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1 Definition of the Second Landau’s Problem

Definition: Is there infinitely sequence of “simple twins” - primes (yo), the difference between them being 2?

2 Algorithm for Proof of the Second Landau’s Problem

2.1 Types of Pairs of Odd Numbers

The sequence of odd numbers {y} consists of pairs of odd numbers of the following sequence after the separation
of the sequence {3y}: {

yn, (yn + 2) | yn
3

/∈ N,
yn + 2

3
/∈ N
}
. (1)

The sequence of pairs (1) consists only of “simple twins” after the separation {3y}.
Then “simple twins” are beat out by intersecting sequences of composite odd numbers (ycomp) of the following
form: {

yony | y ≥ yon,
y

3
/∈ N
}
. (2)

After the successive interaction of the sequences (2), the pairs (1) will have the following form:

Scheme 1:

A
yo1 yo2

or
B

yo ycomp
or

C
ycomp yo

or
D

ycomp1 ycomp2
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Thus, after the selection of the sequence {3y} in the infinite sequence of pairs (1) the frequency of the
appearance of the sets {A} = 100%, {B;C;D} = 0%.

2.2 Pairs of the Sequence of Odd Numbers of the form 5y

Let’s start in succession from the sequence of composite numbers {5y | y ≥ 5, y/3 /∈ N}. The distribution of
this sequence in pairs (1) is repeated in rows of five pairs according to the following scheme:

Scheme 2:

1 pair 2 pair 3 pair 4 pair 5 pair
B A C A A

The frequency of the appearance of the the set {B;C;D} in the sequence of pairs (1) will now be determined
according to Scheme 2 :

{B;C;D} = 100% · 2

5
= 40%. (3)

2.3 Pairs of the Sequence of Odd Numbers of the form 7y

The distribution of the next sequence of composite numbers {7y | y ≥ 7, y/3 /∈ N} in pairs (1) is repeated in
rows of seven pairs according to the following scheme:

Scheme 3:

1 pair 2 pair 3 pair 4 pair 5 pair 6 pair 7 pair
B A A A A C A

2.4 Pairs of the Sequence of Odd Numbers of the form 11y

The distribution of the next sequence of composite numbers {11y | y ≥ 11, y/3 /∈ N} in pairs (1) is repeated
in rows of eleven pairs according to the following scheme:

Scheme 4:

1 pair from 2 to 4 pairs 5 pair from 6 to 11 pairs
B A C A

2.5 Pairs of the Sequence of Odd Numbers of the form 13y

The distribution of the next sequence of composite numbers {13y | y ≥ 13, y/3 /∈ N} in pairs (1) is repeated
in rows of thirteen pairs according to the following scheme:

Scheme 5:

1 pair from 2 to 9 pairs 10 pair from 11 to 13 pairs
B A C A
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2.6 Regularities of Knocking out Simple Twins from Pairs

According to (2.2)-(2.5), a separate knocking out “of simple twins ” from pairs (1) by the sequences (2) has
the following regularities:

1. The repetition of the appearance of ycomp from (2) in pairs (1) by rows

with the number of pairs equal to yon;

2. Filling in a repeating rows with only one pair B and one pair C from Scheme 1 ;

3. B and C are not located in adjacent pairs;

4. B is always located in the first pair.

(4)

Starting with (2.2) the knocking out of “simple twins” from pairs (1) by the sequences (2) is superimposed
on the pairs already filled with the previous sequence (2) The regularity changes in this case. Repetition can
now be represented by areas where the number of consecutively filled columns from right to left is yon, and
the number of rows filled from top to bottom is yo(n−1), where yo(n−1) is a prime number in the sequence of
primes just before yon. Now there is a knocking out of “simple twins” from pairs (1) according to the type D
of Scheme 1, which means intersecting sequences.
Let’s calculate the frequency of the appearance of the set {B;C;D} in subsequent pairs (1) for (3) and the
new sequence {7y | y ≥ 7, y/3 /∈ N} with allowance for intersecting sequences:

{B;C;D} = 100% ·
(

2

5
+

2

7
− 4

35

)
= 100% · 4

7
≈ 57,1429%. (5)

Let’s calculate the frequency of the appearance of the set {B;C;D} in subsequent pairs (1) for (5) and the
new sequence {11y | y ≥ 11, y/3 /∈ N} with allowance for intersecting sequences:

{B;C;D} = 100% ·
(

4

7
+

2

11
− 6

77

)
= 100% · 52

77
≈ 67,5325%. (6)

Let’s calculate the frequency of the appearance of the set {B;C;D} in subsequent pairs (1) for (6) and the
new sequence {13y | y ≥ 13, y/3 /∈ N} with allowance for intersecting sequences:

{B;C;D} = 100% ·
(

52

77
+

2

13
− 102

1001

)
= 100% · 104

143
≈ 72, 7272%. (7)

2.7 Expression for the Set {B;C;D}
Let’s represent the expressions (5), (6) and (7) in a different form.
Let’s expression (5) as follows:

{B;C;D} = 100% ·
(

2

5
+

2− 4
5

7

)
. (8)

Let’s expression (6) as follows:

{B;C;D} = 100% ·
(

4

7
+

2− 6
7

11

)
. (9)

Let’s expression (7) as follows:

{B;C;D} = 100% ·
( 52

7

11
+

2− 102
77

13

)
. (10)

According (8), (9) and (10), the expression for the frequency of the appearance of the set {B;C;D} in the
sequence of subsequent pairs (1) under the action of (2) can be represented as follows:

{B;C;D} = 100% ·
(

Kyon

yo(n−1)
+

2−Ryon

yon

)
, (11)
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where, without delving into the formula, we can distinguish the following conditions:

1. Kyon /∈ N;

2. yo(n−1) −Kyon > 2, (yo(n−2) −Kyo(n−1)
) ≤ (yo(n−1) −Kyon);

3.
Kyo(n−1)

yo(n−2)
<

Kyon

yo(n−1)
;

4. Ryon
/∈ N;

5. 0 < Ryon
< 2,

2−Ryo(n−1)

yo(n−1)
<

2−Ryon

yon
;

6.
Kyo(n−1)

yo(n−2)
+

2−Ryo(n−1)

yo(n−1)
<

Kyon

yo(n−1)
+

2−Ryon

yon
.

(12)

2.8 New Definition of the Second Landau’s Problem

From expression (11) follows a new definition of the Second Landau’s Problem:
New definition: Is it possible that with the successive filling of pairs (1) with the next sequence (2), the
frequency of the appearance of the set {B;C;D} in expression (11) reaches 100%?

2.9 Proof of the Second Landau’s Problem by contradiction

Let’s assume that when the pairs (1) are successively filled with some sequence (2) in expression (11), the
frequency of appearance of the set {B;C;D} = 100%. Then:

1− Kyon

yo(n−1)
=

2−Ryon

yon
. (13)

But in the sequence of primes:
yo(n−1) < yon. (14)

According to condition 5 in (12):
2−Ryon

yon
<

2

yon
. (15)

According to condition 2 in (12):

1− Kyon

yo(n−1)
>

2

yo(n−1)
. (16)

Because of (14), (15) and (16), expression (13) becomes invalid and takes the following form:

1− Kyon

yo(n−1)
>

2−Ryon

yon
. (17)

According to (17), when pairs (1) are filled with the next sequence (2), always:

{B;C;D} < 100%. (18)

Consequently, the sequence of “simple twins” is infinite.
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