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Abstract

A set of ordered propositions describe the different intensities of a characteristic of an
object, the intensities increase or decrease gradually. A basic support function is a set of
truth-values of ordered propositions, it includes the determinate part and indeterminate part.
The indeterminate part of a basic support function indicates uncertainty about all ordered
propositions. In this paper, we propose generalized ordered propositions by extending the
basic support function for power set of ordered propositions. We also present the entropy
which is a measure of uncertainty of a basic support function based on belief entropy. The
fusion method of generalized ordered proposition also be presented. The generalized ordered
propositions will be degenerated as the classical ordered propositions in that when the truth-
values of non-single subsets of ordered propositions are zero. Some numerical examples
are used to illustrate the efficiency of generalized ordered propositions and their fusion.
Keywords: ordered proposition, Dempster-Shafer evidence theory, uncertainty measure,
belief entropy, information fusion.

1 Introduction

In resent year, with the intensification of competition in the modern information war, informa-
tion technology has developed rapidly, and the amount of information has increased explosively.
Thus, as the critical technologies for information collection, storage and processing, the essen-
tiality of information modeling and fusion has gradually increased.

There are many methods to model information, such as probability theory [1], Dempster-
Shafer evidence theory [2,3], rough sets [4], fuzzy sets [5–13], Z-numbers [14–16], D numbers [17–
19] and as so on. A specialized fusion algorithm is used for each method. Ordered proposition
is a new approach to model information which is proposed by Liu et al. [20]. A set of ordered
propositions describe the different intensities of a characteristic of a objects, the intensities
increase or decrease gradually. For example, consumers evaluate the quality of a product on a
rank of ”Wonderful, Good, Indifferent, Weak”. A set of ordered propositions can be expressed
as a basic support function (similar to belief function in Dempster-Shafer evidence theory),
whose elements represent the truth-value (belief value) of each proposition. The truth-values
of a basic support function must be convex, because a subject cannot be two degrees in same
characteristic. Such as, we cannot say the quality of a product is both wonderful and indifference
simultaneously.
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A basic support function is divided into determinate part and indeterminate part [20]. The
determinate part is the sum of truth-values of each ordered proposition. The sum of indeter-
minate part and determinate part is one. In the ordered propositions fusion, the indeterminate
part is prorated to each proposition and itself. Therefore, the indeterminate part can express
the uncertainty for all ordered propositions. In this paper, we define the generalized ordered
propositions, they extend the indeterminate part to all non-single subsets of ordered proposi-
tions. The truth-value of a non-single subset expresses the uncertainty of the propositions in
it. For example, the ”Wonderful, Good” express ”the quality of this product is wonderful” or
”the quality of this product is good”. In order to ensure the convex property of a basic support
function, the indeterminate part is listed separately. The generalized ordered propositions will
be degenerated as the classical ordered propositions in that when the truth-values of non-single
subsets of ordered propositions are zero.

The ordered propositions fusion is an important and extensive problem [20]. Previously, a
fusion algorithm based on centroid is proposed [21], which fuse the basic support functions of
two sets of ordered propositions and ensure the convexity. However, this approach has a few
shortages [20]. In order to address these shortages, a new fusion method based on consistency and
uncertainty measurements was presented by Liu et al. for the fusion of ordered proposition [20].
They also introduced entropy to measure the uncertainty of the basic support function based
on Shannon entropy [20]. But this entropy only considered the determinate part of a basic
support function, the indeterminate part is ignored. In Dempster-Shafer evidence theory, an
entropy is presented to measure the uncertainty of a belief function, named Deng entropy [22].
When we add the groups of propositions in ordered propositions, the basic support function is
more similar with the belief function. In this paper, we introduce a new entropy to measure the
uncertainty of a basic support function based on belief entropy. It will be degenerated as the
entropy which is proposed by Liu et al. in that when the indeterminate part of a basic support
function is zero. Additionally, the fusion method of generalized ordered propositions based on
consistency and uncertainty measurements is introduced. When the truth-values of non-single
subsets of ordered propositions are zero, the fusion result is same as the fusion result of Liu et
al.’s method.

The rest part of this paper is organized as follows. Section 2 briefly discusses the definitions
and properties of ordered propositions, Dempster-Shafer evidence theory and belief entropy.
Section 3 introduces the definition and properties of generalized ordered propositions. Section
4 discusses the proposed method for measuring uncertainty of a basic support function. The
fusion method of generalized ordered proposition is described in Section 5. Section 6 presents
some numerical examples. Finally, this paper is concluded in Section 7.

2 Preliminaries

2.1 Ordered propositions

In this section, some background knowledge about ordered propositions is briefly introduced [20].

Definition 1 (Ordered propositions). For a set of propositions p1, p2, · · · , pn, the truth-value of
pi is denoted as λ(pi). λ(pk) = max{λ(p1), · · · , λ(pn)}. p1, p2, · · · , pn are ordered propositions
if [20]

(1) ∀i = 1, 2, · · · , n, all subjects described in pi are S;

(2) ∀i = 1, 2, · · · , n, si describes the same characteristics or features of S;

(3) ∀i = 1, 2, · · · , k − 1, λ(pi) ≤ λ(pi+1); and ∀i = k, k + 1, · · · , n− 1, λ(pi) ≥ λ(pi+1).
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Definition 2 (Basic support function). For a set of ordered propositions P = {p1, p2, · · · , pn},
a function λ is called the basic support function of the ordered propositions if [20]

(1) λ is defined on {P} ∪ {{pi}|1 ≤ i ≤ n}, where P indicates indeterminacy;

(2) λ(pi) ≥ 0, 1 ≤ i ≤ n;

(3)
∑

1≤i≤n λ(pi) ≤ 1;

(4) λ(P ) = 1−
∑

1≤i≤n λ(pi).

Definition 3 (Determinate part and indeterminate part). For a basic support function λ, the
determinate part λ(P ) and indeterminate part λ(P ) are defined as [20]

λ(S) =
∑

i=1,··· ,n

λ(pi), λ(P ) = 1− λ(P ). (1)

Definition 4 (Mean value). The mean value of a basic support function λ is defined as [20]

λ =

∑n
i=1 λ(pi)

n
. (2)

Definition 5 (Measure of convexity). The measure of convexity of a basic support function λ
is defined as [20]

convex(λ) = max{λ(p1), λ(p2), · · · , λ(pn)} − λ. (3)

It was clear that the maximum of the measure of convexity is 1 − λ. Thus, the normalized
convex(λ) as follows: [20]

NC(λ) = (max{λ(p1), λ(p2), · · · , λ(pn)} − λ)/(1 − λ). (4)

Definition 6 (Center of a basic support function). For a basic support function λ = (λ(p1), λ(p2), · · · ,
λ(pn)), the center of λ is defined as [20]

CI(λ) =











argmaxi=1,··· ,nλ(pi), NC(λ) ≥ θ
∑

i=1,··· ,n∧λ(pi)≥τ ·λ λ(pi)× i
∑

i=1,··· ,n∧λ(pi)≥τ ·λ λ(pi)
, otherwise,

(5)

θ is set to 0.55 in [20], 1 < τ ≤ 1.5.
In order to model the complex information of interaction, complex networks are proposed [23–

28]. The measure of consistency is essential to information, affected by the reliability of the
information source [29–36]. The reliability of obtaining data is very important for information
fusion [37].

Definition 7 (Measure of consistency). If CI(λ1) and CI(λ2) are the centers of the basic
support functions λ1 and λ2.The consistency between λ1 and λ2 is defined as [20]

∆G(λ1, λ2) = |CI(λ1)− CI(λ2)|/(n − 1). (6)

If ∆G = 1, then λ1 and λ2 are totally conflicting. If ∆G = 0, then λ1 and λ2 are consistent.
Otherwise, if

0 < ∆G < 1, then λ1 and λ2 are partially conflicting. The consistency between λ1 and λ2

can be divided into 3 degrees [20].
0 ≤ ∆G ≤ δ1 indicates the consistency between λ1 and λ2 is high.
δ1 ≤ ∆G ≤ δ2 indicates the consistency between λ1 and λ2 is medium.
δ2 ≤ ∆G ≤ 1 indicates the consistency between λ1 and λ2 is poor.
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2.2 Dempster-Shafer evidence theory

Evidence theory is widely used in many applications such as target recognition [38,39], decision
making [40, 41], uncertain processing [42–52], risk management [53, 54], fault diagnosis [55–59]
and as so on. The frame of discernment Θ is the exhaustive hypotheses of variable, X.
Θ = {x1, x2, · · · , xi, · · · , xn}. The power set of Θ is 2Θ = {∅, {x1}, · · · , {xn}, {x1, x2}, · · · ,
{x1, x2, · · · , xi}, · · · ,Θ}, where ∅ is an empty set [2, 3].

Definition 8 (Basic probability assignment (BPA)). A basic probability assignment function
m : 2Θ → [0, 1], which satisfies [2, 3]:

m(Θ) = 0
∑

A∈2Θ

m(A) = 1 0 ≤ m(A) ≤ 1, (7)

the mass m(A) indicates how strongly the evidence supports A.

2.3 Belief entropy

Shannon entropy is widely used to measure the uncertainty of a probability. In addition, a belief
entropy named Deng entropy is proposed to measure the uncertainty of a BPA [22].

Definition 9 (Belief entropy). For a BPA, m, defined on the frame of discernment Θ, it’s belief
entropy is defined as [22]

Ed(m) = −
∑

A⊆Θ

m(A) ln
m(A)

2|A| − 1
, (8)

where A is the focal element of m, |A| is the cardinality of A.

3 Generalized ordered propositions

3.1 Definitions

Definition 10 (Generalized ordered propositions). For a set of propositions p1, p2, · · · , pn,
it’s power set, {∅, {p1}, {p2}, · · · , {pn}, {p1, p2}, · · · , {p1, · · · , pn}}, let λ(pi, pj · · · ) represent the
truth-value of {pi, pj , · · · } and λ(pk) = max{λ(p1), · · · , λ(pn)}. p1, p2, · · · , pn are generalized
ordered propositions, if

(1)∀i = 1, 2, · · · , n, all subjects described in pi are S;

(2)∀i = 1, 2, · · · , n, pi describes the same characteristics or features of S;

(3)∀i = 1, 2, · · · ,m− 1, λ(pi) ≤ λ(pi+1); and ∀i = m,m+ 1, · · · , n− 1, λ(pi) ≥ λ(pi+1).

Definition 11 (Basic support function of the generalized ordered propositions). For a set of gen-
eralized ordered propositions P = {p1, p2, · · · , pn}, it’s power set 2P = {∅, {p1}, {p2}, · · · , {pn},
{p1, p2}, {p1, p3}, · · · , {p1, p2, · · · , pn}} a function λ is called a basic support function of the gen-
eralized ordered propositions if

(1) λ is defined on 2P ;

(2) λ(A) ≥ 0, A ⊆ P ;

(3) λ(∅) = 0;

(4)
∑

1≤i≤n λ(A) = 1, where A ⊆ P ;

Take the example of ”the quality of a product”, the basic support function is {(0.1, 0.3, 0.2, 0.0),
(λ(p1, p2) = 0.2, λ(p2, p3) = 0.2)}.
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λ(p1) = 0.1 means the truth-value of 1st proposition ”the quality of a product is wonderful”
is 0.1;

λ(p2) = 0.3 means the truth-value of 2nd proposition ”the quality of a product is good” is
0.3;

λ(p3) = 0.2 means the truth-value of 3rd proposition ”the quality of a product is indifference”
is 0.2;

λ(p4) = 0.0 means the truth-value of 4rd proposition ”the quality of a product is weak” is
0.0;

λ(p1, p2) = 0.2 means the uncertain truth-value of 1st proposition and 2nd proposition is
0.2;

λ(p2, p3) = 0.2 means the uncertain truth-value of 2st proposition and 3rd proposition is 0.2.

3.2 Properties

Definition 12 (Determinate part and indeterminate part). For a basic support function of
generalized ordered proposition, the determinate part and indeterminate part is

λ(P ) =
n
∑

i=1

λ(pi), λ(P ) =
∑

A⊆P∧A 6={q1},··· ,{qn}

λ(A) = 1− λ(P ). (9)

Definition 13 (Mean value). The mean value of a basic support function λ of generalized ordered
propositions is

λ =

∑n
i=1 λ(pi)(1 +

∑

pi⊂A λ(A))

n
, (10)

where A ( {p1, p2, · · · , pn}.

Definition 14 (Degree of convexity). The degree of convexity of a basic support function λ of
generalized ordered propositions is:

convex(λ) = maxi=1,··· ,n{λ(pi)(1 +
∑

pi⊂A

λ(A))} − λ, i = 1, 2, · · · , n, (11)

where A ( {p1, p2, · · · , pn}.

The normalized convex(λ) is

NC(λ) = (maxi=1,··· ,n{λ(pi)(1 +
∑

pi⊂A

λ(A))} − λ)/(1− λ), i = 1, 2, · · · , n. (12)

Definition 15 (Center of a basic support function). A basic support function of generalized
ordered propositions λ = {(λ(p1), λ(p2), · · · , λ(pn)), (λ(p1, p2), · · · , λ(p1, p2, · · · , pn))}, the center
of λ is

CI(λ) =























argmaxi=1,··· ,nλ(pi)(1 +
∑

pi⊂A

λ(A)), NC(λ) ≥ θ

∑

i=1,··· ,n∧λ(pi)≥τ ·λ λ(pi)(1 +
∑

pi⊂A λ(A)) × i
∑

i=1,··· ,n∧λ(pi)(1+
∑

pi⊂A λ(A))≥τ ·λ λ(pi)(1 +
∑

pi⊂A λ(A))
, otherwise,

(13)

where A ( {p1, p2, · · · , pn}.

436



4 Uncertainty measure

Uncertainty can evaluate the quality of information [60–73]. The more uncertainty, the less
information [74,75]. A method to measure the uncertainty of a basic support function of ordered
propositions based on Shannon entropy is proposed by Liu et al. [20].

Definition 16 (Liu et al.’s entropy). For a basic support function λ = (λ(p1), λ(p2), · · · , λ(pn)),
λ 6= (λ(p1) = 0, λ(p2) = 0, · · · , λ(pn) = 0) and n ≥ 2. Let λ(pk) = max{λ(p1), λ(p2), · · · , λ(pn)},
1 ≤ k ≤ n. If βλ(pk) ≤ λ(pj) ≤ λ(pk), β ≥ 0.9 and 1 ≤ j ≤ n, then λ(pj) is quasi-maxima. Let
n′ is the total number of maxima and quasi-maxima. The Liu et al.’s entropy of λ is defined
as: [20]

E(λ) =























−
n
∑

i=1

λ(pi) lnλ(pi), n′ = 1,

−
n
∑

i=1

λ(pi) lnλ(pi) + (lnn+

n
∑

i=1

λ(pi) lnλ(pi)))(n
′/n)α, 2 ≤ n′ ≤ n,

(14)

where α = 0.1.
When indeterminate part of a basic support function is equal to zero, this entropy can accu-

rately measure the uncertainty of a basic support function. For example, given two basic sup-
port functions µ1 = (0.005, 0.99, 0.005, 0.0, 0.0), µ2 = (0.0049995, 0.990001, 0.0049995, 0.0, 0.0),
we can given E(µ1) = 0.062933 and E(µ2) = 0.062928 using Eq. (14). E(µ1) is greater than
E(µ2), this means that the uncertainty of µ1 is higher than the uncertainty of µ2. The result is
reasonable. When there are multiple maxima of a basic support function, Liu et al.’s method can
also measure uncertainty accurately. Take two basic support functions µ3 = (0.5, 0.5, 0.0, 0.0),
µ4 = (0.15, 0.7, 0.1, 0.05), then E(µ3) = 1.34 and E(µ4) = 0.914. It is reasonable that E(µ3) >
E(µ4).

However, when indetermination part of a basic support function is not equal to zero, this
entropy doesn’t apply to measure uncertainty of a basic support function. For example, for two
basic support functions µ5 = (0.2, 0.3, 0.0, 0.0) and µ6 = (0.7, 0.1, 0.1, 0), then E(µ5) = 0.6831,
E(µ6) = 0.7103. E(µ5) < E(µ6), this means that the degree of uncertainty of µ6 is higher. It is
obviously counterintuitive. In order to take into considered not only the determinate part but
also indeterminate part, we present the a new method to measure uncertainty of a basic support
function of generalized ordered proposition based on belief entropy [22,76].

Definition 17 (The entropy based on belief entropy). For a basic support function of generalized
ordered propositions λ = {(λ(p1), λ(p2), · · · , λ(pn)), (λ(p1, p2), λ(p1, p3), · · · , λ(p1, p2, · · · , pn))},
λ 6= (λ(p1) = 0, λ(p2) = 0, · · · , λ(pn) = 0) and n ≥ 2. Let λ(pk) = max{λ(p1), λ(p2), · · · , λ(pn)},
1 ≤ k ≤ n. If βλ(pk) ≤ λ(pj) ≤ λ(pk), β ≥ 0.9 and 1 ≤ j ≤ n, then λ(qj) is quasi-maxima. Let
n′ is the total number of maxima and quasi-maxima. The entropy of λ is defined as:

Ed(λ) =























−
n
∑

i=1

λ(A) ln(
λ(A)

2|A|−1
), n′ = 1,

−
n
∑

i=1

λ(A) ln(
λ(A)

2|A|−1
) + (lnn+ λ(A) ln(

λ(A)

2|A|−1
))(n′/n)α, 2 ≤ n′ ≤ n,

(15)

where A ⊆ {q1, 12, · · · , qn}, |A| is the number of elements of A, α = 0.1.
Using Eq.( 15) to calculate the uncertainty of µ5 and µ6, the results are Ed(µ5) = 2.3837,

Ed(µ6) = 1.2114. Ed(µ5) > Ed(µ6), it is reasonable. For two basic support functions of general-
ized ordered propositions µ7 = {(0.2, 0.5, 0.1, 0.0), (µ7(p1, p2) = 0, 1, µ7(p2, p3) = 0.1)} and µ8 =
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Table 1: Process of calculating ω′ by Eq. (16).
λ1 to ω′ λ2 to ω′ ω′

Truth-value obtained by ω′(p1) 0.025 0.08625 0.11125

Truth-value obtained by ω′(p2) 0.345 0.345 0.69

Truth-value obtained by ω′(p3) 0.08625 0.025 0.11125

Truth-value obtained by ω′(p4) 0.025 0.025 0.05

Truth-value obtained by ω′(p1, p2) 0 0.01875 0.01875

Truth-value obtained by ω′(p2, p3) 0.01875 0 0.01875

{(0.2, 0.6, 0.1, 0.0), (µ8(p1, p2) = 0.1)}. The results are Ed(µ7 = 1.5790 and Ed(µ8) = 1.1988
using Eq. (12). Ed(µ7) > Ed(µ8), this means that the degree of uncertainty of µ7 is higher than
µ8.

5 Fusion of generalized ordered propositions

For a set of generalized ordered propositions P = {p1, p2, · · · , pn}, let λ1 and λ2 are two basic
support functions of P . Denote the fusion result of λ1 and λ2 is ω. The processes of method
for fusion of basic support functions of generalized ordered propositions is shown in Fig. 1. The
steps of this method can be explained as follows:

Step 1: Give two basic support functions λ1, λ2 of a set of generalized ordered propositions
P = {p1, p2, · · · , pn}, and the weights Ω1, Ω2 of two basic support functions respectively.

Step 2: Determine whether λ1 is equal to {λ1(p1, p2, · · · , pn) = 1} and if λ2 is equal to
{λ2(p1, p2, · · · , pn) = 1}.

If λ1 = {λ1(p1, p2, · · · , pn) = 1} and λ2 = {λ2(p1, p2, · · · , pn) = 1}, the fusion result ω =
(1/n, 1/n, · · · , 1/n). If λ1 = {λ1(p1, p2, · · · , pn) = 1} but λ2 6= {λ2(p1, p2, · · · , pn) = 1}, the
fusion result ω = λ2. If λ2 = {λ2(p1, p2, · · · , pn) = 1} but λ1 6= {λ1(p1, p2, · · · , pn) = 1}, the
fusion result ω = λ1. If λ1 6= {λ1(p1, p2, · · · , pn) = 1} and λ2 6= {λ2(p1, p2, · · · , pn) = 1}, take
the next step.

Step 3: Calculate the initial fusion result.

ω′(A) =



















Ω1 · λ1(A)(1 +
∑

A⊂B

λ1(B)) + Ω2 · λ1(A)(1 +
∑

A⊂C

λ1(C)), |A| = 1,

Ω1 · λ1(A)(1 −
∑

pi⊂A

λ1(pi)) + Ω2 · λ2(A)(1 −
∑

pi⊂A

λ1(pi)), 1 < |A| ≤ n,
(16)

where A,B,C ⊆ {p1, p2, · · · , pn}, i = 1, 2, · · · , n, Ω1 +Ω2 = 1.

For example, there are two basic support functions λ1 = {(0.05, 0.6, 0.15, 0.05), (λ1(p2, p3) =
0.15} and λ2 = {(0.15, 0.6, 0.05, 0.05), (λ2 (p1, p2) = 0.15)}. The weights are Ω1 = Ω2 = 0.5. The
process of calculating initial fusion result ω′ by using Eq. (16) is illustrated in Table 1.

Step 4: Calculate the center of initial fusion result ω′ with Eq. (13), CI(ω′).

Step 5: Calculate the consistency between λ1 and λ2 with Eq. (6), ∆G(λ1, λ2).

Step 6: Determine whether the center of initial fusion result CI(ω′) is Integer. If CI(ω′) is
Integer, take the step 7, otherwise take the step 8.

Step 7: Calculate the final fusion result ω with method I.
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Start

λ1, λ2, Ω1, Ω2 .

 1 

={ 1(p1,p2, ,pnYes

 2 

={ 2(p1,p2, ,pn

No

 2 

={ 2(p1,p2, ,pn

No

Yes

No

 Calculate the initial 

fusion result ω ɂ. 

Calculate the center 

CI(ω ɂ ).

Calculate the  

consistency 

ΔG(  ).

 CI(ω ɂ ) is Integer?

Yes

End

Calculate the final 

fusion result   

with method .

Calculate the final 

fusion result   

with method .

No

ω = 2.

ω = 1.Yes

Figure 1: The processes of proposed method.
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Step 7.1: Positive regulation.

ω(pi) =



















































i
∑

k=1

ω′(pk)[1 + ϕ(i − k)]
∑CI(ω′)−k

j=0 (1 + jϕ)
, if i < CI(ω′),

CI(ω)
∑

k=1

ω′(pk)[1 + ϕ(i− k)]
∑CI(ω′)−k

j=0 (1 + jϕ)
+

n
∑

k=CI(ω′)+1

ω′(pk)[1 + ϕ(k − CI(ω′))]
∑k−CI(ω′)

j=0 (1 + jϕ)
if i = CI(ω′),

n
∑

k=i

ω′(pk)[1 + ϕ(k − i)]
∑k−CI(ω′)

j=0 (1 + jϕ)
if i > CI(ω′),

ω(A) = ω′(A),

(17)

where ϕ = 0.2, 0.1, 0 when the consistency between two basic support function is high, medium,
poor respectively, A is the non-simple subset of P .

Step 7.2: Negative regulation.
When the consistency between two basic support functions is poor, the measure of uncertain-

ty is used to compress the curve of truth-value of ω vertically until the entropy of ω approximately
equals the entropy of ω′, that is |E(ω) − E(ω′)| ≤ ǫ. This process is called negative regulation
and outlined in Algorithm 1.

Algorithm 1 The procedure of negative regulation.

Input: The initial fusion result ω′ and basic support function ω after positive regulation
Output: The nal fusion result ω

1: δ ← 1
2: while |E(ω) − E(ω′)| ≤ ǫ do
3: I ← index of maximum truth-value of ω
4: k ← 1
5: for k = I to n− 1 do

6: if ω(pk) > ω(pk+1) then

7: ω(pk) = ω(pk)−
δω(pk+1)(ω(pk)−ω(pk+1))

ω(pk)+ω(pk+1)

8: ω(pk+1) = ω(pk+1) +
δω(pk+1)(ω(pk)−ω(pk+1))

ω(pk)+ω(pk+1)

9: end if

10: end for

11: for k = I; k > 1; k −− do

12: if ω(pk) > ω(pk−1) then

13: ω(pk) = ω(pk)−
δω(pk−1)(ω(pk)−ω(pk−1))

ω(pk)+ω(pk−1)

14: ω(pk−1) = ω(pk−1) +
δω(pk−1)(ω(pk)−ω(pk−1))

ω(pk)+ω(pk−1)

15: end if

16: end for

17: if E(ω) < E(ω′)− ǫ then
18: δ ← 1
19: end if

20: if E(ω) > E(ω′) + ǫ then
21: δ ← δ/2
22: end if

23: end while

Step 8: Calculate the final fusion result ω with method II.

440



Step 8.1: Positive regulation.

Denote a = ⌈CI(ω)⌉, b = ⌊CI(ω′)⌋ for convenience, thus

ω(pi) =



































































i
∑

k=1

ω′(pk)[1 + ϕ(i − k)]

((
∑a−k

j=0 (1 + jϕ)) − ϕ)
, if i < b,

ω′(pb) + Γ(a− CI(ω′)), If i = b ∧ ω′(pb) 6= ω′(pa),

ω′(pa) + Γ(CI(ω′)− b), If i = a ∧ ω′(pb) 6= ω′(pa),

ω′(pb) + Γ/2, If i = b ∧ ω′(pb) = ω′(pa),

ω′(pa) + Γ/2, If i = a ∧ ω′(pb) = ω′(pa),
n
∑

k=i

ω′(pk)[1 + ϕ(k − i)]

((
∑k−b

j=0(1 + jϕ)) − ϕ)
, if i > a,

ω(A) = ω′(A),

(18)

where

Γ = Γ1 + Γ2, Γ1 =

b−1
∑

k=1

ω′(pk)[1 + ϕ(b− k)]

(
∑a−k

j=0 (1 + jϕ)) − ϕ
+

n
∑

a+1

ω′(pk)[1 + ϕ(k − a)]

(
∑k−b

j=0(1 + ϕj)) − ϕ
,

Γ2 =

b−1
∑

k=1

ω′(pk)[1 + ϕ(a− k)− ϕ]

(
∑a−k

j=0 (1 + jϕ)) − ϕ
+

n
∑

a+1

ω′(pk)[1 + ϕ(k − a)]

(
∑k−b

j=0(1 + ϕj)) − ϕ
,

ϕ = 0.2, 0.1, 0 when the consistency between two basic support function is high, medium, poor
respectively, A is the non-simple subset of P .

Step 8.2: Negative regulation.

It is same as Step 7.2.

6 Numerical examples

(1) Two basic support functions are λ1 = {(0.1, 0.4, 0.2, 0.1), (λ1(p1, p2) = 0.1, λ1(p2, p3) = 0.1)}
and λ2 = {(0.1, 0.4, 0.2, 0.1), (λ2(p1, p2) = 0.1, λ2(p2, p3) = 0.1)}. The weights of λ1 and λ2

are Ω1 = Ω2 = 0.5. The fusion processes and results are shown in Table 2. λ1 and λ2 are
consistent, and they all mean that the 2nd proposition is most likely to be correct. So the fusing
basic support function should reach the maximum truth-value at the index 2. The results are
reasonable.

(2) Two basic support functions are λ1 = (0, 0.1, 0.2, 0.7) and λ2 = {(0.1, 0.1, 0.1, 0.6), (λ2(p3, p4) =
0.1)}. The weights of λ1 and λ2 are Ω1 = Ω2 = 0.5. The fusion result is ω = {(0.0096, 0.0394, 0.1172,
0.8188), (ω(p3 , p4) = 0.015)}. λ1 and λ2 are not exactly the same, but NC(λ1) = 0.6 > 0.55 and
NC(λ2) = 0.5512 > 0.55, so CI(λ1) = CI(λ2) = 4 and ∆G(λ1, λ2) = 0. Similar to the previous
example, the fusing basic support function should reach the maximum truth-value at the index
4. So the results are reasonable.

(3) Two basic support functions are λ1 = (0.7, 0.2, 0.1, 0) and λ2 = {(0.1, 0.1, 0.1, 0.6), (λ2(p3, p4) =
0.1)}. The weights of λ1 and λ2 are Ω1 = Ω2 = 0.5. The fusion results are shown in Table 3. λ1

and λ2 are totally conflicting and the fusion result is ω = {(0.1333, 0.4737, 0.2680, 0.11),
(ω(p3, p4) = 0.015)}. The result shows that the 2nd proposition is most likely to be true, which
is logical. It is reasonable that the uncertainty of the result is high.
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Table 2: The fusion process and result of example (1)

variables values

λ1 {(0.1, 0.4, 0.2, 0.1), (λ1(p1, p2) = 0.1, λ1(p2, p3) = 0.1)}
λ2 {(0.1, 0.4, 0.2, 0.1), (λ2(p1, p2) = 0.1, λ2(p2, p3) = 0.1)}

λ1 = λ2 0.2275

NC(λ1) = NC(λ2) 0.3269

CI(λ1) = CI(λ2) 2.4615

∆G(λ1, λ2) 0

ω′ {(0.11, 0.48, 0.22, 0.1), (ω′(p1, p2) = 0.05, ω′(p2, p3) = 0.04)}

ω′ 0.2419

NC(ω′) 0.3711

CI(ω′) 2.3407

ω {(0.0324, 0.5777, 0.2705, 0.1482), (ω(p1 , p2) = 0.05, ω(p2, p3) = 0.04)}

Table 3: The fusion process and result of example (3)

variables values

λ1 (0.7, 0.2, 0.1, 0)

λ2 {(0.1, 0.1, 0.1, 0.6), (λ2(p3, p4) = 0.1)}
ω′ {(0.4, 0.15, 0.105, 0.33), (ω′(p3, p4) = 0.015}

Ed(ω
′) 1.5185

ω {(0.1333, 0.4737, 0.2680, 0.11), (ω(p3 , p4) = 0.015)}
Ed(ω) 1.4832

7 Conclusion

In order to better model the uncertain information of the characteristics of a subject, we proposed
the generalized ordered propositions based on classical ordered propositions. The generalized
ordered propositions extended the indeterminate part of a basic support function to all groups
of propositions, not just the universal set of propositions. Then we considered the determinate
part, indeterminate part, mean, degree of convexity and center of a basic support function in the
situation of generalized ordered propositions. These properties can also be applied in classical
ordered propositions. Additionally, we found the existing entropy of a basic support function
does not apply when the indeterminate part is not zero. To address this shortage, we presented a
new entropy based on belief entropy. This entropy measures not only the uncertainty of the de-
terminate part but also indeterminate part of a basic support function. When the indeterminate
part equals to zero, this entropy is degenerated into the existing entropy. Finally, we instruct-
ed the fusion method of basic support functions in generalized ordered propositions based on
consistency and uncertainty. The experimental results show that the method is effective.
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