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Since it was first discovered, physicists have attempted to find the fundamental 

physical cause of the fine structure constant. The fine structure constant appears in many 
different physics relationships and can be expressed in terms of a number of combina-
tions of different physical constants. This leads to some debate over what is the most fun-
damental representation of the constant. In this paper it is first shown that the unit charge 
can be viewed as the polarizability of space over a surface area surrounding a unit charge. 
The polarizability of space is in turn determined by the van der Waals torque of the quan-
tum field. That torque regulates the rate of rotation of the quantum dipoles of standard 
model quantum field theory as each quantum dipole is polarized. Then, based on the 
well-known relationship between the charge squared and the fine structure constant, it 
can be readily shown that the fine structure constant is the total volumetric polarization of 
the quantum field due to a single unit charge. This shows that the fine structure constant 
can be fundamentally derived as an effect due to fundamental electrodynamics of the 
quantum field. 

  
 

1. Introduction 

Ever since the fine structure constant was first in-
troduced by Sommerfeld, physicists have questioned 
what it physically represents and if it can be derived 
from more fundamental principles. The fine structure 
turns up in many relationships that can be expressed 
in terms of other well-known physical constants such 
as those shown in Equation 1 where the fine structure 
constant (α), is given as a function of electric charge 
(e), the reduced Planck’s constant (ħ), the speed of 
light (c), and the permittivity of space (ε0). 

 
Equation 1 

 
 
While physicists have contemplated whether one 

occurrence of the fine structure constant is more fun-
damentally than other occurrences, there is no con-
sensus as to which is more fundamental. So far, none 
of the occurrences of the fine structure constant ap-
pear to be a fundamental derivation of the constant 

based on something more fundamental than the stand-
ard physical constants.  

In this paper it will be shown that the fine structure 
constant can be derived as the volumetric polarization 
of the quantum field due to a unit charge.  

 

2. The Quantum Field 

In standard model quantum field theory space con-
tains a sea of virtual matter-antimatter particle pairs. 
These particle pairs are normally treated as Dirac-
Fermions such as electron-positron pairs but may 
conceivably be any truly fundamental matter-
antimatter pair of particles. Particle pairs with non-
zero electric charge form electric dipoles. However, 
virtual photons behave like dipoles due to their rotat-
ing electric and magnetic fields. 

In the quantum field of electric charge dipoles, 
they necessarily undergo van der Waals interactions. 
The van der Waals interactions lead to van der Waals 
forces, notable those forces cause the Casimir effect 
which has been experimentally verified.[1][2][3] The 
two-plate example was the first example considered 
by Casimir in which two plates are pushed together 
by van der Waals forces. He showed that two plates 
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are pushed together by van der Waals forces of the 
quantum field when the plates are close together.  

The existence of the dipoles of the quantum field 
gives us a physical explanation of how electromagnet-
ic interactions occur in space. As Dicke said “The 
most striking effect of the presence of virtual pairs in 
the vacuum is the polarizability of the vacuum.” And, 
“With the neglect of quantum effects the polarizabil-
ity of the vacuum can be described by classical field 
quantities ε and μ.” [4] A charge in space causes the 
quantum dipoles to be polarized and a moving charge 
causes those dipoles to rotate as shown if Fig. 1. 

 

 
  
Fig. 1. As an electron moves through space nearby quantum 

dipoles are polarized and rotate.  
 
Another van der Waals interaction necessarily aris-

es within a sea of quantum dipoles. This interaction is 
van der Waals torque. Quantum dipoles have inertia, 
so they resist rotation, and yet, whenever a charge ap-
pears in space, quantum dipoles must rotate and be-
come polarized. And whenever a charge moves, quan-
tum dipoles must rotate. The resistance to rotation is 
the van der Waals torque. The van der Waals torque 
of the quantum field resists polarization of the quan-
tum dipoles during propagation of both electric and 
magnetic fields.  

 

3. Electric Charge 

To understand the fine structure constant, we must 
first understand the fundamental nature of electric 
charge. From Gauss’ Law a volume of space is polar-
ized by the electric charge within that volume. This 
can be expressed as shown in Equation 2 as the sur-
face integral of the flux of the polarization (P) over 
the surface area A. 

 
Equation 2 

 
 

To comply with the principle of conservation of 
energy and the inverse square law, the total flux over 
the area of any radius sphere will be the same. Gauss’ 
law for a single unit of charge gives us Equation 3, 
which tells us that a unit charge is directly related to 
the polarizability of the quantum field, which we now 
know is determined by the van der Waals torque of 
the quantum field. 

 
Equation 3 

 
 
This gives us a chicken and egg type problem. 

Which is more fundamental, electric charge or the 
polarizability of the quantum field? Historically the 
quantum field has been ignored by renormalizing and 
setting the properties of space equal to the permittivi-
ty, permeability, and other constants.  

In the case where quantum field effects are ig-
nored, physicists treat electric charge as a fundamen-
tal property. In the case where we consider quantum 
field effects, such as van der Waals torque, the polar-
izability of space is more fundamental.  

To determine which view is correct we must con-
sider particles. Particles have different masses and 
different hypothetical sizes and structures and yet 
somehow, they always have the same unit charge or 
multiples of the unit charge including zero charge. It 
has always been a mystery as to how this can happen 
as we have no way to physically account for it. And 
yes, there are theoretical fractionally charged parti-
cles, but they do not appear in a free state and as such, 
we do not see fractional polarization of the quantum 
field emanating from particles. 

Alternatively, we can consider that the polarizabil-
ity of space due to a single polarizer must be the same 
for any polarizer. Given this approach it is much easi-
er to understand how we can arrive at a standard unit 
charge for numerous types of particles. It is the polar-
izability of space that remains constant while each 
particle acts as a unit polarizer. It is fundamentally 
better to think of a unit charge as a unit polarizer, 
which gives us the answer to our chicken and egg 
problem. 

A unit electric charge is due to the polarizability of 
space due to a single polarizer―particle. The polar-
izability of the quantum field is determined by the van 
der Waals torque of the quantum field.   
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4. The Fine Structure Constant 

To get a better understanding of the fundamental 
nature of the fine structure constant we can modify 
Equation 1 by putting it in terms of a set of natural 
units where ε0, c, and ħ are set to one in dimension-
less units. That gives us Equation 4, which gives us 
the well-known fundamental relationship between the 
fine structure constant and electric charge.  

 
Equation 4 

 
 
We can also put Equation 1 in terms of h and set h 

to 1 in another set of natural units. This gives us a 
slightly simpler relationship between the fine struc-
ture constant and electric charge as shown in Equa-
tion 5. Using either Equation 4 or 5 we can determine 
the value of e in either set of natural units based on 
the known value of α. The difference between the two 
equations is that one is useful for problems expressed 
in circular or spherical geometry and the other can be 
used more generally. 

 
Equation 5 

 
 
We must note that these equations tell us that be-

cause α is related to e, which is known to be due to 
the polarizability and van der Waals torque of the 
quantum field, then the fine structure constant must 
also be due to the polarizability and van der Waals 
torque of the quantum field. 

To understand how, we must consider the question 
of what it means physically for α to be proportional to 
e2. More basically we can ask what is the physical 
interpretation of e2? Equation 3 tells us that e is the 
polarization of space for a single polarizer. This is 
where physicists have been stuck, looking at Equation 
4 and less commonly Equation 5 and pondering their 
meaning. 

We can see a possible path forward by recognizing 
that the right-hand part of Equation 4 is in the form of 
the result of the simple integration of x shown in 
Equation 6. 

 

Equation 6 

 
 
If we go back to Equation 3 for charge we see that 

we can derive the e2/2 term by integrating e. To sim-
plify the integration, we can consider just the spheri-
cal surfaces integrated over a range of radii from 0 to 
infinity. This is shown in Equation 7 with the term for 
the unit charge (e) from Equation 3 inside the paren-
theses. 

 
Equation 7 

 
 
A unit of electric charge is the polarizability of 

space over a surface area surrounding a unit polariz-
er—charge. By taking a second integral we are no 
longer considering the polarization of an area, but ra-
ther the polarization throughout the volume of space.  

We can conclude that the fine structure constant is 
the polarization of the total volume of space due to a 
unit polarizer—charge. This was calculated in natural 
units with ε0, c, and h set to 1 in order to simplify the 
terms, but it can be calculated in any set of units. The 
fine structure constant is due to the polarizability of 
the quantum field which is determined by the van der 
Waals torque of the quantum field. 

 

5. Conclusion 

By first acknowledging the proven existence of the 
quantum field of standard model quantum field theo-
ry, we can recognize that the polarizability of space 
expressed in Gauss’ law is due to the physical polari-
zation of quantum dipoles. This tells us that electric 
charge is due to the polarizability of physical quan-
tum dipoles. Because a field of quantum dipoles must 
additionally exhibit van der Waals torque, the van der 
Waals torque of the quantum field determines the po-
larizability of space.  

Further we can see that the uniformity of polariza-
tion effects within the quantum field gives us a better 
explanation for the existence of the unit charge ema-
nating from different particles with different physical 
characteristics. It is better to think of the quantum 
field as the underlying reason for unit charge, as the 
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polarization of the quantum field is uniform for any 
polarizer—particle.  

Given the well-known relationship between the 
square of the electric charge and the fine structure we 
can examine what that physically means. It is simple 
to show that the electric charge squared term can be 
achieved through a simple integration of electric 
charge over the volume of space.  

This tells us the relationship between electric 
charge and the fine structure constant. While the unit 
electric charge is the polarization on a surface sur-
rounding a unit polarizer—charge—, the fine struc-
ture constant is the total polarization of space due to a 
unit polarizer—charge.  

In answer to the original two questions the fine 
structure constant can be derived from and its physi-

cal origin explained as a property of the polarizability 
and van der Waals torque of the quantum field. 

References 
[ 1 ] Casimir, H.B.G., and Polder, D., (1948) "The Influence 

of Retardation on the London-van der Waals Forces," 
Phys. Rev. 73, 360-372. 

[ 2 ] Lamoreaux, S. K. (1997), "Demonstration of the Casi-
mir Force in the 0.6 to 6 μm Range". Physical Review 
Letters 78: 5. doi:10.1103/PhysRevLett.78.5.  

[ 3 ] Mohideen, U.; Roy, Anushree (1998), "Precision 
Measurement of the Casimir Force from 0.1 to 0.9 
µm". Physical Review Letters 81 (21): 4549. 
doi:10.1103/PhysRevLett.81.4549.  

[ 4 ] Dicke, R.H., (1957), “Gravitation without a Principle of 
Equivalence," Rev. Mod. Phys., 29 363.  

 

 

 
 
 

 


