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1 Introduction

This document attempts to describe a new fundamental theory of reality which
can be viewed in some ways as a completely different way of thinking about
reality. But it is a completely new theory. In the end it will be consistent with
most of quantum mechanics. The theory also attempts to explain the motion
of objects, inertia and the apparent equivalence principle.

The document will firstly establish the mathematical foundations of the
theory and the important interpretations associated with the theory. I shall
attempt to explain the important concepts I will introduce, as best as I possibly
can.

An important thing I should mention is that this theory uses the concept
of an aether. Now, you might say ”the aether is an archaic concept, long abol-
ished”, but I wouldn’t agree with you because the aether is simply the medium
through which light propagates. You could argue that it is a 0 density region
with virtually no material property, which you simply call a vacuum or you could
agree that the aether somehow has material properties like density, permittivity
and compressibility. The latter view has come under scrutiny mainly because
these fundamental properties seem immeasurable, they apparently don’t fit the
current description of reality, why consider them then?

Some serious questions this view of reality will face include

• Why do the properties of this aether fluid seem virtually undetectable?
[Tes93]

• How can a fluid of negative compressibility exist?

• What are the inertial and gravitational properties of this aether?

• Doesn’t the invariance of the laws of electrodynamics contradict the aether

• Is the aether made of tiny particles?
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In this document I will attempt to answer all these questions. I will set
a completely new foundation for aether theory and a completely new way of
thinking about the laws of physics.

The mathematical foundations required to understand this theory are simply
those of vector calculus and tensor calculus. Though tensor calculus is probably
not necessary in principle. I find it important to have formulations of laws
independent of the coordinate system.

I find it important to establish some background here. Why I think this
way and why I think these laws could potentially replace the current ones in
a grand unification of physics. My original idea was first inspired by a simple
thought about the theory of general relativity. What if I thought of spacetime
as some sort of topological fluid, what properties would it have? You might say
this is a meaningless question, and I certainly wouldn’t disagree, but at least
it’s still interesting to ponder. The first thing I noticed is that it seems many
of these properties were either infinite or zero. If spacetime was a material
it’s almost as though it is too perfect a material. But this kind of thinking is
rather arbitrary it is neither proving or disproving anything, nor is it adding or
subtracting anything from the theory it us merely appealing to intuition.

[Tes16] I still continued pondering this meaningless question because I dis-
covered a problem with my original idea. I treated the time component of space-
time more like space component. At the time I knew clearly this was not the
case. But I was reasoning with a static fluid, not considering how fluids evolved
in time. To give a good and honest description I really needed to consider the
dynamic properties of fluids. This involved all the complicated properties like
turbulence and drag.

Knowing this was all an abstract idea with potentially no application, I still
persisted. But this inspired me with a new idea and a very different question.
If spacetime could be thought of like a fluid, couldn’t we make an aether that
somehow works?

But I also wanted a theory that explained electromagnetic phenomenon and
nuclear phenomenon. The theory I present here is very different to the fluid
spacetime I initially thought up. The fluid spacetime idea merely served as an
inspiration for rethinking the foundations of physics in a completely new way.

Yes, the aether is not a new idea but my theory is a rethink of even the
aether itself. It’s completely different from most aether theories preceding it.
For one, It doesn’t think of the aether as just some abstract frame of reference
with coordinate properties. The aether is much more than that.[Lod]

My theory does what no other aether theory has ever done in history. It
describes the fundamental interactions between matter and the aether. Histor-
ically the aether has been treated as this almost magical substance which does
not interact with matter. But in fact what my theory shows that the aether
very much interacts with matter. It just does so in a way different to how you
would expect ordinary matter to. This shouldn’t be too odd.

[Tesb] The theory also describes the interaction between the aether and
electromagnetic waves. In fact this is the central study of my thesis On The
Propagation of Electromagnetic Waves in the Aether on a Flat Stationary Earth.
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In this document I attempt to explain in an easy to understand fashion the major
ideas of my thesis. But a very important thing I must say before ending this
introduction is that my theory is not fundamentally about the aether at all.
That might sound strange because I have been talking about nothing but the
aether for the past few paragraphs. But what my theory actually is about is
the differential density field.

The differential density field is a very simple mathematical field introduced
to analyse motion in a density field. The aether is merely a consequence of
certain properties of this field. While it is true that I was inspired by the idea of
an aether and more so by the abstract idea I thought of as fluid spacetime. but
non of these inspired my idea for what should fundamental to my theory, they
merely inspired me to rethink completely. [Tesa] My theory is not the kind of
theory that reformulates some existing theories, nor is it the kind that attempts
to extend an existing theory. It is rather the kind of theory which attempts to
encapsulate a set of ideas from other theories and explaining them in a new way
as a single unifying theory.

A major goal of my theory is grand unification. Now it is a very different
theory to most physical theories so far.

In the next few sections, I’ll introduce the mathematical foundations for my
theory and the sections following that I’ll be discussing some really important
consequences of my theory. In the final section I will show the various ways my
theory could be proven/disproven.

2 The density field

The density field is a field to which all points in space is associated a certain
density. The field is described by a function ρ(xm). where xm is a coordinate
vector where the index m runs over all 3 spacial coordinates.

[Tesc] The density field is a scalar field. The values for density will not
change under a coordinate transformation. Every region in the density field has
a density which is the average of the density of the density of each points. The
mass of a certain region is defined to be

m =

∫
ρ(x)dV

which is the average density times the volume of the region.

2.1 Uniformity and the balance operator

If a field is constant everywhere then we can say that such a field is uniform. The
gradient of the field at every point in 0. But a field with many small particles
distributed equal distances from each other is also uniform, but such a field does
not have 0 gradient at every point. My goal is to create an operator that is 0
when a field is uniform. Such an operator I will call the balance operator.
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The following seems a very reasonable definition for the balance operator in
1 dimensions.

φf(x) = lim
n→∞

∫ n

0

f(x)−
∫ 0

−n
f(x)

We use φ as the symbol for the balance operator. The operator is 0 when
f(x) is symmetric in both sides. But much more generally if f(x) uniform, then
φf(x) = 0.

If we want to extend the balance operator to 3 dimensions we can simply find
the balance of each x,y and z component. We can do this because the balance
operator is additive.

Another thing we would want to do is define the balance operator for every
point in the field. The formula earlier only defines balance for a simple function.
If ρ(x) was a function describing the field then the balance of this function would
represent the distribution of the field around the origin. If we want to find the
balance of an arbitrary point (x,y,z). Then all we need to do is to apply a simple
transformation to the coordinate system such that (x,y,z) is the origin. Such a
transformation is simply a translation. If a field has a balance of 0 everywhere
then such a field is uniform. This is a very useful metric, because in addition to
constant fields, it also includes many other fields one would consider uniform,
fields such as discrete particles distributed over the a certain space.

It is important to note that the balance operator on a scalar field is a vector.
The value of the balance is therefore much more useful than just a measure of
uniformity. How much useful will become clearer in the sections following this.
But for now we are interested in it’s use as a measure of uniformity.

We note that the closer the magnitude of the balance stays to 0, the more
uniform the field is. To measure precisely how uniform a field is, I’ll will use
the following metric:

U =
1
¯φρ(x)

where ¯φρ(x) is the average of the balance over the entire field. We know from
basic calculus that the average is simply an integral over the region divided by
the volume of that region. So

¯φρ(x) =

∫
φρ(x)dV

V

This then simplifies our formula to

U =

∫
V

φρ(x)

If we take V to be the entire field then we consider the uniformity to be the
global uniformity of the entire field. But the uniformity of some arbitrary region
V does not depend only on that region. It also depends on the global uniformity
of the entire field. A field that is uniform has a uniformity of infinity. Any field
that has a finite uniformity is nonuniform in some way. The lower the uniformity
of a field the less uniform it is and the more random it is.
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A nice parallel between the balance operator and the gradient is that when
the gradient is 0 everywhere, the balance is also 0 everywhere, this is because a
constant field is uniform.

It is important to keep note that the balance, like gradient is a vector field.
For now we are mainly interested in whether or not the balance is 0 or close it
is to it. But in later sections, the precise. importance of the balance as a vector
field will be revealed. While the balance is an extremely powerful operator for
studying how uniform a field is, it has a slight shortfall in that it doesn’t tell
whether or not a local region is uniform. It merely measures distribution relative
to the entire region. To measure the distribution over a shorter region, we need
to introduce a new operator.

The physical interpretation of all this, is that the density field is a field rep-
resenting the distribution of matter in the universe. Places where matter exist
generally have a higher density than those places where matter is scarce. The
motivation for studying matter in this way, as opposed to particulate matter, is
plenty and involves grand leaps of intuition in addition to very serious problems
with a particulate foundations. The Particulate foundations is only capable of
describing interactions between small particles accurately. Complicated inter-
actions have to be left to statistical approximations. Another serious problem
at the heart of particulate theory is that they tend to break down when we go
one level smaller and it also leads to the tendency for people to think that the
smallest particles discovered are the smallest particles. Before the microscope
was invented, people thought that dust was the smallest particle. Then when
the microscope was invented people discovered even smaller things until the
atom was discovered, and people thought it was smallest possible thing. Then
electrons and protons were discovered people thought these were fundamental.
Now we have the standard model particles and we consider this fundamental,
and for good reasons. We haven’t seen anything smaller.

But the point of the density field is to rethink completely the fundamental
theory. I want laws that are true at all levels, at all sizes and all speeds. I don’t
want laws that work on a small scale, then approximating a new set of rules for
a larger scale which then turn out to only be approximations at an even larger
scale etc. We want one set of rules that are fundamental at all possible scales.
Density doesn’t vary with size, which means that laws stated in terms of density
will have a promising chance of been size invariant.

2.2 Local Uniformity and Symmetry

The uniformity of a field is a very great way to measure the distribution of a field
and tell whether or not this distribution is uniform. It is not in general a very
good metric when measuring local regions however. For example, If you have a
field made up of 2 regions left and right of different densities then a subregion of
any of these fields will have a non-zero balance even when the region is uniform.
This is because the balance measures how particles are distributed and if all the
particles are distributed to one side, the balance will be tilted to that side. We
need a new way to tell whether or not a local region is uniform.
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To measure uniformity at a point we could make up a completely new opera-
tor that integrates over just that particular region instead of the entire field. To
avoid introducing a completely new operator we will note that it is equivalent
to multiplying by the following in 1 dimension:

φL = φ

∫
δ(x+ a)dx−

∫
δ(x+ b)dx

Where δ is the Dirac delta function. This operator is the local uniformity
balance for some local region (a, b).

The important point to note here is that different regions will have a different
local balance operators, you can find it by applying the balance operator to some
function that is 1 in that region and 0 outside the region.

φf(x)ρ(x)

For arbitrary functions this can get complicated, but the important thing to
note is that it can be done.

Fields that are uniform everywhere also tend to be similar everywhere. If
we take some arbitrary region and translate it and the region is similar to the
original then we can be certain that such a region is uniform or close to uniform.

The property by which an something remains invariant under a transforma-
tion is called symmetry. For uniform fields we can find symmetries. For the
constant field every translation is a symmetry since it is the same everywhere.
For a slightly more interesting field, like particles distributed over a region the
symmetries are discrete. For many interesting fields the symmetries are discrete.

If we have a grid of particles equal distance away from each other and a
region covering 4 particles, then to get a symmetry we must do a translation
that moves us in another frame that has 4 particles. Such a translation is clearly
discrete.

Let’s assume that these particles are a distance s apart. and we have a
region that covers s2 particles, then obviously any translation by a distance s
in the x or y direction will give a symmetry, any integer multiple of these give
a symmetry as well.

An important and obvious property is that symmetric regions have equal
local balance because they are essentially the same.

2.3 Entropy

The uniformity is a very important property in our study of the density field for
matter. It tells us about the distribution of matter. The Entropy of a field is
clearly related in some way to the balance. but precisely how is not immediately
clear.

A uniform distribution has a low entropy, a highly non uniform distribution
has a very high entropy. It seems as though uniformity could also be used to
derive a measure for entropy.
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Entropy is a measure of how disorderly a field is. In statistical mechanics
this is given as

S = klnω

Where ω is the number of possible configurations. This formula is called Boltz-
mann’s formula named after the great German scientist Ludwig Boltzmann.
Entropy is in many ways related to how particles are distributed in the density
field. Uniform fields generally have a lower entropy, non uniform fields have a
higher entropy.

2.4 Isotropy and Anisotropy

A field is isotropic if it’s distribution is independent of direction. Isotropic fields
are best described in terms of polar coordinates and spherical coordinates. We
say that a field is isotropic if it’s direction components are uniform. Anisotropy
is a measure of nonuniformity in the direction components in spherical or polar
coordinates.

Clearly if a field is uniform then it is isotropic. So a field of particles dis-
tributed over a region is isotropic. Anisotropy is a very important property in
the study of the density field that it is given it’s own operator φA. Which in
polar coordinates is:

φAρ(x) = φρθ

In spherical coordinates:

φAρ(x) = φ(ρθ0 + ρθ1)

In a general n+1 dimensional coordinate system this is just the balance of the
direction

φAρ(x) = φ(ρθ0 + ρθ1 + ...+ ρθn)

An important theorem which will not be proven here is that if a field isotropic
everywhere then it is uniform.

Isotropic fields are uniform. The really interesting property about anisotropy
is how it varies over the field. precisely how important this is will be important
later. But for now we will just focus on what anisotropy is and what are some
examples of anisotropic fields.

The simplest example of an anisotropic field is a field made up of strings
pointing in one direction. These strings could be made up of particles a distance
ε apart, and each string a distance s apart. If s > ε then the field is not uniform
and has a greater balance in 1 direction which means it is anisotropic.

The importance of anisotropy become important later when we want to study
the directional properties of the field. We can infer a lot about a field just by
knowing it’s anisotropy.
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2.5 The Gradient

The gradient is a very well understood operator. It is a vector representing the
direction of greatest increase. The gradient vector in Cartesian coordinate is a
vector of partial derivatives of the field with respect to each coordinate.

Traveling along the gradient of a field increases the value of the field by
the greatest amount. Travelling along the negative gradient decreases the value
of the field. The process of traversing the negative gradient is called gradient
descent.

The gradient is a very important in the study of the density field because it
allows a neat way to formulate the concept of inertia. The gradient is like an
”infinitesimal” inertia, in the sense that travelling along the gradient has more
resistance than travelling along any other infinitesimal vector. Traveling along
the negative gradient of the density field is generally easier than travelling in
any other direction, this is because it has the least inertial resistance.

This way of thinking about inertia makes sense since forces act over an
infinitesimal area rather than an entire region, although their entire effect is
generally through the region, the collision happens at a single point. The inertia
is generally proportional to the mass of a region of particles. This view of inertia
is both naive and brilliant, but as will be shown later it’s not the full truth.
There is more to inertia than just the gradient of the density field.

The gradient has much more use than that. In addition to being an impor-
tant term for inertia in the density field, it is also important in the construction
of various vectors and tensors for studying the density field.

An immediate implication of the gradient is that the density field must be
continuous and differentiable at every point. This is because we are going to
need the gradient to be defined at every point. If we are going to be using the
gradient for inertia we can’t have infinite or undefined inertia. The implication
of this is that we can’t have point particles or particles as just regions of a
certain density. Particles have to be modelled as a certain distribution where
most of the mass density is concentrated at a central point. How exactly the
density is distributed in a particle will be made clear in the next sections. For
now, it’s an important thing to point out.

The implications of particles as continuous and differentiable distributions
are many. But precisely how much is dependent on what distributions particles
follow. Various possibilities were suggested by my collogues and professors.
One possibility, suggested by my advisor Robin Vodka,is that particles follow a
Gaussian distribution. If this is the case, then the implications are huge. One
of the first implications of this is that the vacuum would not have 0 density, the
combined effect of all particles would leave a very low density region. A friend
of mine, Michael Carton, suggested this could be the aether.

Another suggestion by 5 of my friends is that particles are finite spheres
with the density distributed within them. The density would approach 0 as you
approach the edge of the particle. The case for this isn’t very strong. The only
reason for it is to closely match with our current idea of a particle and to avoid
the concept of an aether. But there are some implications of this model, on the
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rigidity of a particle for example. I will speak about Rigidity and it’s relation
to the density field in a later section.

Various arguments have been suggested about which is correct, but if we
want to know the truth about particle distribution, we must let nature speak
for itself, with an experiment. But these aren’t the only possibilities for the
distribution. There were 5 other suggestions, all of which were mentioned in
my thesis. But the possibilities are endless. Particles could be distributed in
almost any possible way, as long as the density field remains differentiable.

The next section explains one of the most important concepts in this docu-
ments. The differential density field.

3 The Differential Density Field

The differential density field is the heart and soul of this document. It is a
field created from the density field for the purpose of explaining motion in the
density field. The differential density field is a vector field. The differential
density field isn’t itself velocity, acceleration or force, nor is it a force. It is a
quantity representing motion in some way. It describes how the density field
changes. But precisely how this change occurs will become clear later in this
section.

Firstly, what is the differential density field? Well when you might be think-
ing something like ~dx or even dρ. But the differential density field doesn’t really
have much to do with differentials. You might be thinking it has something to
do with the gradient and you’d be right.

The differential density field represents two main components of motion in
matter when not affected by electromagnetic fields. The attractive component
and the inertial component. A particle is generally attracted to another massive
particle, this phenomenon is commonly called ”gravity”. But this description
isn’t exactly possible when we are describing things in terms of the density field.
To describe the phenomenon we must observe that particles tend towards areas
where there is more mass in general. This description should remind us of the
balance operator. Yes, particles tend to move in the balance of the density field.

As we have already explored, particles tend to experience more resistance
passing through denser regions than through less dense regions. This idea is
roughly the concept of inertia and the negative gradient of the density field can
represent inertia.

These two components come together to form the differential density vector.
The vector mathematically is:

~ρ(x) = φρ(x)−∇ρ(x)A

The first component of this vector is called the balance component of the density
field and it represents the apparent attractive motion. The second component
is called the gradient or the inertial component of the density field. This com-
ponent represents the resistive motion in the density field.
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It is important to note that the differential density field is not a complete
description of motion. At this point you can say it hints at motion, but precisely
how it relates to motion will become clearer as the chapter progresses.

3.1 The Inertial Component of the Differential Density
Vector

The term −∇ρ(x)A is called the inertial component of the density field. It
consist of two parts. The first part is the gradient of the density field, which
we are familiar with. The second component is a term required for dimensional
consistency. I will not assume it’s a constant because I have no reason to.
What exactly this A is will be established later on. For now we will focus on
the gradient of the density field.

Inertia is a quantity that represents the resistance to motion provided by a
mass. It is generally proportional to the mass. In fact do proportional that we
often consider it the mass itself. But is it? The question as to whether or not
mass is equivalent to inertia has been a raging one for centuries, since Newton
of course. But the general consensus is that it is. Inertia is clearly proportional
to mass, why consider them different?

While it is true that they are proportional, the exact resistance is happening
over an infinitesimal region. Now you could say that the force is really just the
sum of all inertial forces contributed by each particle, but this doesn’t really
make sense in our differentiable density view with particle distribution.

The gradient is the best description of inertia so far, but it isn’t complete.
The inertia clearly isn’t determined by just the local gradient, it is determined
by the entire mass of the particle. Whatever is in the A component must explain
it, but what that is isn’t clear yet, but will be clear by the end of this section.

3.2 Differential density 4-vector

Inspired by relativity, we will be viewing various quantities as 4 vectors. The
point of this isn’t to say space and time are the same thing unified by one
geometry, but rather an arbitrary convention, which is useful. It allows us to
formulate things in a way where the rules by which they evolve are much more
natural. Rather than making random assumptions about how things should
evolve based on our judgement, we examine how they should evolve based on
the 4-vector, because far from just been an ex dimension time is very much
related to spatial distance and very well within our 3 dimensions. more on that
in the very last chapter.

This section is about the differential density 4-vector. We already know
3 components of this vector from the differential density 3-vector. The 4th
component is the time component and it is important in understanding how
this field evolves over time.

For all 3 spatial components, the value for the differential density is

φρx(x)− ∂ρ(x)

∂x
A
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Replace x with y or z, for the other 2 spatial components. But the time com-
ponent is as follows:

cφρt(t)−
1

c

∂ρ(t)

∂t
A

The value c is a speed component needed for dimensional consistency. It turns
out to be the speed of light. Precisely why will be addressed later. The second
component is very important. It is the time component of the inertial component
of the differential density field and can be simply called the inertial time. It is
clearly related to the rate at which the density field is changing over time.
Inertial time is a very interesting concept to think of, but its use only becomes
clear with the introduction of concepts in the upcoming section.

The first component is the time component of the balance. It can by simply
called the time density. It is such an important quantity, because it changes
everything. The next section is dedicated entirely to the time density.

3.3 Time Density

The time density is the first term in the time component of the density field. It
completely changes our understanding of the density field. It’s value is simply
φρt(t). This quantity is far more important than inertial time. The differential
density vector is the most important concept in this document, time density is
the most important component in that vector.

Why is the time density such an important concept? It’s a game changer. It
is the very first thing to tell us something about the density field that we don’t
have to assume. To understand this let’s just look at what it is.

The time density simply represents the balance of the density field over the
time component. If this is 0, then density is distributed uniformly over time, if
it’s titled to one side, then the balance is to that side. But there is an apparent
paradox here. It seems like the immediate future of the particle is determined
by the complete history and complete future of the particle, how can this be?

Recall, the balance operator is defined the limit of a certain definite integral
over the entire field. For the time component, this is an integral over the histor-
ical densities of the particle minus the future densities of the particle. This is
suggesting that what the particle will do next is somehow determined by what
it will do years ahead in the future?

To resolve this we must realize something very important about the time
density and this is why it’s the game changer. If we move forward in time
then the time density must either decrease in time or remain constant. This
is because the balance is the integral future densities minus the integral past
densities. If the time density is 0 throughout time then the density is uniform
throughout time.

∂φρ(t)

∂t
< 0

One can easily show that the balance operator commutes with the derivative.
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This means that our constraint is also:

φ
∂ρ(t)

∂t

Which is saying that the balance of the inertial time is negative (assuming the
constant A is positive). This means that unlike in space, inertial time is not a
resistance, it is much more like a force, pushing things through time.

The constraint establishes a relationship between inertial time and the time
density. This relationship is very important and understanding it is key to
understanding the differential density field.

The Inertial time is proportional to how fast the density is changing at a
certain point. If the balance of the inertial time is negative then that means
there is a greater amount of inertial time in the past than the future.

Now in a very strange way, the balance of the inertial time been negative,
corresponds. to the idea of less action in the future than the past. I haven’t
defined what action means in terms of the density field yet, but the general idea
is that there has to be less changes in density in the future than the past, this
also means less inertial time in general (assuming the quantity A is constant on
average). As we all already know and will see later, entropy is always increasing.
These two facts together combined seems to be saying that as time progresses
more things can happen, but less things will.

The most important relationship here so far is that the balance of the inertial
time is proportional to the rate of change of the time density (assuming A is
constant) and both these quantities are negative. I will call the balance of the
inertial time, the inertial balance.

3.4 Divergence of the differential density field

The divergence of a point in a field represents the amount by which the vectors
diverge from that point. The divergence is defined as follows:

∇ · ~v =
∂v(x)

∂x
+
∂v(y)

∂y
+
∂v(z)

∂z

A negative divergence means convergence. The divergence is a scalar value.
The divergence of the density field is found by simple applying the divergence

operator ∇· to the density field.

∇ · ~ρ(x) = ∇ · φρ(x)−∇ · ∇ρ(x)

We can show that the divergence operator commutes with the balance operator
and simplify the expression to as follows:

∇ · ~ρ(x) = φ∇ρ(x)−∇2ρ(x)

In the first term we can just flip the position of the divergence operator and
the balance operator because they commute. But the divergence of a scalar
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is simply the gradient or the ordinary derivative of the scalar. For the second
term, the dot product of ∇ with itself is ∇2.

From the equation,the divergence of the differential density field is deter-
mined by the divergence of the balance component minus the divergence of the
inertial component. The balance component is actually simple, the divergence
of the balance is simply ρ(x). The divergence of the divergence inertial com-
ponent is simply the inertial component is simply the laplacian of ρ(x). The
laplacian can also be denoted ∆. So now we have:

ρ(x)−∆ρ(x) = ∇ρ(x)A

The divergence of the differential density field, is itself a density field, in the
sense that it has the same dimensions as density, it is also a scalar and is directly
proportional to the density.

3.5 Motion in the density field

At this section, you are finally one step closer to understanding how motion
works in the density field. Firstly we must discuss the velocity field. The
velocity field is a vector field to which every point has an associated velocity.
But what exactly does velocity mean in the density field? At this point you
might have some rough idea of particles traveling a certain speed. but how does
one describe this in terms of the mathematics of the density field?

At first sight it is not obvious, it might even seem impossible, but the insight
comes from trying to find a relationship between the inertial time and the inertial
gradient (the inertial component of the 3-vector). But before we do that let’s
just start with a simple fact from calculus.

∂ρ

∂t
=
∂ρ

∂x

dx

dt
+
∂ρ

∂y

dy

dt
+
∂ρ

∂z

dz

dt

This is just the chain rule. You will notice that on the left hand side, there is the
important term of the inertial time. But you should also note that on the right
hand side the term there is equivalent to a dot product between the gradient
of the density field and some velocity vector. I assume that this velocity vector
is in fact the velocity vector from the velocity field for each particle and I will
prove later that this is in fact the case. The equation is thus:

∂ρ

∂x
= ∇ρ(x) · ~v(x)

At this point you might have 2 questions. How do I know the velocity vector
is really the velocity of each particle in the field? and what’s the point of the
differential density field if we don’t need it for the velocity equation? I will
attempt to answer both questions throughout this chapter and the next few,
I will attempt to answer these questions, this chapter and the next will focus
mostly on the latter of the two questions. But gradually it shall become clear.
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But let’s get back to inertial time and the inertial gradient too. Let’s recall
the inertial time is defined as follows:

mt =
1

c

∂ρ

∂t
A

I shall use the symbol mt to represent inertial time.
Let’s not that the inertial component of the differential density field, which

is simply:
mx = ∇ρA

I will be using the the symbol mx for the inertial gradient. Now the reason I
reminded you of this is because I want you to realize something:

v(x) = c
mt

mx

The velocity is equal to the inertial time divided by the inertial gradient multi-
plied by the speed of light. This is all derived from our equation above.

An interesting thing we will show later is that the inertial time can never be
greater than the inertial gradient. This is actually saying that the fastest speed
possible is c. This is all derived without any assumptions about space or time
other than that we can use Cartesian coordinates to describe it. This is reason
for me and advocates of my theory to be proud.

Showing this explicitly from our formula is actually very simple, but for
those who still aren’t seeing it. you can just expand the following to get my
original equation times A.

mt = mxv(x)

I have yet to explain what this quantity A is, but at this point it’s not relevant,
since it cancels out of my equation. What’s important to note is that A is never
0.

At this point you may reflect. What’s the point of all this inertial time and
inertial gradient, can we measure it? Well, what we need to keep in mind is that
the inertial gradient is simply the gradient of density at a point and the inertial
time is nothing but the time derivative of the density, up to a constant yes,
but that’s essentially what it is. It is nothing complicated. I have introduced
nothing complicated yet.

3.6 Acceleration

Now that we have a good idea of what velocity means in terms of the density
field, what is acceleration, how cloud we find it? Well, one could simply take
the derivative of the velocity and see where the laws of calculus take you. But
this doesn’t give us much information, but it is still a very important start.

The formula is:
(mx)2~a(x) = m′tmx −mtmx

This is simply using the quotient rule to find the derivative.
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An interesting consequence of this is that constant velocity means:

m′tmx = mtm
′
x

The immediate implication of this is that if mx = mt then there is no accelera-
tion, this means that objects travelling at the speed of light do not accelerate.
more on this later.

I will now focus now on a separate idea.

vb = c
φρx
φρt

The quantity vb I will call the velocity balance, it’s not exactly a velocity, but it
has units of velocity. What I am interested in the time derivative of this quantity.
We already know that the time balance is negative and that the inertial time
is less than the inertial gradient. What we don’t know much about is the time
derivative of the inertial time, which is relevant to our formula.

The time balance minus the time derivative of the inertial time is equal to
the time derivative of the time component of the differential density 4-vector.

We can take the time balance as −ρ(t) since the rate at which the time
balance changes at a point is generically equal to the minus density at that
point (there are special situations where this is not the case).

It is vital to know what the time derivative of vb is, which we shall call ab.
By the quotient rule we get: (in the generic case)

φρ2xab = ρ(x)φ(ρx − ρt)

The time has come to understand what the derivatives of mx and mt are, and
what this quantity A really is. To do this we need to introduce something new
to the density field.

3.7 Density Waves

If we take the time laplacian of the density field, which is just the second deriva-
tive with respect to time of density, then we get some quantity which is exactly
m′t, assuming the quantity A is a constant and we can set it to 1. We simply call
this the time derivative of the inertial time. We can set an equation as follows

ρ = f2m′t

Where f is some frequency quantity and ρ is the density at that point. But
what could f be the frequency of? maybe it’s some arbitrary abstract thing
with no use? What is it?

Let’s recall that the inertial time at a point is proportional to the velocity of
motion at that point. But the velocity is inversely proportional to the inertial
gradient.

What we can do is take the quantities in the wave equation, solve for them
our resulting solution is the density wave in a later document you will see how
that works.
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4 Equations of Motion in the density field

As we have already seen motion in the density field is described by the inertial
time and the inertial gradient, both of which constitute the two parts of the
inertial component of the differential density tensor.

The equations of motion in the density field is described by the inertial
components and their derivatives. The velocity as we have already seen is

v(x) =
mt

mx

To the acceleration is:
a(x) = m′tmx −mtm

′
x

Now at this point I am going to just leave out the speed of light. Let’s set it to
1. Those who have done relativity would be familiar doing this. However, when
doing actual calculations you may want to insert c where it should be.

The second equation determines the acceleration. Often times m′x and m′t
are unknown. We have to solve for them.

4.1 Solving for acceleration

In the introduction of section 3, I mentioned that the differential density vector
determines motion. So far I have only shown 1 component, a half of the density
vector at work. So far I have only shown the inertial component. So what then
is the point of the other component? what’s the point of the differential density
vector? This section is devoted partly to answer this question.

As I have already shown, the acceleration is determined by:

a(x) = m′tmx −mtm
′
x

But I also showed that we have to solve for this acceleration. But how?
Let’s look at a very important result.

∇ · ∇ρ(x) = ∆ρ(x)

Now, all this says is that the divergence of the gradient of the density field is the
laplacian. What’s so important about that, you may ask. Well it’s not exactly
important, but it’s something to consider.

The thing I want to bring your attention to is the velocity balance. The
velocity balance is not a velocity, but it acts very much like it.

4.2 Energy and Momentum

Momentum is mass times velocity. But when we take things in terms of the
density field, we want to talk about density, so what’s the quantity we get when
we multiply density by velocity? Well a useless concept it may sound, I will
call it the inertial momentum. At constant velocity the integral of the inertial
momentum over the volume would be equal to the actual momentum. But in
general I will call this quantity the integral momentum.

Let’s give th
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4.3 The Energy Density

The energy density is a measure of the amount of energy in a certain region.
Much like the mass density, the energy density is a differentiable field. The
energy density can be defined at every point and forms a distribution. In many
ways it is related the distribution of matter in the density field.

5 Electromagnetism

Electromagnetism is the phenomenon by which electrically charged particles are
attracted or repelled based on their electric charges. I will describe the electric
field and it’s relationship with the differential density field.

5.1 Charge Density and the divergence of the electric dis-
placement field

It is a well known fact that the charge density is related to the divergence of
the electric field. This is one of Maxwell’s equations.

∇ · E =
q

ε

I use the symbol q for charge density rather than charge because I am never going
to use charge in this document. I will acknowledge you get charge by integrating
the charge density over a region but I will not use the concept. The quantity ε
is the electric permittivity, but what really is the electric permittivity? A part
of this chapter will be dedicated to answering that question.

But what’s the relationship between the density field and the charge density
field? Well, firstly, if the density field at a point is 0 then the charge density
field at that point must also be 0.A non zero density field does not however
imply a non zero charge density field.

Let’s take qm to be the mass to charge ratio, which is also the ratio between
mass density and charge density. We then find that the divergence of the electric
displacement field is equal to

∇ ·D =
ρ(x)

qmε

The reason I do this is because I want to see the relationship between the electric
displacement field and the density field. We can rewrite this as follows:

qmε∇ ·D = ρ(x)

What this is basically saying is that the Electric displacement field is pro-
portional to the density field. Now at this, let’s recall something very wonderful.

−∇ · ~ρ(x) = ρ(x) + ∆ρ(x)
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This means that that

−qmε ·D = ∇ · ~ρ(x) + ∆ρ(x)

What this suggests is that assuming ∆ρ(x) is 0 and the permittivity and mass
charge ratio is a constant, then the electric displacement field behaves in essen-
tially the same way as the differential density field.

But let’s get back to the original equation relating the density field directly
to the electrical displacement field. Essentially, this is saying, that in a field of
constant mass charge and a constant electric permittivity, the magnitude of the
divergence of the electric displacement field is equal to the mass density at that
point.

Let’s assume a constant mass charge and a constant permittivity then we
find the following. relationship between the electric displacement field and the
velocity field.

qmε
d∇ ·D
dt

= ∇ρ(x) · ~v(x)

This means that the inertial time is proportional to the rate of change of the
divergence of the electric displacement field, in a field of constant mass charge
and constant permittivity.

mt =
pmε

c

d∇ ·D
dt

5.2 Permittivity field

We can create a field ε(x) for which each point has an associated permittivity.
This field will be called the permittivity field. The permittivity at each point
in the field determines the electric permittivity at that point. The electric
permittivity is also time dependent.

The electric permittivity of a field

5.3 The Electromagnetic Nature of materials

Materials are electromagnetic by nature. We know that matter is made from
electrons, protons and neutrons. These particles interact with the electromag-
netic field. Many material properties are determined by how they interact with
the electromagnetic field. The electric and magnetic properties, thermal prop-
erties, metallic properties, optical properties etc.

A material with high permittivity, for example is a dielectric material and
is very useful for making a capacitor. Conductors are materials that that allow
electric current to flow through. The permeability of a material affects how
well it can produce magnetic fields. Materials that have high heat capacity and
high boiling point generally have a motion higher intermolecular force. these
intermolecular forces are at the most fundamental level electromagnetic. Many
properties of matter are dependent on how they interact with the electromag-
netic field, which in turn depends on their structure, which in turn depends on
the density field.
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What this chapter is mainly about is discussing how some common properties
of matter relate to how the density field and the mass charge field are distributed
throughout the material. These fields determine the electric displacement and
the differential density field which determines the evolution of these fields.

The first property I want to talk about in details is

5.4 Magnetic B and H fields

Those who have studied Electromagnetism and related fields already know about
magnetic fields, so I won’t spend much time on it. What I want to focus on is
the relationship between the B field and the H field and it’s importance to our
theory.

I want to first start with the fact that the B field has a divergence of 0.

∇ ·B = 0

The curl of the H field is as follows:

∇×H =
∂D

∂t
+ J

Now these are just Maxwell’s equations. But what I want to know is how
these fields relate to the density field. Since I have 3 of 4 equations, I will just
write the 4th

∇× E =
∂B

∂t

Now these equations relate various fields we collectively call the Electromag-
netic field. Now the purpose of this document isn’t to describe how this works.
This document intends to describe the relationship between these fields and the
density field.

6 Practical Application of the theory

This section is very important. Especially for those wondering what’s the point
of my theory. The first part of this section will explain with an example how
to use the theory in a simple example. The second part is devoted to exploring
some implications of this theory, the third part is dedicated to the possible
advances in technology this theory might bring once it is demonstrated true.

The importance of this section is to show what this theory brings to table.
previous sections have been all about how this theory relates to other things
we know, now it’s time to talk about what distinguishes it, and how we could
potentially falsify or prove it.

6.1 A simple example: moving particle

The first example showing how you can apply this theory is a particle moving
at constant velocity through the density field. I will assume no forces acting
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on the particle and that the particle follows a Gaussian distribution. I will also
assume that the particle starts at the origin. We know that the velocity. I will
keep it one dimensional for simplicity, but extending it to 3 dimensions should
not be terribly difficult.

If a particle follows the Gaussian distribution, then in one dimensions it’s
density is determined by the function.

ρ(x) =
1√
2π
e−

1
2x

2

Now we also assume the velocity v is a constant. Let’s recall the formula

∂ρ

∂t
= ∇ρ(x) · ~v(x)

Since this is one dimensions, and our velocity is constant, this means that our
dot product formula just becomes an ordinary product. Also note that the
gradient in 1 dimensions

dρ

dt
=
dρ

dx
v

We know how to. differentiate a Gaussian distribution, so we can simply take
the derivative of the density field to get the time derivative.

dρ

dx
= − x

2π
e−

1
2x

2

I will also note that this is proportional to the inertial gradient, but since the
quantity A cancels out in the velocity equation I will not include it in the
calculation

mx = − x

2π
e−

1
2x

2

Finding the rate of change of the density field with respect to time is as simple
as multiplying this by the velocity.

ρ̇ = −v x
2π
e−

1
2x

2

But this is only for a single instance in time, since the inertial gradient could
change with time. But recall that at constant velocity ṁx = ṁt. Firstly let’s
find the value of these.

7 Dimensional Homogeneity

In this section I want to talk about something a little bit different. I want to
speak about the nature of physical dimensions. This is mainly the work of my
professor who did his thesis and various articles on it. His work focuses mainly
on the many alternative physical dimensions we could use and the nature of
dimensionless physical constants. He also speaks of the idea of fractal physical

20



dimensions and Hausdorff dimensions. But another idea, he favors be far the
most is a fully homogeneous system of units he calls dimensionless units. [Voda]

What’s revolutionary about his ideas isn’t so much about how it changes
physics, but more so how it changes our way of thinking about it. ”Dimensions
are arbitrary conventions”, He says, ” and it’s interesting to see what happens
when you break them, specifically what remains invariant under a transforma-
tion of units”.

He starts with a very simple idea. You can think of time as the length of a
light beam. How long it took for an event to occur is how long the light beam
has become since it started traveling at the beginning of an event to the end.
The main idea here is that you can think of time as a length and give it units of
length xt = ct. But fans of classical physics recognize an immediate paradox, it
would now seem that time is dependent on velocity, on how fast I am travelling.
For example, if I am travelling at the same speed as that of light, it would
appear that time has come to a complete stop. But fans of relativity have no
problem with this, this is exactly what relativity predicts. Classical mechanics
advocates may instead want to define time as xt = ct + vt. With this, time is
invariant, but only so in an absolute frame of reference. [Pau]

My Professor argues, why not define time as proper time, then we can still
call time an invariant quantity, after all it’s just a definition. But the response
to this is clearly time is what my clock measures, my clock doesn’t measure
proper time. But his response to this was brilliant, he said ”Why not build a
device that measures proper time instead of ’time’, and call this the clock, then
we can all agree on time.”. But how could we build a device that measures
proper time? [Vodb] [Ein] [Bar]

But, I have strayed a bit off topic, my point wasn’t to argue about what time
is, but to show that it can reasonably be defined as a length, and thus given the
units of length. It would be an arbitrary convention, bit our system of units is
also an arbitrary convention. I went of topic for good reasons, to allow you to
rethink the nature of time.

The first interesting thing that happens if one chooses to measure time as
a length x = ct is that velocity becomes a dimensionless quantity. Since it’s
the ratio of distance travelled to the distance light traveled. The essence of
a dimensionless quantity is that it doesn’t change no matter how much we
scale our units. For example the refractive index of water is 1.3 and there
is no units attached to it. That means it doesn’t matter whether you chose
feet’s, yards, or centimeters, the refractive index of light is still 1.3. We call
these unchanging constants dimensionless physical constants. The same thing
happens with velocity when we choose units such that velocity is dimensionless.
In this case though we get the velocity of light as the uninteresting value of 1.

Another slightly less obvious consequence of this arbitrary choice is that
power becomes just a form of force, in the sense that it has the same units of
force. Momentum, mass and energy would all have the sane units in such a
system.

Another thing one could consider and my Professor did, is what if we kept
time as a fundamental unit and created another arbitrary fundamental unit.
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Let’s assume for some arbitrary reason we chose length and distance to be fun-
damentally distinct. The choice is arbitrary, and maybe sound useless, maybe it
is, but what would happen if we did? Well, we would create new units like dis-
tance/length and length/distance, which we would consider non homogeneous.
For most purposes these are clearly useless, but it is just as arbitrary as our
choice of units.

But he had another idea, what of we chose quantities we knew were dimen-
sionless and gave them units. Let’s make angle a fundamental quantity and
remove length, for one minute. Not surprisingly, his new system of units could
not recreate the concept of length or velocity. He had to create the concept of
perspective length and perspective velocity in this system of units. He showed
that by changing the system of units you can change what the laws of physics
look like mathematically. But almost certainly you can’t change them.

But he wasn’t finished there. He asked what would happen if we made area
and length and length the same unit. Now this might sound impossible, but
he argued that if you define the area of a 5 × 5 square as 5 rather than 25
then such a measure would indeed be possible. Now, like everything else so far,
this is arbitrary, but our choice of measuring area as a square was somewhat
arbitrary. It has become so built into our mathematical language that we can
hardly question it.

8 How this theory can be proven

This theory makes some bold predictions about density as a differentiable field,
but how can we demonstrate this. One of the ways I can show that such a theory
is at least plausible is by showing how much of what it can explain. In this I
try to find particle distributions from which I can derive the laws of quantum
mechanics. I did a little of this in my thesis and will elaborate on that in a later
page. But the more prominent way is in designing machines that can detect the
predicted results of my theory.
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