =

N∑
n=1

|αn|2 = 1 , (104)

but for continuous states we have

〈
x
∣∣ψ〉 = δ(x− x′) , (105)

and

P [ψ(x)] =

∫ ∞
−∞

dx′
∣∣ψ(x′)|2 = 1 , (106)

To obtain a real-valued probability from continuous
states, one must integrate over the inner product. There-
fore, when we have considered a node on a single sub-
circuit, that is like a the discrete states of standing waves
in that circuit. The two sub-circuits meeting at a node is
like the problem of continuous states. We have two dif-
ferent interpretations for {̂i, Φ̂, 2̂, π̂}: they can be sites or
vectors pointing between sites, and we have two different
types of states: those from discrete and continuous spec-
tra. When we get a continuous state that needs an extra
integration step, we can remove any residual phase by in-
tegrating over a leg of the relevant sub-circuit. Fo inner
products like equation (102) we can give dx′ a quaternion
phase −k such that equation (106) becomes

P [ψ(x)] =

∫
dx′
〈
ψ; j

∣∣ψ; i
〉

(107)

= −
∫
dx′ kk |ψ(x′)|2 (108)

= 1 . (109)

When we use dx→−dxk, that tells us the we are in-
tegrating along the length a segment of the sub-circuit
associated with k. One expects that the integral over the
length of the leg should generate the qubit which lives
at the end of leg, or at least contribute to it. Addition-
ally, we would want to rewrite the limits of integration
such that they reflect the length of the relevant leg of the
time circuit. It would be prudent to squeeze the Hopf
fibration such that the lengths between nodes align with
the values of the non-unit quaternions. However, these
are only the formulae for obtaining probabilities. When
a i-state and a j-state meet at a node, it is fine if there
is a continued propagation as a k-state, without inte-
gration over dxk. Furthermore, when we get rid of the
quaternion phase to give a real probability in a node,
we might equally well get rid of the quaternion phase
to give purely imaginary time radiation which leaves the
sub-circuits to fill the bulk.

What about the triple product? We can’t implement
a three vector inner product but we can implement a
commutative triple product. Just like the case to two
waves from a single sub-circuit meeting a node, the triple
product will get rid of the quaternion phase. When the
quaternion phase accumulates to give a real number ±1,
the wavepacket can no longer propagate in the Hopf time
circuit because each sub-circuit is phase locked to one
of the three quaternion phases. These wavepackets can
annihilate to produce a value at a node, or they could
radiate into the bulk.

Now consider the structure of the Hopf fibration. The
parallels are all circles but there is a meridian that points
outward and a few hypermeridians that do so. We will
want to associate the path of maximum action [25] with
the legs extending outward such that they are connected
at infinity to other Hopf fibrations. All the paths along
the circles, and any piecewise path which stays inside a
single fibration, should satisfy the least action principle
but the other legs should satisfy the most action prin-
ciple [25]. Therefore, the entire Hopf fibration is like a
node, and therefore the nodes of the Hopf fibration have
structure which is also a Hopf fibration.

The definite result of this section is that the Hopf
fibration is a good template on which to model the
time circuit. Furthermore, since the nodes and edges
of the graph of our circuit have multiplectic structure,
“graph” having its rigorous definition in linear algebra,
we should be able to draw graphs in which the edges
becomes nodes and the nodes become edges. A good
constraint on the time circuit will be that both of these
graphs are the Hopf fibration.

ELECTRICITY

Whatever the physical laws are, excepting certain
cases of potential octonions, they will be crunched with
the tools of matrix algebra because quantum mechan-
ics is a linear theory. This means that every object can
be represented as a matrix without regard for the rep-
resentation we use to show its relationships. Therefore,
we will consider the linear analysis of a primitive elec-
trical circuit and then discuss the requirements for the
construction of an analogous time circuit.

According to Strang [28], the fundamental problem of
not just linear algebra, but all of applied mathematics,
is

(
ATCA

)
~x = ~f . (110)

Indeed, ~f is very much like the fifth piece of an onto-
logical algebra of {̂i, Φ̂, 2̂, π̂; ϕ̂} such as that described in

[29]. We will consider the case when ~f=0. The operator
ATCA is quite like
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M̂3 = û−1Ĥû , or M̂3 = e−ûθeiĤteûθ , (111)

and we make the MCM problem slightly more complex
than the fundamental problem when we make the exten-
sion to

M̂3 = û−1
1 eiĤtû2 . (112)

Now we have noted in passing that M̂3 is quite like the
fundamental operator of applied mathematics and we
will henceforth focus on the form ATCA as relates to
the applied problem in electricity.

Consider the electrical circuit in figure 12. The rules
for describing graphs with linear algebra require a matrix
A with as many rows as there are edges in the graph and
as many columns as there are nodes. For our example,
A is 5× 4. The physical problem we will examine is the
one where ~x gives the potential at each node and ~y gives
the electrical current along each edge. By inspection, A
is

A =


−1 1 0 0
0 1 −1 0
1 0 −1 0
−1 0 0 1
0 0 −1 1

 . (113)

Each row represent an edge. If the edge points out of a
node we write −1 and if it points into a node we write
1, and 0 otherwise. To obtain the potential difference
between nodes, we compute

A~x = V. (114)

To get the current, we use Ohm’s law V = IR which is
written in terms of the capacitance as

CV = I . (115)

This is not enough information to solve everything. We
also need to apply Kirchoff’s current law which says the
current entering any node must be equal to the current
leaving it. This in enforced with

AT I = 0 . (116)

Putting it altogether, we get

AT I = AT
(
CV

)
= AT

[
C
(
A~x
)]

= ATCA~x . (117)

We have solved equation (110) for the case of ~f=0. Our

graph has ~f = 0 because there is no battery included in
the circuit and current does not flow. The condition of
non-flowing time current should be the limit of physics in

Minkowski spaceH which can be described with the least
action principle. When the time current starts flowing
due to a time battery, then that should involve maximum
action paths across hyperspacetime, out of spacetime.

Now we have solved one complete physics problem, al-
beit a static one. If we added batteries and components
then we would get systems of differential equations that
have exact analogues in classically mechanical systems
when the capacitance or the inductance is like mass, the
current is like force or velocity, etc. Therefore, we will
consider an unpowered time circuit under the assump-

tion that ~f 6=0 can be added later.
The electric current is a scalar but the time current is

spinor-valued so the edges of our graph would have two
arrows, perhaps a red one and a blue one. That covers
the edges, what about the nodes? If x is the potential
at the node in the electrical circuit then it should be
the time at the node of time circuit. Positive charges
want to move to lower electrical potential and world-
sheets with positive time arrows want to move to higher
time so there is a good analogy between time and poten-
tial. That’s ~x and ~y, what about A? Our construction of
A will necessarily be much more complicated than the A
devised here for figure 12. Not only do we need to have
the spinor piece, we have the quaternion phase along the
edges and at the nodes. This indicates a likely 3-plet for
each node, possibly one for each level of ℵ in the hyper-
complex limit. The MCM concept of time is preserved
when t? exists in the nodes and t± exist along the edges.

What should be our analogue of Ohm’s law? In the
electrical problem, the capacitance matrix acts on the
potential difference vector which becomes the δt vector
in the time circuit. Usually time differences show up
in quantum mechanics via the unitary evolution opera-

tor eiĤδt so this step would likely involve an exponential
map between permutations of equations (111). When
one applies the exponential map, one performs an op-
eration like wrapping the time axis of Minkowski space

FIG. 12. This figure shows an ungrounded, unpowered elec-
trical circuit consisting of four nodes and five edges. This
circuit is like that in figure 1 with added nodes that can at-
tach to the exterior time circuit, as in figure 8. Some of
the arrows are reversed on some edges with respect to figure
1 because the time circuit has to have spinor-valued edges
between multiplectic nodes.
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around a cylinder [1, 13] with x0→eix
0

. Therefore, if we

act on the δt vector with Ĥ and then wrap the time axis
around a cylinder we will obtain the unitary evolution
operator

Ĥδt −→ e−iĤδt ≡ Û . (118)

Instead of the electrical currents ~y, we would likely use
the unitary evolution operator to determine the proba-
bility current. Since our electrical circuit has no bat-
teries or parts, no current flows. In analogy, we would
have no probability current between nodes and every-
thing in H would stay in H. If we added some batteries
and parts to the electrical circuit then there would be a
dynamical current and the time circuit would have non-
vanishing probability currents among the nodes which
are like {H1,Ω,∅,ℵ,H2} in the unit cell.

How about the final part: the temporal balance
equation to act as the analogue of Kirchoff’s current
law? The electrical nodes in figure 12 are unitary in
nature, their labels are like unit vectors x̂j . When the

time nodes are π̂-, Φ̂-, 2̂-, and î-sites, the labels will
modify the magnitudes of the spinor time currents going
into and coming out of each node. Furthermore, where
an electrical circuit has to be physical everywhere, we
add a lot of new phase structure with quaternion waves
in the real and imaginary sectors so the time circuit
might not exhibit the same global coherence seen in the
primitive electrical circuit. The time circuit probably
does not have to be physical along the legs extending
past a certain level of ℵ with respect to that of t?.
Indeed, when the independent part of a given graph
is loosely defined as the part with no loops, t? should
be exactly that part of the time circuit’s graph which
is constrained not to be a loop. Therefore, the time
circuit should be such that everything is a loop except
for one real part t?≡x0 and one imaginary part t?≡χ5.
This non-loop part must be the independent time arrow
spinor we have used to demonstrate ĤMCM.

QUATERNIONS

If our three unit quaternions {i, j,k} propagate on the
time circuit then we might also add imaginary quater-
nions so that our timewaves can go off-shell, into the
bulk, which could be the exterior bulk or the interior, hy-
percomplexly infinitesimal bulk within each node. Imag-
inary quaternions are not strictly required to study the
bulk because we can go off-shell with i alone but the
imaginary quaternions are required for self-similarity in
the fields. Consider the general solution to everything in
quantum mechanics

Ψ = Aei(ωt−kx) +Be−i(ωt−kx) . (119)

We have the option to add quaternion phase by replacing
the i with a quaternion, or we might multiply it with a
quaternion. For example, consider

Ψ′ = Aei(ωt−kx) +Be−i(ωt−kx) + ...

...+ Ceiu1(ωt−kx) +De−iu2(ωt−kx) . (120)

We might even consider u→ q such that a fifth com-
ponent beyond i and u is added. Since quaternions do
4D rotations, the Lorentzian O(1,3) topology of our 4D
spacetime defines a time arrow which acts as an object
being rotated in 4D, and 3-spaces are rotated by their
orientation with respect to these time arrows. Thus
far, we have mostly considered unit quaternions but the
MCM is a non-unitary model. We want to define a
quaternion algebra for the ontological basis {̂i, Φ̂, 2̂, π̂}
[21, 26] but î is not allowed because the quaternions all

have real coefficients while î’s coefficient in

1̂ =
1

4π
π̂ − ϕ

4
Φ̂ +

1

8
2̂− i

4
î , (121)

is imaginary. This is a hard constraint that {̂i, Φ̂, 2̂, π̂} 6≡
H. Furthermore, if the ontological resolution of the iden-
tity was a quaternion relationship 1̂→q then the identity
would be on the RHS because the identity is a required
element of H. To resolve these issues, consider

qπ = cπ0
π̂0 + c22 + cΦΦ + cπ1

π , (122)

and

q′′Φ = cΦ0
Φ̂0 + c22 + cΦ1

Φ + cππ . (123)

Since î does not invoke an imaginary coefficient, either of
the above are perfectly valid sets of quaternions. There-
fore, where have raised the issue with î when attempt-
ing to construct two sets of quaternions by splitting
the 2 in {̂i, Φ̂, 2̂, π̂} to make two sets of four pseudo-
quaternions[26], now we have constructed two sets of rig-

orous quaternions without reference to î. To distinguish
qπ and q′′Φ, and to make q′Φ merely a pseudo-quaternion,
consider

q′Φ = −icΦ0
Φ̂0 + c22 + cΦ1

Φ + cππ . (124)

q′Φ has the property

2Φπ = 2Φπijk = −Φ2π1̂ (125)

so the triple product is like π̂0 in both of {qπ,q′Φ} be-

cause Φ̂0 has an imaginary coefficient. Therefore, qΦ is
injective onto qπ but not bijective. Therefore, q′Φ is not
a group and group theory does not apply.

The quaternions and the Pauli matrices are related by
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û ←→ −i~σ , and 1̂ ←→ σ̂0 , (126)

and, as in equation (48), we want to supplement that
with pseudo-quaternions such that

q′µ ←→ −iσ̂µ . (127)

Indeed, if we are trying to consider every possible phase
combination. which was the intention in equation (48),
then why not define a totally phase-inverted pseudo-
quaternion which satisfies

û′ ←→ ~σ , and 1̂′ ←→ −iσ̂0 ? (128)

To that end, consider a complex pseudo-quaternion

qz = qπ + iqΦ , (129)

where

qπ = cπ0
π̂0 + cπ2

2π + cπΦ
Φπ + cπ1

ππ , (130)

and

−iqΦ = cΦ0
Φ̂0 + cΦ2

2Φ + cΦ1
ΦΦ + cΦππΦ , (131)

with all c ∈ R. qΦ should satisfy the isomorphism
with the Pauli matrices specified by relationships (128).
When qπ has a real phase with respect to the imaginary
phase of qΦ, we can use those imaginary quaternions
to describe the matter-energy in the foliated 3-spaces
[1] that propagate along the edges of the time circuit.
These are the spacelike sectors of the universes whose
time axes define the time circuit. The purpose of all this
added nuance will be so that the quaternion phase can-
not be converted into unit Pauli matrices in all cases,
but rather only under certain phase conditions defined
by the c that appear in the many equations. For the
purposes of physics, before one surveys all possible com-
binations of complex and quaternion phase, one would
examine the MCM Hamiltonian and add phase as needed
when it bumps into a dead end.

To distinguish qπ and qΦ, consider that we have as-
sociated the entrance leg into the bounce complex with
σ̂0≡ 1̂. What kind of cosmological lattice site is this? In
general, we have a strong case for the input leg being a π̂-
site, meaning σ̂0≡ π̂0, because M̂3 takes input from one
π̂-site and returns an output at the next π̂-site, which is
two levels of ℵ higher than the input. However, the input
leg of the bounce complex is also on the finite tier of in-
finitude which makes a strong case for the identification
σ̂0 ≡ Φ̂0 but the qπ and qΦ quaternions have different
relationships with the Pauli matrices. Figure 13 shows
how we can accommodate either representation and re-
spect the transition rule that one type of site has to go

another type on an adjacent level of ℵ. This figure shows
the hypercomplex contour between adjacent levels of ℵ
developed in [10]. To the left of the figure, we start at

π̂0 and then we leave the real line at î. We go through ∅
at 2̂. If we were doing a closed contour on a single level
of ℵ then π̂ marks reentry to the real line at the end of
a contour integral across π radians at complex infinity.
Since the selection rule says π̂ can’t go to π̂ on the next
level of ℵ, we finish at Φ̂. To the right of the figure,
we start at Φ̂0 and then î once again kicks the contour
off the real line. The path gets to Φ̂ where the path on
the right gets to π̂. This will indicate the changing level

FIG. 13. This figure, adapted from [10], shows how we might

take either of {π̂0, Φ̂0} as the identity quaternion. The red
path is an open contour in the hypercomplex plane, one
equivalent to a closed contour in the complex plane. The two
modes should define chirological versus chronological evolu-
tion from one level of ℵ to the next.

FIG. 14. This figure, adapted from [20], shows via its seven-

pointed stars how {π̂0, Φ̂0} can transition into six other sites.
We have a selection rule which says a site may transition to
any of the other three types of sites on either of two levels of
ℵ, and 3 × 2 = 6. The smaller star beyond Φ̂0 demonstrates
how q′Φ is injective onto qπ. The two triangles represent
the real and imaginary quaternions: any two corners gives a
third according to the antisymmetric relationship εijkij=k.
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of ℵ before settling into the π̂-site. Both contours pass
through three nodes meant to demonstrate an accumu-
lation of quaternion phase inside the î complex phase
channel.

Consider figure 14. In this time circuit schematic,
The five and six pointed stars are inherited from the
dodecahedral symmetry which is inherent to physics
[20]. The two seven-pointed stars which complexify

the dodecahedral graph represent π̂0 and Φ̂0 connected
to six other sites: the {2̂, Φ̂, π̂}-sites on two levels of
ℵ. The two seven-pointed subcircuits represent the
quaternions qπ and qΦ. The injectivity of qΦ onto
qπ is represented with the second, nested star beyond
Φ̂0, which is likely π̂∅ indicating that we have moved
from a closed topology to an open one by truncating
information at infinity. If we reconstructed the diagram
around the embedded, smaller star on the left then that
would describe, likely, the circuit on another level of ℵ.

NEGATIVE FREQUENCY RESONANT RADIATION

The initial discovery of negative frequency resonant
radiation, figure 15, was reported [30] two months after
we first proposed the MCM negative time mode[1]. Fre-
quency is inverse time so t− and the new optical mode re-
ported in [30] are likely pieces of the same puzzle. Quan-
tum optics a natural home for the principles developed
here because the photon or photonic soliton propagat-
ing in an optical fiber is a problem like the plane waves
we have considered in the time circuit. One would sim-
ply substitute the “wires” for fibers and then the elec-
trical problem becomes an optical one. Indeed, while
the on-shell photon is a spin-1 boson, the elimination
of one of its three polarization states due to the mass-
less gauge invariance makes it amenable to analysis with
two-component spinors. The vector properties might
be extracted from the spinor via sampling two compo-
nents of bispinor: one vector component from each of
two spinors. In this way, would obtain one vector pho-
ton from two spinor “photons.” Even while the spinors
don’t transform as vectors, it is possible that two of
their components do, or even both when two 2D pho-
tonic state vectors are assembled from the components
of two 2D spinors. Before detailing the negative time
application in quantum optics, note that the MCM pre-
dicts new spin-1 particles [31] in addition to the negative
time mode reported in [1, 13]. Regarding the spin of the
particle discovered at CERN in 2012, they still have not
reported its spin. Particle Data Group writes the fol-
lowing about the spin of the Higgslike particle [32], the
Higgs boson having spin-0:

“The observation of the signal in the [two
photon] final state rules out the possibility
that the discovered particle has spin 1, as
a consequence of the Landau-Yang theorem.

This argument relies on the assumptions that
the decaying particle is an on-shell resonance
and that the decay products are indeed two
photons rather than two pairs of boosted
photons, which each could in principle be
misidentified as a single photon.”

The case in which spin-1 is not yet ruled out is as-
tonishingly like the case developed here. Therefore, one
would seek to describe the presently considered spinor
states as pairs of boosted photons. Furthermore, one
would would scan for pairs of boosted photons in quan-
tum optical applications. The authors of [33] describe
how it is, “possible to Lorentz-boost the particle at rest
to its infinite-momentum or massless state,” and that
is likely what we have done with conformal coordinates
in [10] and here when we freeze time by taking unit 3-
velocity.

Regarding negative frequency resonant radiation, only
two months after we proposed the negative time mode
in [1], Rubino et al. wrote [30],

“[T ]o date only the positive branch of
the dispersion has been considered when this
actually also has a branch at negative fre-
quencies. This branch is usually neglected
or even considered meaningless when, in re-
ality, it may host mode conversion to a new
frequency. The fact that a mode on the nega-
tive branch of the dispersion relation may be
excited [(which is the main the result of [30])]
has a number of important implications, be-
yond the simple curiosity of the effect itself.”

It is likely that the seemingly unphysical modes on the
negative branch can be made ordinarily physical when
quaternion phase accrues in that channel as

ijk = −1 , and i2 = j2 = k2 = −1 . (132)

Indeed, we will show that the scale of the energy shift
between the positive and negative resonant modes [30]

is on the order of the energy shift between EΣ±

MCM. The
scale of the ratio of the MCM energies in Σ± is exactly
the scale of the measured effect on the negatively signed
optical mode [30], as in figure 15.

The first equation given by Rubino et al. is

k(ωRR)− k(ωIN)−
(
ωRR − ωIN

)
v

−KNL = 0 . (133)

This is a wave-vector conservation relation. In the sec-
tion on electricity we derived a requirement for some
conservation law which be the time circuit analogue of
Kirchoff’s current law and equation (133) is just that
sort of law. Where Rubino et al. show the wavenum-
ber (vector) as a function of the angular frequency, we
have written ω as a function of k when examining the

chronological and chirological evolutions under ĤΣ±

MCM.
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FIG. 15. This figure from [30] shows a resonant peak λRR

and also a newly discovered negative resonant peak λN. Since
frequency is inverse time, this optical mode is evidence of the
existence of the MCM’s spin-down time spinor mode. The
fine structure of three or four modes in the λN peak versus
one pseudo-Gaussian peak for λRR on the right is indicative
of the fine structure that we would assemble with the MCM
site transition rule: one site in λRRversus decomposition into
three or four sites in λN. Four peaks would represent the
totality of the sites and three would represent the transition
rule.

v in equation (133) refers the the velocity of the waves
inside the fibers. In free space v=c=1, so v is a unit ve-
locity in free space but electromagnetic waves slow down
inside matter giving 0<v<1. When we take the waves
out of the fibers, they speed up to v=1. When we take
them out of the universe, into the bulk of the MCM unit
cell, they will speed up even more so that their veloc-
ities are over-unity. (We have shown that propagation
across the unit cell must be faster than light in [26].)
Therefore, the applicability of the MCM principles to
the quantum optical application is self-evident: waves
going into spacetime from hyperspacetime are like waves
going into fibers from the free space.

Regarding equation (133), Rubino et al. write [30],

“ωIN and ωRR are the soliton and [res-
onant radiation] frequencies, v is the soliton
velocity, [KNL] is a nonlinear correction term
that may be small or even negligible at low
intensities[.] A very similar process occurs
also in bulk media. The stationary 1D fibre
soliton is now replaced by the stationary 3-
dimensional X-wave.”

X-waves are waves that travel in a direction at con-
stant velocity. Therefore, a 3D X-wave describes a con-
figuration like the intersection of parallels, meridians,
and hypermeridians in which each is type of fiber with

its own index of refraction and waves travel along each
type of fiber with constant velocity. We expect that
the constant velocities along the 3D time circuit X-wave
will be faster than light velocities v ∈ {2,Φ, π} in units
where c=1. By replacing the unit quaternions in EMCM

with over-unity ontological quaternions and using them
as analogue velocities in the bulk of the MCM unit cell,
we will speed up the “spinor photons” in hyperspace-
time.

Table I shows data from [30] in its two left columns:
the measured wavelengths of the resonant and negative
resonant modes. On the right, the table shows energy
shift between positive and negative resonant modes and
the ratio of energy shift to the energy each mode. Now
we will examine the ratio of the MCM energies in Σ±

and show that they are on the correct scale to give the
observed energy shift between the resonant and negative
resonant quantum optical modes. The MCM energy de-
rived for Σ+ is

EΣ+

MCM(φ+; û1, û2) =
1

2

∣∣û1φ+û2

∣∣ , (134)

and it follows that we would find

EΣ−

MCM(φ2
−; û1, û2) =

1

2

∣∣û1φ−û2

∣∣ . (135)

The ratio we will compute is

∆EMCM(φ±) ≡
E

Σ−
2

MCM(φ−; û−1 , û
−
2 )

E
Σ+

1

MCM(φ+; û+
1 , û

+
2 )

. (136)

The goal in calculating ∆EMCM is to compare it to the
empirical ∆E/ERR data [30]. We will take the energy
in Σ+

1 as the resonant energy and then suppose that the
energy shift of the negative mode is derived from a phase
alignment in the time circuit which dumps the energy of

λRR (nm) λN (nm) ∆E (eV) ∆E/ERR ∆E/EN

542 233.1 3.032 1.325 0.570

542 232.1 3.055 1.335 0.572

526 227.0 3.105 1.317 0.568

478 218.1 3.091 1.192 0.544

480 218.9 3.081 1.193 0.544

avg. 3.073 1.272 0.560

TABLE I. The two leftmost columns contain resonant radia-
tion data taken from [30]. λRR is the wavelength of a resonant
mode and λN is the wavelength of the corresponding negative
resonant mode. Using E=hc/λ and hc=1240 eV·nm, we cal-
culate the energy difference between the resonant mode and
the negative resonant mode. The final columns show the ra-
tio of the energy shift to the resonant and negative resonant
energies.
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Σ−2 into the negative mode. In this way, E
Σ−

2

MCM is some-
thing that we can compare with ∆E in the experimental
data. To be clear, we use ∆EMCM to examine the case
in which one hundred percent of the extra energy of the
negative mode comes from Σ−2 . We know what to do
about the unit quaternions that appear in ∆EMCM but
what about the fields φ±? The only characteristic values
that we have for φ± are derived from

φ2
±(χ5

±) = χ5
± . (137)

On Ω, we have χ5
+ = Φ and we have χ5

− =−1 on ℵ [6].
Therefore, we will compute the ratio of the energies on
Ω and ℵ, before and after the waves cross the singularity
∅

When a wave from free space in the universe goes into
a fiber it slows down. When a wave leaves the universe
H to go to Ω, one or both of the unit quaternions in
its energy function needs to go over-unity. When we
have two quaternions input to ∅ from Σ+

1 we will get
two other quaternions out in Σ−2 (via the Pauli matrix
bounce permutations) so we will consider two arbitrary
quaternions for the Σ−2 energy. After we consider the
case when the energy depends on the linear field φ±, we
will also examine the quadratic dependence with

EΣ±

MCM(φ2
±; û±1 , û

±
2 ) =

1

2

∣∣û±1 φ2
±û±2

∣∣ . (138)

First, we will examine the simplest route which leaves
H as the case in which one unit quaternion in Σ+ is
replaced with Φ. The MCM convention is such that
Φ̂ is associated with Ω and that is the first case we will
consider. For further simplicity, we will first consider the
case when Φ is preserved in Σ−2 but û+

2 gets converted
to one of {2,Φ,π}. The numerical values are

E
Σ−

2

MCM(i; Φ,2)

E
Σ+

1

MCM(
√

Φ; Φ, û+
2 )

= 1.572 (139)

E
Σ−

2

MCM(i; Φ,Φ)

E
Σ+

1

MCM(
√

Φ; Φ, û+
2 )

= 1.272 (140)

E
Σ−

2

MCM(i; Φ,π)

E
Σ+

1

MCM(
√

Φ; Φ, û+
2 )

= 2.470 . (141)

Equation (140) yields exactly ∆E/ERR avg., which is
derived from the measured, not predicted, values given
in [30]. This result is tantalizing but the negative reso-
nant effect is nonlinear while we consider only ∆EMCM∼
E1/E1. This tight agreement, therefore, may or may
not be incidental. What is hardly incidental is that
the scale of the linear MCM effect is on the scale of
the observed effect which includes small nonlinear con-
tributions. Equation (141) is not in the ballpark of
∆E/ERR = 1.272 so let us consider a non-unit quater-
nion of length π/2 instead. In this picture, one envisions

the Φ̂ object anchored in the center of a length of π so
that two lengths of π/2 result. Indeed, in this research
program we have consistently compared the length Φ
to the length π/2 but we have not made many points
regarding the lengthlike congruency of Φ and π. For in-
stance, in [10], we used Φ̂ to point beyond infinity when
infinity was located at the origin of ỹ+ ∈ (−π/2, π/2).
The operative principle was that Φ is just greater than
π/2, not that it is significantly smaller than π. If we get
π/2 by splitting π in half, then π is like chiros χ5

± and
that leaves chronos x0 to be like Φ which is the opposite
interpretation to what we have used previously. When
we compute ∆EMCM with π/2 we get

E
Σ−

2

MCM(i; Φ,π/2)

E
Σ+

1

MCM(
√

Φ; Φ, û+
2 )

= 1.235 . (142)

This is also very close to ∆E/ERR. The average of the
{2,Φ,π/2} energy ratios is 1.360. Since we have ne-
glected any nonlinear effects while the authors of [30]
describe a nonlinear effect, this 6.9% disagreement of
our average with ∆E/ERR looks good and the 0.000%
disagreement of equation (140) looks very good.

Before moving on to consider the quadratic fields, we
will note some significant numbers. Equation (139) tells
us that

2√
Φ
≈ π

2
, with ∆ℵ = 0.01% . (143)

Furthermore, all of the energy shifts ∆E in table I are
approximately equal to π. One would expect π to only
show up in dimensionless relationships, so this too may
be incidental, but we find that

∆E avg. ≈ π , with ∆ℵ = 2.2% . (144)

It has been a recurring theme in the MCM that π should
accrue during each application of M̂3: either one moves
from the π̂0-site in H1 to the π̂1-site in H2, or a co-π̂
is joined to a second co-π̂, or we apply tangent inverses
such that

tan′−1[tan′(θ)]=θ + π , (145)

[10]. One would explore the variations of the conformal
triple tangent [10] with hyperbolic tangent and inverse
hyperbolic tangent functions to distinguish the closed
and open topologies of ℵ and Ω, or AdS and dS. In terms
of the hyperboloidal geometry inherited from the embed-
ding in Σ±, we need to accommodate the distinct hyper-
boloids of one and two sheets for AdS and dS spacetimes
[17, 27]. Likely, there is a specific variant of equation
(145) which gives arbitrage of π via the arrangement of
the branch and principle value definitions of the many
complex-valued quaternion wavefunctions. In fact, the
most complex feature of the Tipler sinusoid [14, 34], the
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sinusoid being a type of timewave, is that its metric uses
trigonometry functions and logarithms but, truly, the
inverse hyperbolic trigonometry functions are defined as
logarithms. Equation (145) simply demonstrates that
it is possible to achieve arbitrage of π via some opera-
tion and here we add to the comments of [10] that one
would explore the hyperbolic variants of the tangent and
inverse tangent functions.

In the present paper, we have considered the non-
relativistic limit where the asymmetry of dS and AdS
did not contribute. The inclusion of hyperbolic tangent
functions in equation (145) might be useful for creating
smooth topological bifurcations such as those needed to
smoothly distinguish the O(1,4) and O(2,3) topologies of
Σ±. We mention this in reference to the classical prob-
lem of field line breaking and reconnection because this
classical mega-problem is a major theme in the over-
all constructive elements of the MCM and the theory of
infinite complexity [17, 27]. Field line breaking and re-
connection will be important in the time circuit because
time radiation will be such that packets of time flux can
propagate off the edges of the graphs of the time circuit.
We need to break their field line connections to their
sources so that they can propagate as disconnected loops
of flux. Time radiation should be like gravitational radi-
ation, and we have shown that this is an allowed mode
in the bulk metric of Σ± [14].

The ∆EMCM(φ2
±) in table II is computed with

∆EMCM(φ2
±) ≡

E
Σ−

2

MCM(φ2
−; û−1 , û

−
2 )

E
Σ+

1

MCM(φ2
+; û+

1 , û
+
2 )

. (146)

The upper part of table II shows the case when we have
two unit quaternions in the denominator. None of the
values in the upper part of the table are close to the
measured values; 1.850 and 2.360 are not close to 1.272.
When we can’t have two ones in the denominator, this
reflects the boundary condition in which a wave gains
an over-unity velocity component in its MCM Hamilto-
nian when it leavesH via the maximum action trajectory
across the MCM unit cell [25]. Noting that 1.852 = 1.36,
however, we might consider the case when the non-unit
quaternions have magnitudes according to the squares
and square roots of {2̂, Φ̂, π̂/2}. In that case the experi-
mental scale of ∆E/ERR would much more closely agree
with the MCM average with two unit quaternions in the
denominator.

The results on the bottom of table II show the case
when the energy in Σ+ has any one non-unit quaternion,
one associated with leaving H and going into the bulk,
and then the “negative” Σ−2 mode gains all of its energy
from addition of the second non-unit quaternion in the
ℵ-brane. The quadratic and linear averages 1.081 and
1.380 are decently close to the experimental value 1.272.
Some of the configurations are right on the money, and
some configurations show energy loss rather than gain
from Σ+

1 to Σ−2 . Overall, the best fit is the Hamiltonian
with the linear field and one non-unit quaternion in Σ+.

u−1 u−2 u+
1 u+

2 ∆EMCM(φ2
±) ∆EMCM(φ±)

2 2 1 1 2.472 3.145

2 Φ 1 1 2.000 2.544

2 π/2 1 1 1.942 2.470

Φ Φ 1 1 1.618 2.058

Φ π/2 1 1 1.571 1.998

π/2 π/2 1 1 1.525 1.940

avg. 1.850 2.360

u−1 u−2 u+
1 u+

2 ∆EMCM(φ2
±) ∆EMCM(φ±)

2 2 2 1 1.236 1.572

2 Φ 2 1 1.000 1.272

2 π/2 2 1 0.971 1.235

Φ Φ 2 1 0.809 1.029

Φ π/2 2 1 0.786 0.999

π/2 π/2 2 1 0.762 0.971

2 2 Φ 1 1.528 1.944

2 Φ Φ 1 1.236 1.572

2 π/2 Φ 1 1.200 1.527

Φ Φ Φ 1 1.000 1.272

Φ π/2 Φ 1 0.971 1.235

π/2 π/2 Φ 1 0.943 1.199

2 2 π/2 1 1.574 2.002

2 Φ π/2 1 1.273 1.619

2 π/2 π/2 1 1.237 1.572

Φ Φ π/2 1 1.031 1.310

Φ π/2 π/2 1 1.000 1.272

π/2 π/2 π/2 1 0.972 1.235

avg. 1.081 1.380

TABLE II. The table shows the quadratic field energies with
two non-unit quaternions in the numerator and one non-unit
quaternion in the denominator. The values for the quadratic
field are φ2

+ = Φ and φ2
−=−1 and those for the linear fields

are φ+ =
√

Φ and φ−= i.

The average in that case is 1.380 which differs from 1.272
by 8.5% but some particular modes differ by 0.000%.

Now we have demonstrated that the characteristic
scale of the ratio of the energy shift to the resonant en-
ergy is also the characteristic scale of the ratio the MCM
energies in Σ±. Take careful note that we have only pro-
posed to modify the quaternion rotations, and not the
quaternions themselves by using them to modify the bra-
ket notation. By taking two non-unit quaternions in the
rotation of a 4D vector, likely a timecurrent vector on
the edges of the graphs of the time circuit, and which
is like a time arrow in the 4D and 5D bulk due to the
O(1,3) Lorentzian topology, one has

t′? = û−1t?û (147)

which becomes
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t′? = {2−1,Φ−1,π−1}t?{2,Φ,π} . (148)

Therefore, one would use the inverse operators to model
the energy shift ∆E/EN. One notices that ∆E/ERR and
∆E/EN are not inverses of each other and this should
indicate non-commutativity in the time circuit on top
of the non-commutativity of the 3D rotations. In mod-
ifying the bra-ket notation, we modify the method by
which we compute expectation values. We can compute
expectation values for the energy by putting the Hamil-
tonian inside the bra-ket, so that is highly useful for
studying systems of massless particles such as those res-
onant photons and solitons in the quantum optical appli-
cation. (The semblance of the soliton and the photon is
that of the electron and the hole on the electron current
in the electrical application. A soliton is simply a dis-
turbance on the electromagnetic field inside the fiber; it
is an equivalent notation, and reflects the duality of the
descriptions of electricity via the motions of electrons in
direction or holes in the current moving in the opposite
direction.)

Note the special case in the linear formulation

E
Σ−

2

MCM(−1;π/2,Φ)

E
Σ+

1

MCM(Φ; Φ, û+
2 )

= 0.971 . (149)

This is the greater of two modes of energy loss. It is
derived from the case in which Φ is just larger than
π/2. It is this property of Φ that allows us to use Φ̂
to point to a topological singularity beyond the bounds
of the extended complex plane [10]. The structure of
the singularity is like a Kerr–Newman black hole [23, 35]
whose ergosphere is known not to conserve energy in all
cases. Therefore, while the obvious application of the
time circuit would be to send information, or possibly
even matter-energy, to nodes whose time is in the past or
future, we might have a subtle effect in which we could
direct energy into nodes whose time is in the present,
such as the negative resonant mode. For instance, as
energy tends to decrease in Ū , if a modal connection can
be established through the graph of the time circuit, Ū ’s
decreasing energy might be dumped into U as increasing
energy. Since equation (149) is very near the transition
from energy loss to energy gain, it deserves special at-
tention, as does the corresponding maximally dissipative
quadratic field mode

E
Σ−

2

MCM(−1;π/2,π/2)

E
Σ+

1

MCM(Φ; 2, û+
2 )

= 0.762 . (150)
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