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Abstract
This article consists of two parts.
In the first part A we present in a concise form the present approaches to the quantum gravity, with the ADM
formulation of GR, the Ashtekar and the Kodama ansatz at the center, and we also derive the 3-dimensional
Ashtekar-Kodama constraints.

In the second part B , we introduce a 4-dimensional covariant version of the 3-dimensional (spatial)
Hamiltionian, Gaussian and diffeomorphism constraints of the Kodama state with positive cosmological
constant  in the Ashtekar formulation of quantum gravity.
In chapter B1-4 we present the equations and their solutions.
We get 32 partial differential equations for the 16 variables E (inverse densitized tetrad of the metric g) and
16 variables A

 (gravitational wave tensor). We impose the boundary condition: for r g(E) g i.e. in
the classical limit of large r the Kodama state generates the given asymptotic spacetime (normally
Schwarzschild-spacetime) .
For ->0 in the static (time independent) the tetrad decouples from the wave tensor and the 24 Hamiltonian
equations yield for A

 the constant background solution. The diffeomorphism becomes identically zero, and
the tetrad can satisfy the Schwarzschild spacetime and the Gaussian equations for all {r,θ}, i.e. it the Einstein 
equations are valid everywhere outside the horizon.
In the time-dependent case with a - scaled wave ansatz for A

 and E we get a gravitational wave
equations , which yields appropriate solutions only for angular momentum lx>=2 (quadrupole wave) the tetrad

is locally damped with 
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, only the wave tensor A

 carries the energy.

In chapter B5 and 6 numerical solutions for special cases of the time-independent and of time-dependent
equations are discussed.
In chapter B7 the energy tensor of the Ashtekar-Kodama gravity is introduced.
In chapter B8 we present the quantum field version of the Ashtekar-Kodama gravity and demonstrate the
calculation of cross-sections.
Finally, in chapter B9 we give as an outlook an overview of the QFT including the Ashtekar-Kodama gravity.

All derivations and calculations were carried out in Mathematica-programs, so the results can be considered
with high probability as error-free, the programs are cited in the literature index.
In the chapters B1-4, which deal with the solutions, every subchapter consists of a flow-diagram, which gives
the overview and a text part, which describes the corresponding program in detail and can be skipped at first
reading.
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Part A Quantum gravity
General Relativity
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3-dim Ashtekar-Kodama
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Ashtekar-Kodama gravity
graviton tensor Aμ

ν 

gen. coordinates Eμν

Λ->0 Aμ
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=const , GR valid except horizon
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A1. Motivation and problems
1. unification (successful StdModel)
-classical and quantum concepts (phase space versus Hilbert space, etc.) are most likely incompatible.
-semiclassical theory, where gravity stays classical but all other fields are quantum, has failed up to now
2. cosmology and black-holes
-initial big-bang state is a quantum state
- Hawking-Penrose black-holes are quantum objects
3. problem of time
-in quantum theory, time is an external (absolute) element, not described by an operator (in special relativistic
quantum field theory, the role of time is played by the external Minkowski space–time).
-in GR, space–time is a dynamical (non-absolute) object
4. superposition principle
- in QM the fundamental equations are linear in the wave function and the operators, the solutions can be
combined additively(superposition principle)
- in GR the Einstein equations the Ricci-tensor is explicitly of order 2 in the metric g and of additional

order 2 in its inverse g , the solutions cannot be combined linearly.

5. action and renormalization

The Einstein-Hilbert action has a dimensional interaction constant
2

1
, and therefore the action is

fundamentally non-renormalizable
6. In GR, there is no adequate description of gravitational waves: a spherical gravitational wave is a metric
oscillation, and satisfies the Einstein equation only for small amplitudes

In our opinion, there are five requirements, which a successful quantum gravity has to fulfill :
-it must have a dimensionally renormalizable lagrangian, i.e. the lagrangian must have the correct dimension
without dimensional constants, and a covariant derivative with a gauge-group
-the static version of the theory must deliver the exact GR, except at singularities
-the static theory should remove the singularities of GR
-the time-dependent version of the theory must give a mathematically consistent classical description of
gravitational waves (i.e. a graviton wave-tensor)
-the quantum version of the graviton wave-tensor must work in quantum field theory within Feynman diagrams
and yield finite cross-sections in analogy to quantum electrodynamics

The Ashtekar-Kodama gravity, which we present in Part B, satisfies all five requirements, therefore it is a good
candidate for the correct quantum gravity theory.
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A2. Classical mechanics and GR fundamentals
2.1. Lagrangian mechanics
The non-relativistic Lagrangian for a system of particles can be defined by

Euler-Lagrange equations

, variational principle 0L
general formulation with parameters λ1 ,..., λp instead of time t
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by partial integration and total differentiation for time:

Lagrangian with constraints

Hamilton principle

Euler-Lagrange equations

2.2. Hamiltonian mechanics
Hamiltonian

Hamiltonian from Lagrangian

Hamiltonian equations
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2.3. General relativity
Equations
The Einstein field equations are Minkowski metric η=diag(-1,1,1,1) predominantly used in GR
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with the usual setting λ=τ = proper time
For λ=τ  we get for the line-element ds=c dλ= dλ and therefore trivially:
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rs  is the Schwarzschild radius, and

Mc

J
 is the angular momentum radius (amr) ,  has

the dimension of a distance:  r][ , and J is the angular momentum.

In the limit α→0 the Kerr line element becomes the standard Schwarzschild line element  
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Einstein-Hilbert action
Einstein-Hilbert action with boundary term and external curvature K

the Einstein field equations are obtained,
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2.4. The concept of a graviton in GR and weak gravitational waves

[13]
the Einstein equations in linear approximation yield the gravitational wave equation for fμν

using the gauge condition
analogous to the electrodynamics wave equation

with the Lorentz gauge

let us consider a plane wave , purely spatial and transverse (TT-gauge )

moving in the direction

there are 2 basic polarizations (not one, as for a spin=1 wave)

with circular right and left polarized states

Under counterclockwise rotation by an angle θ, the circular polarization states transform according to

, that is a rotation by 2θ with helicity –2 and +2
The corresponding left and right circularly polarized electromagnetic waves have helicity 1 and
−1, respectively.
The linearized gravity lagrangian for the above gravitational wave equation is

the energy-momentum-tensor is

in TT-gauge tμν = with the mean value
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A3. Quantum field theory fundamentals
3.1. GR-Dirac formalism
GR-Dirac formalism ( 1 c ) [22]

GR covariant derivative
its commutator is the Riemann tensor

the tetrad

the tetrad-Dirac matrices with the anti-commutator
the tetrad covariant derivative becomes

where    ,
2

i
   are the Dirac σ-matrices 

and ω the GR connection field  in tetrad-expression 

with these denominations the GR-Dirac equation becomes

0)())((  xmcxi  
 and the GR-Dirac Lagrangian
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3.2. The gauge group inQFT
structure constants and the generator algebra of the gauge Lie group [22] with )1,1,1,1(  diag

we introduce the covariant derivative with the connection Aμ :

The fermion field ψi transforms under the Lie algebra

then the covariant derivative transforms like ψi  under Ω (is gauge-covariant): 

=
in order to achieve this, ψi and Aμ infinitesimally transform like

, which results from the ansatz above for the covariant derivative
We define the field tensor Fμν

a from the commutator

cbabcaaa
AAfgAAF  

The gauge field action becomes

and the fermion action coupled to the field is

, where 
 DD  is the covariant “Dirac dagger”

the lagrangian
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3.3. Gravitational scale
universal scale: Planck-scale

, =

fine structure constant of gravity

mean gravity scale mmlr Pgr 3110*1.3
1 5 
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A4. Semiclassical quantum gravity

Dirac equation with Minkowski metric η=diag(-1,1,1,1) used in quantum gravity

0)()(  xmci  
 with 1,1  c : 0)()(  xmi  

 with η=diag(1,-1,-1,-1) used in QFT

with commutation relations for γμ

now we introduce the tetrad (vierbein)

and local (x-dependent) γμ(x) with commutation relations from original
Dirac-matrices γa

with this local γμ we formulate the covariant derivative

where ],[
2

baab

i
 

and the connection

the GR-Dirac equation is now
and the lagrangian

with

   



 22

2

1
mccieRgLgrD  

For an observer, with linear acceleration a and angular velocity ω :
a non-relativistic approximation with relativistic corrections is then obtained by the standard Foldy–
Wouthuysen transformation, decoupling the positive- and negative energy states. This leads to (writing β ≡ γ0)
the Schrödinger equation

HFW= -( ) - ( ) +

Semiclassical Einstein equations

‘Schrödinger– Newton equation’
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A5. Supersymmetry:quantum supergravity
Supergravity (SUGRA) is a supersymmetric theory of gravity encompassing GR. [13]
Supersymmetry (SUSY) is a symmetry which mediates between bosons and fermions via N generators.
the (N=1) simple SUGRA action is the sum of the Einstein–Hilbert action and the Rarita–Schwinger action for
the gravitino (spin 3/2),

with the tetrad 
ne , ,

GR covariant derivative and Λ=0
extended action
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action S is general-covariant, Poincare-invariant and also SUSY-invariant under SUSY-transformations

which transform fermions into bosons and vice-versa
A special role is played by N = 8 SUGRA. As mentioned above, N = 8 is the maximal number of SUSY
generators.
The theory contains an irreducible multiplet that consists of massless states including the spin-2 graviton, eight
spin-3/2 gravitinos, 28 spin-1 states, 56 spin-1/2 states, and 70 spin-0 states.
The complete four-loop four-particle amplitude of N = 8 SUGRA. is ultraviolet finite.
This allows the speculation that the theory is finite at all orders. If this were true, N = 8 SUGRA would be a
perturbatively consistent theory of quantum gravity.
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A6. The ADM-formulation (3+1 decomposition)
Arnowitt, Deser, Misner 1962

Foliation )()( 3xtRM 

one can decompose tμ into its components normal and tangential to Σt

, N is the lapse and Nμ the shift vector

we can write ,so
the four-metric can be decomposed into spatial and temporal components,

the inverse is

hab is the inverse of the three-metric and , where a
a NNN 

is the embedding (external) curvature of Σ(x3)
its spatial version Kab can be interpreted as the‘velocity’ associated with hab .

its trace

Kab can be written as

6.1. Hamiltonian form of the Einstein–Hilbert action
The ‘space–time component’ Gi0 of the Einstein equations reads expressed in embedding curvature

with the covariant derivative connection

these constraints for on a boundary Σ determine uniquely the solutions of the Einstein equations

interconnection theorems ( Kuchaˇr  1981 ): 
1. If the constraints are valid on an initial hypersurface and if the dynamical evolution equations Gab = 0 (pure
spatial components of the vacuum Einstein equations) on space–time hold, the constraints hold on every
hypersurface. Together, one then has all ten Einstein equations.
2. If the constraints hold on every hypersurface, the equations Gab = 0 hold on space–time.

In electrodynamics, for comparison, one has to specify A and E on Σ satisfying the constraint Gauss’s law
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E = 0.
One then gets in space–time a solution of Maxwell’s equations that is unique up to gauge transformation.

For the volume element we get
The reformulated Einstein-Hilbert action becomes the ADM action after Arnowitt, Deser, Misner 1962:

here
4

2
88

c

G

c

lP 
 


, 4216 cG   , where 2KKKKKG ab

abcdab
abcd 

(DeWitt-metric)

We get for the spatial metric hab and the canonical spatial momenta pab

and for the action

where

Hamiltonian constraint

diffeomorphism constraint
Variation with respect to the Lagrange multipliers N and Na yields the constraints

4 pdeqs 2. order in r, θ for 6 symmetric ha
b and 6 symmetric pa

b

If non-gravitational fields are coupled, the constraints acquire extra terms.

with the energy density
vnnT 

 

Hamiltonian constraint

diffeomorphism constraint with external current

where is the gravitational Poynting vector
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A7. Canonical gravity with connections and loops (LQG)

7.1. Ashtekar variables
definition of the (inverse) triad ei

a

Ei
a is the inverse densitized triad

the extrinsic curvature is the canonical conjugate to Ei
a

with 48 cG  

resulting Gauss constraint

the covariant derivative for a vector field is

with the GR connection , where are the Christoffel
symbols (Levi-Civita connection)

the triad is covariant consistent : in analogy to
Parallel transport is defined by

,
the Riemann curvature components are

with the Riemann scalar
the generalized impulse was introduced by Ashtekar 1986:

Ashtekar variables Aa
i(x) with dimension [Aa

i]= 1/cm, β Barbero-Immirzi
parameter
Aa

i and Eb
j are canonically conjugate
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7.2. Discussion of the constraints
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field strength tensor
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( )( )≈0

Hamiltonian constraint
σ=-1 Lorentzian , σ=1 Euclidean

diffeomorphism

for β=ι= 1
in the Lorentzian case

the Hamiltonian constraint simplifies
5 pdeqs order 1 in r, θ  non-linear (quadratic) for 6 symmetric  Ea

i and 6 symmetric Aa
i

7.3. 3-dimensional Ashtekar-Kodama constraints

We construct a theory based on the densitized inverse tetrad and the connection with the
commutator
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8 Pl

the Gauss constraint becomes

the diffeomorphism constraint becomes

and the Hamiltonian constraint with Λ=0 and β=ι= 1

In the case of vacuum gravity with Λ≠0, an exact formal solution in the connection representation was found by 
Kodama 1990.

The Hamiltonian constraint becomes for β=ι= 1

0][
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alltogether 15 pdeqs order 1 in r, θ  nonlinear (quadratic in Ea
i and Aa

i , cubic in both) , for 9 Ea
i and 9 Aa

i
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A8. 4-dimensional Ashtekar-Kodama constraints
We can transform the 3-dimensional Ashtekar-Kodama equations uniquely into the 4-dimensional relativistic
form by generalizing the ε-tensor from 3 spatial indices (1,2,3) to 4 spacetime indices (0,1,2,3), which is
mathematically uniquely and well-defined.
with 16 variables E : inverse densitized triad of the metric g
with 16 variables A

 connection tensor

spatial spacetime curvature 21

21


















  AAAAF 

4 Gauss constraints 





  EAEG  (covariant derivative of E vanishes )

4 diffeomorphism constraints





 FEI 

24 Hamiltonian constraints 
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The expression (,) in the index of H means that only pairs (,) where  in the first index yield different
constraints, as the right side is antisymmetric in (,) , that results in 6*4=24 Hamiltonian constraints.
So we have 32 partial differential equations of degree 1 , nonlinear (quadratic in E and A , cubic in both) in
{t, r, θ} for 32 variables, with the Eg

 =tetrad(g) boundary condition (r) for E .
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A9. BF-theory
9.1. Palatini action as BF-theory

Palatini action (Durka) (in the following the constant factor in the action
G

c

 162

1 4

 is skipped)

Riemann tensor expressed by the GR connection ωμ
ab

and tetrad derivatives

aaa
eDeDT  

with the covariant derivative

dbc
bcd

aaa
eeeD  

Vey 1.88

*u Hodge- transformed , u= 1.78

[5 (35)] Lorentzian case
  dF )( [14] ,

where ω= (ων)
ab is a matrix-vector and Fμν= (Fμν)

ab is a matrix-matrix or 4-degree-tensor
explicitly:
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  where ω is the SO(4) spin connection 
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corresponding derived Einstein equations

9.2. Plebanski action as BF-theory
original Lorentzian Plebanski action Smolin [5] (26)

IPlebanski= ,where 1 and φij generates the cosmological constant    

we add a Chern-Simons boundary term to the action 
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we get a solution
and

if we set B equal to the self-dual tetrad field, we get
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, which gives the Hamiltonian Ashtekar-Kodama constraint

the first eom becomes for spatial indices

ai
a EDBD 0

and by generalization for covariant 4 indices ,

which gives the Gaussian constraint.
The Palatini action can be derived from the more general Plebanski action, setting

ij
and

k

b

j
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9.3. From the Plebanski action to the Einstein-Hilbert action
the general ansatz for the Plebanski action is

From the resulting eom’s one get the new action with a parameter γ=1/β , where β is the Immirzi parameter. 

and * is the Hodge-operator
J

aJ
IaJ

a ee *
is the “anisymmetrized tetrad” and

dcba

abcd eeeee 
24

1


with the cosmological constant

we get the action and =0 due to the Bianchi identity

, so we get the Einstein-Hilbert action with a cosmological constant
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Part B Ashtekar-Kodama gravity

4-dimensional Kodama-Ashtekar equations
16 variables E : inverse densitized triad of the metric g
16 variables A

 connection tensor

spatial spacetime curvature 21

21
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4 extended generators i satisfy the extended SU(2) commutator algebra with spacetime indices {0,1,2,3}
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Renormalizable Einstein-Hilbert action with the Ashtekar momentum Aμ
ν

Einstein-Hilbert action
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is dimensionally renormalizable

variation with respect to g yields the Einstein equation as before

variation with respect to


A gives gT
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This is  ≈0 in the classical region, so the eom is satisfied. 
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Solutions of static equations

Solution limit Λ→0 :
A-tensor becomes a constant half-antisymmetric background Ahab in the form
A0i = A00c {1,1,-1,1} , A1i = A10c {1,1,-1,1} , A2i = A20c {1,1,-1,1} , A3i = A30c {1,1,-1,1}
E-tensor is the Gauss-Schwarzschild tetrad EGS , satisfying gaussian equations
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r

E
r , and the metric condition for all r>1 4/31 ))det(/( ggEE t  

the metric generated by EGS is the Schwarzschild metric and the Einstein equations are satisfied

Solution Λ ≠ 0 with the half-logarithmic ansatz 
solution E in (rth , θ) , rth= θ+log(r)
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metric condition: half-logarithmic Schwarzschild metric

Behavior at Schwarzschild horizon
Schwarzschild tetrad diverges
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EdS , so the term E
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becomes significant

at drr  1 , dr , i.e.
)(sin
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4/34/1 



E , the peak in the metric is
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gravitational limit for the quantum realm becomes mmlr Pgr 3110*1.3
1 5 


 

objective collapse theory links the spontaneous collapse of the wave function to quantum gravitation, this
puts the limit for quantum behavior at grrr 
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Solutions of time-dependent equations

Wave equation in Schwarzschild spacetime: solutions

Wave equation in binary rotator spacetime

Numerical solutions

Λ-scaled wave ansatz 

))(exp( trki
r

As
AbA 











))(exp( trki
r

Es
EbE 




solution lx=0 spherical wave: incoming wave, only zero solution
solution lx=1 dipole wave: divergent, only zero soltion

solution lx=2 quadrupole wave:

-the E-tensor is exponentially damped with )
3

4
exp(

r


-the A-tensor components As0 and As1 are pure quadrupole waves, As2 is a linearly damped quadrupole
wave,

As3 is exponentially damped with )
3

4
exp(

r


bgr described by Kerr spacetime with
0

0

r

c


eqtoiev Λ-scaled wave ansatz,  
backgrund equation eqtoeivnu3b=eqtoiv
standard solution:
Eb-tensor= the Kerr-Schwarzschild-tetrad EKS :
Ab-tensor Ab= Ahab+dAb perturbed half-antisymmetric background

wave equation eqtoievnu3wdA = eqtoievnu3wdA(As, Es, α , k)
solution of wave equation of bgr as a series in r-powers by comparison of coefficients

result: free parameter ...
0100

),,(00
0

0 
r

nAs
rrAs 

As1≈As0, {As2,As3}=O(1/r2), Es2= O(1/ r2), {Es0,Es1,Es3}=O(1/r) function(As00n01)

static eqtoiv with full coupling (Λ=1):
Ritz-Galerkin method with trigonometric polynomials in θ
metric in AK-gravity with coupling: no horizon and no singularity

time-dependent eqtoiev with weak coupling (Λ=0.001) and binary gravitational rotator (bgr) with r0=1
Ritz-Galerkin method with trigonometric polynomials in θ
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gravitational Ashtekar-Kodama energy

AK grav. wave energy density 
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Einstein power formula for bgr
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power AK-gravity for bgr
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Lagrangian of AK-gravitation

electrodynamics: Maxwell lagrangian 
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diffeomorph lagrangian 2
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hamiltonian lagrangian 
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the complete AK lagrangian is then
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where Λ is generated by a scalar field 
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B1. 4-dimensional Ashtekar-Kodama equations and their properties
We can transform the 3-dimensional Ashtekar-Kodama equations uniquely into the 4-dimensional relativistic
form by generalizing the ε-tensor from 3 spatial indices (1,2,3) to 4 spacetime indices (0,1,2,3), which is
mathematically uniquely and well-defined.
with 16 variables E : inverse densitized triad of the metric g
with 16 variables A

 connection tensor

spatial spacetime curvature 21

21
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4 Gauss constraints 





  EAEG  (covariant derivative of E vanishes )

4 diffeomorphism constraints
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24 Hamiltonian constraints 
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The expression (,) in the index of H means that only pairs (,) where  in the first index yield different
constraints, as the right side is antisymmetric in (,) , that results in 6*4=24 Hamiltonian constraints.
So we have 32 partial differential equations of degree 1 , nonlinear (quadratic in E and A , cubic in both) in
{t, r, θ} for 32 variables, with the Eg

 =tetrad(g) boundary condition (r) for E .

Eg
 is the solution of the original defining densitized tetrad equation 4/3))det(/( ggEE  


 or in

matrix-notation for d=4: 4/31 ))det(/( ggEE t   with the Lorentz signature )1,1,1,1(  diag , which is

generalized from the densitized triad equation for d=3: ))det(/(1 ggEE t   with the scaling behavior

 
2)det(

1
det

g
E  . As is easily shown, the densitized tetrad has the same scaling behavior  

2)det(

1
det

g
E  and

for the scaling transformation with a scalar α gg  follows
2

E
E  for both d=3 and d=4 .

For the (normalized with rs=1) Schwarzschild metric in spherical coordinates
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the diagonal tetrad solution is
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but, as the tetrad equation has 10 equations for 16 variables, there are 6 degrees of freedom (dof) left.

So we can enforce in addition the validity of the Gauss constraint: this can be achieved, and the solution
(EGS)

 can be calculated in a half-analytical form.
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1.1. AK covariant derivative and its gauge group

Here the covariant derivative (of the SO(3) group as gauge group) acting on a tensor tνλ is
21

21










  tAttD  1

1)(








  AD 

where
],[











 DDF 

aa
AiD 

~ , where 
aa i~ satisfy the extended SU(2) Lie-algebra

cabcba i  ~]~,~[ 

21
 are the structure constants of the extended SU(2) Lie-algebra

A well-known representation of this extended SU(2) Lie-algebra are the following 4x4 martices
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The  TT , are combinations of the 6 generators of the Lorentz group:
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of the 3 spatial rotators kJ and the 3 boosts kK , which are 4x4 matrices derived from the 4-tensor generator
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 , kk MK 0 where η is the Minkowski metric , e.g.
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The
i

T are the generators of the left spin-1/2 representation of the Lorentz-algebra SO(1,3) and
i

T are the
generators of the right spin-1/2 representation of the Lorentz-algebra SO(1,3),

the 3 generators i satisfy with spatial indices i=1,2,3 : the ordinary SU(2) algebra

  k

kji

ji
TiTT   ,

,
  k

kji

ji
TiTT   ,

,   0, 

ji
TT

and the 4 extended generators  satisfy the extended SU(2) algebra with spacetime indices μ={0,1,2,3}

    i,
.
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1.2. Renormalizable Einstein-Hilbert action with the Ashtekar momentum Aμ

ν

semiclassical Einstein equations

(Kiefer 1.37)
Einstein-Hilbert action
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(constant background in the Ashtekar-Kodama equations) , one can reformulate the Einstein-Hilbert action with
Λ≈0 

xdgRAA
c

S 4)( 










, which makes it dimensionally renormalizable , with the dimensionless

interaction constant


1
grg . Variation with respect to gμν yields then, as before, the Einstein equations:

 TRgR 
2

1
or equivalent 
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From this we derive with Λ≈0: 
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Now, variation with respect to


A gives the left side of the equation-of-motion (eom)
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The above expression is calculated, as usually, dimensionless, with correct dimension we have
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This is  ≈0 in the classical region, so the eom is satisfied. 

It is interesting to assess the dimensionless factor
s

P
gr

r

l
f  : fgr=5.3*10-39 for rs=3km (Schwarzschild of sun) ,

which is about the ratio 4010
em

gr

grem
E

E
f of the gravitational and electrodynamic interaction strength
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B2. The basic equations

integrability cond.

integrability cond.

eqtocv static
derivatives order 1:  ∂r , ∂

AK equations
24 hamiltonian scheme A●A+ ∂A+(Λ/3)E   
4 gaussian scheme A●E+ ∂E   
4 diffeomorphism scheme E●A●A+ E●∂A    
coordinates {t, r, θ}
derivatives order 1: ∂t , ∂r , ∂

eqtoiv static
derivatives order 1:  ∂r , ∂

24 hamiltonian   A●A+ A●∂A+ 
(Λ/3) ( ∂E+E)  or  A●A+ ∂A+(Λ/3) E 
4 gaussian A●E+ ∂E 
4 diffeomorphism A●A●E+ E●∂A 

eqtocev time-dependent
derivatives order 1: ∂t , ∂r , ∂

eqtoiev time-dependent
derivatives order 1: ∂t , ∂r , ∂

24 hamiltonian   A●A+ A●∂A+ 
(Λ/3)( ∂E+E) or  A●A+ A●∂A+(Λ/3)∂E  
or  A●A+ ∂A+(Λ/3) E 
4 gaussian A●E+ ∂E 
4 diffeomorphism A●A●E+ E●∂A 
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The Ashtekar-Kodama equations (AKe) consist of
24 hamiltonian equations  with the expression scheme A●A+ ∂A+(Λ/3)E   
4 gaussian equations with the expression scheme A●E+ ∂E   
4 diffeomorphism equations with the expression scheme E●A●A+ E●∂A    
where ●  represents multiplicative terms and ∂ means derivatives for covariant coordinates, here the spherical 
coordinates spacetime {t, r, θ, φ}

)
sin

1
,

1
,,( 






rr
rt

We consider here only spacetimes with axial symmetry , i.e. ∂φ =0 and the variables E and A
 are

functions of  {t, r, θ }  
2.1. The integrability conditions
In the static (time-independent) AKe equations eq1..4 and eq13..16 contain resp. ∂rA0i and  ∂θA0i as the only
derivative, also eq9..12 and eq17..20 contain resp. ∂θA3i and  ∂rA3i as the only derivative.
Therefore we have to impose integrability conditions ∂θ ∂rA0i = ∂r ∂θA0i  and ∂θ ∂rA3i = ∂r ∂θA3i .
This changes the expression scheme for  in eq9..12, eq13..16 :  A●A+ A●∂A+(Λ/3)( ∂E+E) 
Accordingly in the time-dependent AKe equations eq9..12 and eq21..24 are transformed.
Equations with integrability condition static (∂t=0): eqtoiv
Equations with integrability condition time-dependent: eqtoiev

The static equations eqtoiv are 32 pdeq’s of first order in r, θ , quadratic in the variables E and A
 in the 24

hamiltonian equations and 4 gaussian equations and cubic in the variables E and A
 in the last 4

diffeomorphism equations.
The row-variables in the A- tensor and the E-tensor have different derivative behavior:
A2i and E1i are pure r-variables (only ∂r derivative present), A1i and E2i are pure θ -variables (only ∂θ

derivative present), (A0i , E0i , A3i , E3i ) are r- θ -variables (both ∂r  derivative and ∂θ derivative present) .
The time-dependent equations eqtoiev are 32 pdeq’s of first order in t, r, θ , quadratic in the variables E and
A

 in the 24 hamiltonian equations and 4 Gaussian equations and cubic in the variables E and A
 in the

last 4 diffeomorphism equations.
Here A2i and E1i are r-variables , A1i are θ -variables , (A0i , E0i , A3i , E2i ) are r- θ -variables , (A1i , A2i ,
A3i , E0i , E2i ) are t –variables   (∂t derivative present) and E3i are algebraic variables (no derivative
present) .
The overall scheme of the static equations eqtoiv becomes
24 hamiltonian   A●A+ A●∂A+(Λ/3)( ∂E+E)  or  A●A+ ∂A+(Λ/3) E 
4 gaussian A●E+ ∂E 
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4 diffeomorphism A●A●E+ E●∂A 
The overall scheme of the static equations eqtoiev becomes
24 hamiltonian   A●A+ A●∂A+(Λ/3)( ∂E+E) or  A●A+ A●∂A+(Λ/3)∂E  or  A●A+ ∂A+(Λ/3) E 
4 gaussian A●E+ ∂E 
4 diffeomorphism A●A●E+ E●∂A 

2.2. Solvability of static and time-dependent equations eqtoiv, eqtoiev
By setting the A-variables and E-variables with derivatives and the coordinates r, θ to random values one can

determine the rank of the Jacobi derivative-equation matrix
),( 





 EA

eqi




, i.e. the solvability of the

equations for the highest derivatives. This ensures, given appropriate boundary conditions, the solvability of
the partial differential equations system (pdeq) in a vicinity of the boundary , according to the famous theorem
by Kovalevskaya.

The result for eqtoiv is : the rank of Jacobi matrix is 24, there are 8 free parameters (A2i , E1i )
The Jacobi matrix of eqtoiev has full rank: the equations are solvable for the 32 derivatives
 ∂θ (A1i , E0i  , A02 , A03) , ∂r (A3i , E0i  , A23) , ∂t (A1i , A2i , E0i , E2i , A33)
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B3. Solutions of static equations

3.1. Solution limit Λ→0 
Solution eqtoiv  Λ→0  : Einstein equations valid, Schwarzschild & Kerr-spacetime  

eqtoiv static

metric condition for r→∞
4/31 ))det(/( ggEE t  

g=Schwarzschild or Kerr
hamiltonian= A●A+ A●∂A 

A=unique sol(hamiltonian)

A= constant half-antisymmetric
background Ahab

equations for E
eqdiff=0
eqgaus=∂E2-∂rE1
metric condition: solvable for all r

4/31 ))det(/( ggEE t  

sol=EGS Gauss-Schwarzschild tetrad for g=Schwarzschild
sol=EGK Gauss-Kerr tetrad for g=Kerr
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Einstein equations satisfied for all r>1
GR exactly valid
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When Λ=0, the tetrad E decouples in the hamiltonian equations from the graviton tensor A

 , the 24
hamiltonian equations are in general overdetermined with 16 variables of the A-tensor. By stepwise
elimination we get the following solution:

The A-tensor becomes a constant half-antisymmetric background Ahab in the form
A0i = A00c {1,1,-1,1} , A1i = A10c {1,1,-1,1} , A2i = A20c {1,1,-1,1} , A3i = A30c {1,1,-1,1}
The diffeomorphism equations vanish identically, we are left with the 4 gaussian equations for the E-tensor

01
2


 


 E

r

E
r  , and the E-tensor has to satisfy the 10 equations metric condition at r→ infinity 

4/31 ))det(/( ggEE t  

Now with 16 variables both the Gaussian equations and the metric condition can be satisfied for all r>1 ,
so the Einstein equations are satisfied , and GR is valid not only in the limit r→infinity, but everywhere for r>1.
The only exception arises at the horizon (Schwarzschild or Kerr), where the E-tensor diverges, and the coupling
reappears in the hamiltonian equations. In this case there is no singularity, but only a peak for r→1 .

3.1.1. The Gauss-Schwarzschild tetrad
The metric condition for Schwarzschild spacetime has a diagonal solution , diagonal Schwarzschild tetrad
EdS =

For the Kerr metric, there is a semi-diagonal Kerr tetrad solution EdK with a non-zero (0,3)-element.
The solution of the gaussian and Schwarzschild metric equations, the Gauss-Schwarzschild tetrad EGS , can
be calculated from the series in 1/r3/2 for r→inf
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, the coefficients )(, iGSE are calculated from the corresponding

deq in θ .
It has the semi-diagonal block-matrix form
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The first coefficient function of the Gauss-Schwarzschild tetrad can be given in closed form
EGS,1(θ)=

It contains the hypergeometric function
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The coefficients EGS,2(θ) and EGS3(θ) have been calculated numerically with Ritz-Galerkin method as an
power series in (sin(θ)1/4 , cos(θ)) of order 8. The resulting order 1/r7/2 for EGS is sufficient to ensure the metric
condition exactly at infinity.
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3.2. Solution Λ ≠ 0 with the half-logarithmic ansatz 

eliminated (E1i , E2i , E3i)
all variables half-logarithmic ansatz f(θ+log(r)) 
new coordinate rth= θ+log(r)  
satisfies automatically gaussian equs

solution E in (rth , θ)
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metric condition:
half-logarithmic Schwarzschild metric
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solvable for rth→∞
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We eliminate (E1i , E2i , E3i) and make for the remaining variables the half-logarithmic ansatz f(θ+log(r)) ,
which satisfies the gaussian equations automatically. The results are:
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e.g.

Eb00(r, θ)=

Eb01(r, θ)=  

+

+
This is a special, not the general solution: the AK-equations are non-linear, so the general solution cannot be
built from basic solutions by linear combination. Here, all variables are functions of the coordinate
rth= θ+log(r) .
The solution has to satisfy the metric boundary condition for the Minkowski spacetime, so it is desirable to
bring the metric into a similar form: a function of the coordinate rth .
If we use functions of the form exp((-a+b i)( θ+log(r)))=exp(-a θ) (1/ ra ) exp(i b log(r)) exp(i b  θ) , we can see
that these are polynomials in 1/r with exponential angle-damping combined with almost-periodic functions.
There is no singularity in r , except at r=0 , and no Schwarzschild-type singularity at r=1 .

3.2.1. The half-logarithmic Schwarzschild metric and tetrad
The special solution above has the form f(rth) with the new coordinate rth= θ+log(r)
Under the coordinate transformation ( r→ rth , θ→ θ) the Schwarzschild metric transforms
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And the densitized inverse metric



37

 







4/3

1

)det(

)(
)(






g

g
gI

 





























































)(sin

1
000

0
11

0

0
11

1
12

0

000
1

1

1

)(sin

1

)det(

)(
)(

22

22

23
2/32/94/3

1
















g

g
gI

EhlS=

































)sin(

1
000

000

0
1121

0

000
1

1

)(sin

1

2/13

4/5

4/532

2

4/9

4/7

4/3












hlSE

The limit of gμν for ε →∞ is in O(1/ ε)
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and the limit of I(gμν) for ε →∞  is in O(1/ε2)
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and the limit of I(gμν) for ε →∞  in O(1/ε ) (Minkowski spacetime)
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3.2.2. Solvability of the metric condition for the half-logarithmic solution

In the limit rth→∞ we have
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3.3. Behavior at Schwarzschild horizon

At the horizon, the Schwarzschild tetrad diverges
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E , the peak in the metric is
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we set the gravitational scale for the quantum realm to be rgr and gr

gr

P r
r

l
dr 

so mmlr Pgr 3110*1.3
1 5 


 

gravitation has two scales:

in the classical region the Λ-scale (Λ = 2.7 10-52m-2 ) : mR 2510*09.6
1






in the quantum region mrgr
510*1.3 

electrodynamics has one scale, the classical electron radius mre
1510*8.2  .

huge Λ-scale in gravitation RΛ has consequences:
-decoupling of the A-tensor and the E-tensor, Einstein equations and the general
covariance are classically valid
-this ‘smears out’ local structure in the classical region, allowing for invariance against
arbitrary coordinate transformations,. i.e. the local symmetry becomes insignificant, the
symmetry is the unbroken symmetry of the metric, which is invariant under arbitrary
coordinate transformations.
objective collapse theory links the spontaneous collapse of the wave function to quantum
gravitation, this puts the limit for quantum behavior at grrr 



40

As a consequence of the gravitational quantum scale rgr , we can characterize two regions of gravity:
-classical region Λ≈0  r>>rgr

background equations eqtoeivnu3b, where the hamiltonian equations eqham(Ab,∂Ab) depend only on Ab
eqtoeivnu3b={eqham(Ab,∂Ab), eqgaus (Ab,Eb,∂Eb), eqdiff(Ab, ∂Ab,Eb)} 
wave equations eqtoeivnu3w , where in the hamiltonian equations Λ eqham(As,∂As,Es,Ab) Λ factors out,
eqtoeivnu3w={ Λ eqham(As,∂As,Es,Ab), eqgaus (Es,∂Es,Ab,Eb), eqdiff(Es,Ab,∂Ab,Eb)} 

Pl
Ab

1
 makes EH-action xdgRAA

c
S 4)( 











dimensionally renormalizable

metric condition for Eb is satisfied for all r
4/31 ))det(/()( gggIEbEb t  

 , and Eb=EGS resp. =EGK for g=Schwarzschild resp. Kerr

-quantum region r<<rgr

background equations eqtoeivnu3b, where the hamiltonian equations eqham(Ab,∂Ab,Eb) couple weakly to Eb
eqtoeivnu3b={eqham(Ab,∂Ab ,Eb), eqgaus (Ab,Eb,∂Eb), eqdiff(Ab,∂Ab,Eb)} 
wave equations eqtoeivnu3w , where in the hamiltonian equations Λ eqham(As,∂As,Es,Ab) Λ factors out,
and Ab is negligible , Ab<<As
eqtoeivnu3w={ Λ eqham(As,∂As,Es,Ab), eqgaus (As,Es,∂Es,Ab,Eb), eqdiff(As,∂As,Es,Ab,∂Ab,Eb)}

Λ not zero, Λ<<1 , Ab<<As , A≈As=(almost) pure wave graviton

interaction via 1

1










  AD  covariant derivative, as in quantum electrodynamics

metric= Minkowski metric
metric condition for Eb for r→∞ Minkowski g=η : Eb=EGM Gauss-Minkowski tetrad
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At the horizon, the Schwarzschild tetrad diverges
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becomes significant, the coupling reappears.

When the parameter dr=r-1 becomes dr , we get in the limit r→∞ for the E-tensor and the A-tensor a
r-independent finite solution in the vicinity of r=1 :
A0i = A00(θ) {1,1,-1,1} , A1i = A10c {1,1,-1,1} , A2i = A20c {1,1,-1,1} , A3i = A30c {1,1,-1,1}
E0i = E00(θ) {1,1,-1,1} 

The parameters of the solution are determined by the continuity condition at  1r , i.e.
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E , the peak in the metric is
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This reappearance of coupling for dr (dimensionless) results in a new scale, at which the classical
character of gravity disappears and the quantum realm begins:

we set the gravitational scale for the quantum realm to be rgr and gr

gr

P r
r

l
dr 

so mmlr Pgr 3110*1.3
1 5 


 

So we can say that gravitation has two scales: in the classical region the Λ-scale (Λ = 2.7 10-52m-2 ) :

mR 2510*09.6
1




 and in the quantum region mrgr
510*1.3  . The electrodynamics has, in contrast ,

only one scale, the classical electron radius mre
1510*8.2  . The huge Λ-scale in gravitation is responsible

for the decoupling of the A-tensor and the E-tensor in the classical region with the consequence that the
Einstein equations and the general covariance are classically valid, again in contrast to the electrodynamics,
which is only gauge-invariant, not general-covariant.
Therefore, one is tempted to explain the validity of the general covariance in GR as the consequence of the
huge Λ-scale , which ‘smears out’ local structure in the classical region, allowing for invariance against
arbitrary coordinate transformations.
The situation is similar to the symmetry of a n-polyhedron approximating a sphere: in the limit n→∞ the 
symmetry becomes the spherical symmetry (the symmetry of the metric) and the local symmetry of edges and
vertices becomes insignificant. But this is of course at best a heuristic explanation.

The objective collapse theory put forward by Penrose [19], links the spontaneous collapse of the wave function
to quantum gravitation, the limit being one graviton. If true, this would put the limit for quantum coherence at

grrr  .

As a consequence of the gravitational quantum scale rgr , we can characterize two regions of gravity:
-classical region Λ≈0  r>>rgr

background equations eqtoeivnu3b, where the hamiltonian equations eqham(Ab,∂Ab) depend only on Ab
eqtoeivnu3b={eqham(Ab,∂Ab), eqgaus (Ab,Eb,∂Eb), eqdiff(Ab, ∂Ab,Eb)} 
wave equations eqtoeivnu3w , where in the hamiltonian equations Λ eqham(As,∂As,Es,Ab) Λ factors out,
eqtoeivnu3w={ Λ eqham(As,∂As,Es,Ab), eqgaus (Es,∂Es,Ab,Eb), eqdiff(Es,Ab,∂Ab,Eb)} 
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dimensionally renormalizable

the scale is
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c
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rs  and the Schwarzschild radius depends on the mass m of the gravitating object

metric condition for Eb is satisfied for all r
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4/31 ))det(/()( gggIEbEb t  

 , and Eb=EGS resp. =EGK for g=Schwarzschild resp. Kerr

-quantum region r<<rgr

background equations eqtoeivnu3b, where the hamiltonian equations eqham(Ab,∂Ab,Eb) couple weakly to Eb
eqtoeivnu3b={eqham(Ab,∂Ab ,Eb), eqgaus (Ab,Eb,∂Eb), eqdiff(Ab,∂Ab,Eb)} 
wave equations eqtoeivnu3w , where in the hamiltonian equations Λ eqham(As,∂As,Es,Ab) Λ factors out, and
Ab is negligible , Ab<<As
eqtoeivnu3w={ Λ eqham(As,∂As,Es,Ab), eqgaus (As,Es,∂Es,Ab,Eb), eqdiff(As,∂As,Es,Ab,∂Ab,Eb)}

Λ is the same as in the classical region (?) , Ab<<As , A≈As=(almost) pure wave graviton
the scale is constant = rgr

interaction via 1

1










  AD  covariant derivative, as in quantum electrodynamics

metric= Minkowski metric
metric condition for Eb for r→∞ Minkowski g=η : Eb=EGM Gauss-Minkowski tetrad
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B4. Solutions of time-dependent equations

4.1. The Λ-scaled wave ansatz for the A-tensor 

Λ-scaled wave ansatz 

))(exp( trki
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As
AbA 











))(exp( trki
r

Es
EbE 




dimensions: [A]= 1/cm [E]=1 [As]= cm2

eqtoiev   →  static & wave-equations 
eqtoeivnu3b={eqham(Ab,∂Ab,Eb), eqgaus (Ab,Eb,∂Eb), 
eqdiff(Ab, ∂Ab,Eb)} 
eqtoeivnu3w={ Λ eqham(As,∂As,Es,Ab), eqgaus 
(As,Es,∂Es,Ab,Eb), eqdiff(As,∂As,Es,Ab,∂Ab,Eb)}

classical case Λ≈0  r>>rgr

eqtoeivnu3b={eqham(Ab,∂Ab), eqgaus (Ab,Eb,∂Eb), eqdiff(Ab, ∂Ab,Eb)} 
eqtoeivnu3w={ Λ eqham(As,∂As,Es,Ab), eqgaus (Es,∂Es,Ab,Eb), eqdiff(Es,Ab,∂Ab,Eb)} 
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dimensionally renormalizable

metric condition for Eb for all r
4/31 ))det(/()( gggIEbEb t  

 ,

quantum case r<<rgr

Λ not zero Λ<<1  , Ab<<1 A≈As=pure wave graviton 

interaction via 1

1










  AD 

metric= Minkowski metric
metric condition for Eb for r→∞ Minkowski g=η : Eb=Gauss-Minkowski tetrade

eqtoeivnu3b={eqham(Ab,∂Ab ,Eb), eqgaus (Ab,Eb,∂Eb), eqdiff(Ab,∂Ab,Eb)} 
eqtoeivnu3w={ Λ eqham(As,∂As,Es,Ab), eqgaus (As,Es,∂Es,Ab,Eb), eqdiff(As,∂As,Es,Ab,∂Ab,Eb)}
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The covariant derivative of the AK-gravitation is

21

21
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  AD 

The gaussian equations have the form of the covariant derivative acting on the E-tensor









  EAEEDG 

One can show, that the second term in the covariant derivative cancels out only if the A-tensor vanishes, i.e. the
covariant derivative is not background-independent.
Now, if we separate the static background and the wave component in the A-tensor:
A=Abg+Awave , E=Ebg+Ewave

we have to take account of the fact that in GR the gravitational wave interacts weakly with the metric, because
it interacts through the energy tensor, which appears on the right side of the Einstein equations with the small
factor κ : 

 TgRgR  0
2

1

Therefore, classically, we have to use some power of Λ as the factor in the ansatz above (setting c=1)

))(exp( trki
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 , where Ab is the (static) background , As is the wave amplitude

In order to make As interact with E-tensor in the hamiltonian equations , we have to set p=1, the ansatz
becomes (Λ-scaled ansatz for the A-tensor)

))(exp( trki
r

As
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 and correspondingly for the E-tensor

))(exp( trki
r

Es
EbE 




This has some remarkable consequences: in the Hamiltonian equations we now have the background part of
order 1 for Ab and Eb and the wave part of order Λ for As , and Es .
In the A-tensor and the E-tensor we now have the background part Ab and Eb and the wave part As , and Es .
We insert this into the AK-equations, and separate the static part eqtoeivnu3b in the schematic form
eqtoeivnu3b={eqham(Ab,∂Ab ,Eb), eqgaus (Ab,Eb,∂Eb), eqdiff(Ab, ∂Ab,Eb)} 
and the wave part eqtoeivnu3w after stripping the wave factor ))(exp( trki  in the schematic form

eqtoeivnu3w={ Λ eqham(As,∂As,Es,Ab), eqgaus (As,Es,∂Es,Ab,Eb), eqdiff(As,∂As,Es,Ab,∂Ab,Eb)}
where ∂={∂r,∂θ} ist the differential operator for r and θ .

As the dimensions are [A]=[1/r]=1/cm and [E]=1 , we get for the A-amplitude the dimension [As]=[r2]=cm2

i.e. As becomes a cross-section, which is a sensible interpretation in the quantum limit.
In the quantum limit r<rgr , the graviton interacts via the covariant derivative, like the photon , and the metric
condition for Eb is for the flat Minkowski metric (rs=lP), Λ≠0 , the Einstein equation and the general
covariance are not valid anymore.
In the classical case Λ≈0 , the AK-equations separate into the background part for Ab , Eb and the wave-part
with the wave factor ))(exp( trki  for Es, As , Ab .

eqtoeivnu3b={eqham(Ab,∂Ab), eqgaus (Ab,Eb,∂Eb), eqdiff(Ab, ∂Ab,Eb)} 
eqtoeivnu3w={ Λ eqham(As,∂As,Es,Ab), eqgaus (Es,∂Es,Ab,Eb), eqdiff(Es,Ab,∂Ab,Eb)} 

The background part with the metric condition is equivalent to the Einstein equations.
As we shall see below, the wave As carries the wave energy , and induces locally a tetrad (metric) wave, which
is damped exponentially. The gravitational wave energy tensor depends on the wave amplitude As in a similar
way as the electromagnetic wave energy depends on the photon vector Aμ . Also, it satisfies the Einstein power
formula for the gravitational wave.
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4.2. Special wave solution Λ≠ 0 

eqtoiev Λ-scaled wave ansatz 

A1i=A0i A2i=A3i ,
eliminate (E1i , E2i , E3i)

remaining variables Ab0i,Ab3i,Eb0i,Es0i

half-logarithmic ansatz f(rth) , rth= θ+log(r)

solution
Es0i(r, θ)=f(As0i(θ+log(r)), Ab0i(θ+log(r)), exp(2 i k 
r), ExpIntegralEi(-2 i k r) )
free parameters As0i(rth) , Ab0i(rth) , Ab3i(rth) ,
Eb0i(rth)
The 12 free parameters {Ab0i, Ab3i, Eb0i} have to
satisfy the 10 equation of the half-logarithmic
Minkowski metric condition for rth →∞
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solution:

e.g.

We set A1i=A0i A2i=A3i , eliminate (E1i , E2i , E3i) and make for the remaining variables the half-logarithmic
ansatz f(rth) with rth= θ+log(r) , which satisfies the gaussian equations automatically. The results are:

Es0i(r, θ)=f(As0i(θ+log(r)), Ab0i(θ+log(r)), exp(2 i k r), ExpIntegralEi(-2 i k r) )
with free parameters As0i(rth) , Ab0i(rth) , Ab3i(rth) , Eb0i(rth) .
The functions f(θ+log(r)) are exponentially damped or almost-periodic for r→∞ .
The 12 free parameters {Ab0i, Ab3i, Eb0i} have to satisfy the 10 equation of the half-logarithmic Minkowski
metric condition for rth →∞ (the metric condition is required only for the static part of the solution, not for the
wave part).
As in 3.2. , one shows that the condition can be satisfied.
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4.3. Wave equation in Schwarzschild spacetime

eqtoiev Λ-scaled wave ansatz 
backgrund equation eqtoeivnu3b=eqtoiv
standard solution:
A-tensor = constant background in the half-antisymmetric form
A0i = A00c {1,1,-1,1} , A1i = A10c {1,1,-1,1} , A2i = A20c {1,1,-
1,1} , A3i = A30c {1,1,-1,1}
E-tensor= the Gauss-Schwarzschild-tetrad EGS .

resulting wave equation
eqtoeivnu4w={  eqham(As,∂As,Es,∂Es),  
eqgaus (Es0i, Es1i,∂Es1i,,∂Es2i), eqdiff=0}
eliminate (Es0,Es3,As1)
multipole ansatz Es(r, θ)= Es(r)exp(i*lx*θ) ,  As(r, θ)= As(r)exp(i*lx*θ) 
eliminate Es2 and get the gravitational wave equation for Es1

gravitational wave equation for E-tensor
eqgravlxEn =

at infinity eqgravlxEninf=

)(''')(''3)('2)(2 22 rfsrrfsrkirfsrkrfslxki 

For comparison, the radial wave equation for the wave factor fs(r) from the ansatz

))(exp(),(
)(

),,( , trikY
r

rfs
rtfs mlx  

Helmholtzwr=

)('')('2)()1( 22 rfsrrfsrkirfslxlx 

In addition, we get the gravitational wave equations for the A-tensor variables As00 , As30
depending on Es10
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As described in 4.1. , we introduce the Λ-scaled ansatz for the A-tensor

))(exp(
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r

rAs
rAbrtA 












 and correspondingly for the E-tensor
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In the A-tensor and the E-tensor we now have the background part Ab and Eb and the wave part As , and Es .
We insert this into the AK-equations, let Λ→0 , and separate the static part eqtoeivnu3b in the schematic form
eqtoeivnu3b={eqham(Ab), eqgaus (Ab,Eb), eqdiff(Ab,Eb)}
and the wave part eqtoeivnu3w after stripping the wave factor ))(exp( trki  in the schematic form

eqtoeivnu3w={ Λ eqham(As,∂As,Es,∂Es,Ab), eqgaus (Ab,Es,∂Es), eqdiff(Es,∂Es, Ab)}
where ∂={∂r,∂θ} ist the differential operator for r and θ .
eqtoeivnu3b is identical with eqtoiv the static AK-equations , and the solution is as in 3.1.
for the A-tensor the constant background in the half-antisymmetric form
A0i = A00c {1,1,-1,1} , A1i = A10c {1,1,-1,1} , A2i = A20c {1,1,-1,1} , A3i = A30c {1,1,-1,1}
and for the E-tensor the Gauss-Schwarzschild-tetrad EGS . After inserting this into eqtoeivnu3w we get a new
version of the wave part equations eqtoeivnu4w in the form
eqtoeivnu4w={  eqham(As,∂As,Es,∂Es), eqgaus (Es0i, Es1i,∂Es1i,,∂Es2i), eqdiff=0}

eq29=0

Four consecutive equations contain consecutive variables of a row of the tensor As and Es , as shown in eq1 and
eq2 in the schematic form
eq1=eq1(As00,As10,Es20,Es30, ∂rAs00)
eq2=eq2(As01,As11,Es21,Es31, ∂rAs01)
Now we eliminate variables algebraically
Es0i from eq25..28

Es3i from eq1..4

As1i from eq13..16
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We get eqtoievnu5w : 4x4 equations for 4x5 variables {Es1i, Es2i , As2i , As3i , As0i }

Now we fix the angular momentum of the wave by setting

Es1i(r, θ)= Es1i(r)exp(i*lx*θ) and correspondingly for {Es2i , As2i , As3i , As0i} ,
where lx=0,1,2,.. is the angular momentum of the wave: lx=0 for a spherical wave, lx=1 for a dipole wave,
lx=2 for a quadrupole wave .
In GR one can show that the gravitational wave must be at least quadrupole waves, there are no spherical and
dipole waves.
In the following, we consider the equations eqgravlx={eq5,eq9,eq17,eq21} , i.e. the four first equations from
the four equation groups, for the five first column variables {Es10i, Es20i , As20i , As30i , As00i }

The four second equations are identical to these in the four second column variables
{Es11i, Es21i , As21i , As31i , As01i } etc.

Now we combine eqgravlx[2] and eqgravlx[4] to eliminate Es20 and get from eqgravlx[4] the gravitational
wave equation for the variable Es10 ,
eqgravlxEn =

At infinity
eqgravlxEninf=

)(''')(''3)('2)(2 22 rfsrrfsrkirfsrkrfslxki 

For comparison, the radial wave equation for the wave factor fs(r) from the ansatz

))(exp(),(
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),,( , trikY
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rtfs mlx  

Helmholtzwr=

)('')('2)()1( 22 rfsrrfsrkirfslxlx 

In addition, we get wave equations for the A-tensor variables As00 , As20, As30
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and setting As20=As00

Equations eqgravlxA0 , eqgravlxA3 and eqgravlxEn are homogeneous deq’s for the A-tensor variables As0i ,
As3i , Es1i . Now, if there is a source , which generates an oscillation δEs of the metric (e.g. a binary
geavitational rotator), i.e. of the tetrad Es
eqgravlxEn(Es1)= δEs , we can calculate Es1= Es1(δEs) , and from (eqgravlxA0(Es1) , eqgravlxA0(Es1))
we calculate As0= As0(Es1(δEs)) and As3= As3(Es1(δEs)) .
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4.3.1. Solutions of the gravitational wave equation

solution lx=2 quadrupole wave:
Re(Es10) =

Im(Es10) =

at infinity; exponentially damped

linearly damped

quadrupole wave amplitude
2

20cAs

As10[r1,th]→ , again a quadrupole wave

exponentially damped wave

The overall result is:

-the E-tensor is exponentially damped with )
3

4
exp(

r


-the A-tensor components As0 and As1 are pure quadrupole waves, As2 is a linearly damped quadrupole
wave,

As3 is exponentially damped with )
3

4
exp(

r


This means that a classical wave source generates gravitational waves As via the metric , the energy is
carried away by the As-tensor and , when the wave is absorbed, it dissipates energy and generates again
a (locally damped) metric oscillation Es .

solution lx=0 spherical wave:

generates an incoming wave, which is not feasible, therefore C1=0 and Es10=0,
solution lx=1 dipole wave:

diverges, therefore Es10=0
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For lx=0 (spherical wave) we get the solution for Es10 :

which has the limit at infinity:

The factor e2ir generates an incoming wave, which is not feasible, therefore C1=0 and Es10=0,
and consequently As20=As30=Es20=0 , there is only the zero solution: there are no spherical gravitational
waves.
For lx=1 (dipole wave) we get the solution for Es10 :

with hypergeometric and Meijer functions , the limit at infinity is

=

=

which diverges, therefore Es10=0, and, as before, there is only the zero solution: there are no dipole
gravitational waves.
For lx=2 (quadrupole wave) we get the solution for the real part Re(Es10) :

and for the imaginary part Im(Es10) :

calculation of the limit at infinity yields

, i.e. Es10 is purely imaginary and exponentially damped with )
3

4
exp(

r
 ,

the same is valid for Es20 , for As20 we get

, i.e. a linearly damped quadrupole wave,
for As00 we get

i.e. As00 is a quadrupole wave with the amplitude
2

20cAs
,

for As10 we get

As10[r1,th]→ , again a quadrupole wave,
for As30 we get an exponentially damped wave again:

The overall result is:
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-the E-tensor is exponentially damped with )
3

4
exp(

r


-the A-tensor components As0 and As1 are pure quadrupole waves, As2 is a linearly damped quadrupole wave,

As3 is exponentially damped with )
3

4
exp(

r


This means that a classical wave source generates gravitational waves As via the metric , the energy is carried
away by the As-tensor and , when the wave is absorbed, it dissipates energy and generates again a (locally
damped) metric oscillation Es .
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4.4. Wave equation in binary rotator spacetime
binary gravitational rotator: masses m1 m2, distance r0 , mass ratio μ= m2/m1 ≤1 , total mass 21 mmm  ,

Schwarzschild radius
2

2

c

mG
rs  , gravitational wave number
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described by Kerr spacetime in first order approximation for 1
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The celebrated Einstein’s power formula for gravitational waves of the bgr :
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The binary gravitational rotator, abbreviated bgr, (two masses rotating around their center-of-mass in their own
gravitational field) is the simplest source of gravitational waves, a single rotating mass (i.e. with axial
symmetry) does not emit gravitational waves.
Bgr has an axial symmetry and can be described by a Kerr-spacetime with an appropriate Kerr-parameter α ,
which determines the power of the generated gravitational wave as shown in [11].
The exact formula derived there is

 27
0 483)1(5
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, where F≈1 is the relativistic velocity factor, 1

1

2 
m

m
 is the mass ratio

and r0 is the mean distance of the masses., masses m1 m2, total mass 21 mmm  , Schwarzschild radius
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The celebrated Einstein’s power formula for gravitational waves of the bgr is [2]:
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4.4.1. Wave equations for the binary gravitational rotator

eqtoiev Λ-scaled wave ansatz 
backgrund equation eqtoeivnu3b=eqtoiv
standard solution:
Eb-tensor= the Gauss-Kerr tetrad EGK :

EGK = EGS except (EGK )03=



4/32/9 sinr

Ab-tensor Ab= Ahab+dAb pertutbed half-antisymmetric background

eqtoievnu3wdA = eqtoievnu3wdA(As, Es, α , k)
eliminate Es3, Es0, Es1 , left 18 equs eqtoievnu3wdAs2s3 for 20 variables Es2, As
solution at infinity {Esi2i, Asi0i, Asi1i, Asi2i, Asi3i} , i.e. order O(1) in r-powers is

free parameter variable As00() , for the wave  )(exp
)(

),( 00
00 trki

r

As
rAs 




with parameters
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02
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r
k  and

0

0

r

c
 ,

eqtoievnu3wdAs= eqtoievnu3wdAs(r0, Es2, As0, As1, As2, As3)

series in r0 :
eqtoievnu3wdAs= eqtoievnu3wdAs0+ eqtoievnu3wdAs1/r0+ eqtoievnu3wdAs1/r0

3/2+…
goal: calculate As00(r, ,r0) analytically in { ,r0} as a series in r , then all others
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result: 0)(0000 nAs , i.e. for r0→∞
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First, we make a Λ-scaled ansatz for the A-tensor

))(exp( trki
r

As
AbA 









 and correspondingly for the E-tensor

))(exp( trki
r

Es
EbE 




Then, calculate the tetrad of the Kerr spacetime, which satisfies the gaussian equation (Gauss-Kerr-tetrad)
EGK .

We start with the (dimensionless) Kerr spacetime with 1
sr


, i.e. dimensionless (setting rs=1) 1 :

original line element with rs :
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In matrix form dimensionless:
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and in first order approximation for 1
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Calculation of the Gauss-Kerr-tetrad with the metric condition
4/31 ))det(/( ggEE t   and satisfying the gaussian equations

01
2


 


 E

r

E
r ,

yields EGK = EGS except (EGK )03=



4/32/9 sinr

This non-diagonal element (EGK )03 causes (in first approximation order) a perturbation dAbμν of the constant
half-antisymmetric background solution Ahab for the A-tensor. This perturbation is calculated from the static
part of the AK-equations eqtoievnu3b (see 4.3.) , inserting Eb=EGK and Ab= Ahab+dAb .
The result for the perturbed solution Ab is

with constant parameters Aijc={A00c,A10c,A20c,A30c} and alphax=α   
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3
0

r
dAb


 ,

sin
2

i
dAb  , 01 dAb , 13 dAb

After inserting this result into eqtoievnu3w the wave part of the AK-equations, we get new equations
eqtoievnu3wdA , which do not depend on the constants Aijc , only on As, Es, α , k :

eq31=0
eq32=0

For simplicity, we show only the first equation of a 4-group , but here the symmetry
column-index↔group-index compared to the eqtoievnu3w in 4.3. is lost,
e.g. eq1=eq1(As00,As10,As11,As13,Es20,Es30) depends also on {As11,As13} , not only on As10,
as in eqtoievnu3w .
We eliminate Es3, Es0, Es1

and are left with 18 equs eqtoievnu3wdAs2s3 for 20 variables Es2, As :
eq1…8, eq13…16, eq31…32 vanish identically,
we show here resp. the first equaton from the respective 4-group
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The solution at infinity {Esi2i, Asi0i, Asi1i, Asi2i, Asi3i} , i.e. order O(1) in r-powers is

with the free parameter variable As00() , which describes the wave  )(exp
)(

),( 00
00 trki

r

As
rAs 




generated by the bgr.

Now we insert for the parameters
3

02

1

r
k  and

0

0

r

c
 , so the equations depend now only on

the bgr-parameter r0

eqtoievnu3wdAs= eqtoievnu3wdAs(r0, Es2, As0, As1, As2, As3)
and in powers of r0 the dependence is
eqtoievnu3wdAs= eqtoievnu3wdAs0+ eqtoievnu3wdAs1/r0+ eqtoievnu3wdAs1/r0

3/2+…
the parameter variable As00(r, ,r0) has to satisfy the equations also in r0 .
Our goal in the following subsection is to calculate As00(r, ,r0) analytically in { ,r0} as a series in r , and all
other variables, too .
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The first term in As00 describes the wave at infinity and the dependence of the amplitude on the parameter r0 of
the bgr. An important result of the following subsection is :
As00(r, ,r0)

0)(0000 nAs , i.e. in first approximation for r0→∞
0

0
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),,(00

r

nAs
rrAs
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4.4.2. Solution as a series in r-powers by comparison of coefficients

we transform r→1/z and develop in a series in z around z=0 :

…

{K1n0(),…, K20n0()} is the solution at infinity {Esi2i, Asi0i, Asi1i, Asi2i, Asi3i} from above
equations in a series in z and get 5 groups of equations, each for a coefficient of zk , k=0,1,2,3,4
eqtoievnu3wdAzKcn0=coef(z0)
eqtoievnu3wdAzKcn1=coef(z1)
eqtoievnu3wdAzKcn2=coef(z2)
eqtoievnu3wdAzKcn3=coef(z3)
eqtoievnu3wdAzKcn4=coef(z4)
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In order to develop the 20 variables {Es2i, As0i, As1i, As2i, As3i} and the equations in a series in r-powers
around r=∞ , we transform r→1/z and develop in a series in z around z=0 :

…

{K1n0(),…, K20n0()} is the solution at infinity {Esi2i, Asi0i, Asi1i, Asi2i, Asi3i} from 4.4.1.
Then we develop the equations in a series in z and get 5 groups of equations, each for a coefficient of zk ,
k=0,1,2,3,4
eqtoievnu3wdAzKcn0=coef(z0)
eqtoievnu3wdAzKcn1=coef(z1)
eqtoievnu3wdAzKcn2=coef(z2)
eqtoievnu3wdAzKcn3=coef(z3)
eqtoievnu3wdAzKcn4=coef(z4)

eqtoievnu3wdAzKcn0 vanishes identically, because the ansatz already solves the equations at infinity.
The remaining 4 equation groups have to be solved consecutively and the solution inserted in the next equation
group, until eqtoievnu3wdAzKcn4 is solved.
The solution of eqtoievnu3wdAzKcn1 :
rKvardAn1=

remaining free variables KvardAn1f

The solution of eqtoievnu3wdAzKcn2 :
rKvardAn2=
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remaining free variables KvardAn12f

The solution of eqtoievnu3wdAzKcn3 :

rKvardAn31= 3 variables

rKvardAn32= 4 variables

rKvardAn33= 2 variables
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eqtoievnu3wdAzKcn33

solution rKvardAn33s2= 8 variables

complexity(rKvardAn33s2) = 10309497
The first replacement in rKvardAn33s2 is a differential equation (deq): this deq has to appended to the next
equation group, the remaining replacements will be carried out.
partial solution eqtoievnu3wdAzKcn3 :

eqtoievnu3wdAzKcn4 :
eqtoievnu3wdAzKcn4s =
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4.4.3. Solution of coef(1/r4) as a series in r0

eqtoievnu3wdAzKcn0 vanishes identically, because the ansatz already solves the equations at infinity
we solve eqtoievnu3wdAzKcn1 , eqtoievnu3wdAzKcn2 , and parts of eqtoievnu3wdAzKcn3 and are left with
eqtoievnu3wdAzKcn33

solution rKvardAn33s2= 8 variables

eqtoievnu3wdAzKcn4s is separated in different r0-powers :

solution highest coefficient(r0
3) sr03Kcn4s: only solvable if

0)(0000 nAs , i.e. for r0→∞
0

0

)(0100
),,(00

r

nAs
rrAs


 

solution coefficient(r0
3/2) sr1n5Kcn4s:

K11n1=0,
sr1n5Kcn4s is solvable and a Ritz-Galerkin solution resr01n5Kcn4 in θ is calculated in variables
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eqtoievnu3wdAzKcn4s is separated in different r0-powers :

-solution highest coefficient(r0
3) sr03Kcn4s

esr03Kcn4tv= {simplify[sr03Kcn4s], deq(rKvardAn33s2[1])} : sr03Kcn4s is simplified and K11n1’’-deq from
rKvardAn33s2 appended.

MatrixRank[mDdvsr03Kcn4tloce]=10 derivative-matrix
)403(

403

tvKcnesrv

tvKcnesr




with As00-term as last column

where v(esr03Kcn4tv) are all variables in esr03Kcn4tv including derivatives

MatrixRank[mDdvsr03Kcn4tloc]=9 derivative-matrix
)403(

403

tvKcnesrv

tvKcnesr




without As00-term

This proves that

...

...)
)(1200)(1100

)(1000(

...)
)(0200)(0100

)(0000(),,(00
2/3

00

2/3

00

0 




r

r

nAs

r

nAs
nAs

r

nAs

r

nAs
nAsrrAs







with As00n00(θ)=0 , and coeff(v(esr03Kcn4tv),r0
0)=0 i.e. the constant terms in r0-power-series in the variables

of esr03Kcn4tv are all zero.
-solution coefficient(r0

3/2) sr1n5Kcn4s

We set K11n1=0,
sr1n5Kcn4s is solvable and a Ritz-Galerkin solution resr01n5Kcn4 in θ is calculated in variables
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4.4.4. Complete solution of the r-powers-series ansatz for r0=1

complete solution (in order 1/r4 and for Kcn4 in highest order in r0
3/2 ) for r0=1 , As00n01(θ)=1

Sin2(θ)  As00(r,θ)

Sin2(θ) Cos2(θ) As03(r,θ)
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The solution resr01n5Kcn4 is inserted in all previous replacements and we get the complete solution (in order
1/r4 and for Kcn4 in highest order in r0

3/2 ) for r0=1 , As00n01(θ)=1
MEs3wdA for Es
MAs3wdA for As
e.g. Mas3wdA[1,1]=As00 is
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Sin2(θ)  As00(r,θ) for r=1 as a function of θ

0.5 1.0 1.5
theta

0.5

1.0

1.5

Abs As00 r 1.

0.5 1.0 1.5
theta

3

2

1

1

2

3
Arg As00 r 1.

Sin2(θ)  As00(r,θ) for r=20 as a function of θ

0.0 0.5 1.0 1.5
theta

0.5

1.0

1.5

2.0
Abs As00 r 20.

0.5 1.0 1.5
theta

3

2

1

1

2

3
Arg As00 r 20.
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Sin2(θ)  As00(r,θ)

Sin2(θ) Cos2(θ) As03(r,θ)
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B5. Numeric solutions of time-independent equations with coupling Λ=1 
We consider the time-independent equations eqtoiv with full coupling (Λ=1). In this case the Einstein equations
are no longer valid, the metric condition at infinity is the flat Minkowski metric.
The calculation is carried out by Ritz-Galerkin method with trigonometric polynomials in θ

 {cos(θ) , sin(θ) ,
4/3)sin(

1


} and in r with polynomials of {

1

1

r
, 1r } , which can approximate the

Schwarzschild-singularity at r=1, in total 49 base functions.
The lattice is here a 30x12 {r, θ}-lattice and the Ritz-Galerkin minimization runs in parallel with 8 processes on
random sublattices with 100 points.
The processing time on standard 4GHz-processors was 58000s, minimal RG-deviation=0.0117 , median
equation error mederr=0.0034 .

The resulting solution {A00v(r, θ),…, A33v(r, θ), E00v(r, θ),…, E33v(r, θ)} is shown below for some
variables:
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The overall behavior of the A-tensor and the E-tensor is as follows.
Some components (e.g. A02, E11, E33 ) diverge like 1/sin(θ)κ for θ→0 , as in the Gauss-Schwarzschild tetrad
EGS . But there is no apparent singularity for r→1 , thereare only some numerical artefacts near r=1 , because
some of the Ritz-Galerkin base functions are divergent at r=1 .

5.1. The metric in AK-gravity with coupling: no horizon and no singularity
From the resulting solution {A00v(r, θ),…, A33v(r, θ), E00v(r, θ),…, E33v(r, θ)} the generated metric
fgijv(r, θ) is calculated.

Using this metric we can approximately calculate the velocity 1

1
1

11

00 











g

g
v during th free fall to the

horizon r=1 . The result is

max(v)=0.43 at r=2., i.e. there is no horizon, the velocity reaches a maximum, then there is a rebound.
This is to be expected, if we consider the absence of Schwarzschild-like singularity at r=1 for the coupling-
solution of eqtoiv in 3.2.

Now we calculate the Christoffel symbols 






































x

g

x

g

x

g
g

2

1
from the metric and solve the

equations-of-motion for the free fall from r=10.
In GR, we have the following picture:
The proper time τ(r) of fall in dependence of radius r : the fall time is τf= τ(r=1)=48.98 and of course
v(r=1)=1 and τ(r=10)=0 .
The proper fall-time from r=r02x to r=1 is

The inverse function radius in dependence on the fall time τ is r1t0s(τ) :
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In AK-metric we have the following picture:
The radius in dependence on the fall time τ is r1t0s(τ) :

and the velocity vt0s(τ)

The fall-time is here τf= 51 reached at rf= 1.75, the maximal velocity is vmax= 0.60 , then there is a rebound.
So we see that in AK-gravitation with coupling (Λ=1) there is no horizon and no singularity.
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B6. Numeric solutions of time-independent equations with weak coupling and binary gravitational
rotator
We consider the time-dependent equations eqtoiev with weak coupling (Λ=0.001) and binary gravitational
rotator (bgr).
We start, as in 4.1., with the Λ-scaled ansatz for the A-tensor

))(exp( trki
r

As
AbA 









 and correspondingly for the E-tensor

))(exp( trki
r

Es
EbE 




We introduce the disturbance dAb and Ab= Ahab+dAb from the bgr , as in 4.4.
With this ansatz we derive from eqtoiev the static part eqtoievnu3b(dAb,Eb) and the wave part
eqtoievnu3w(As,Es,dAb), but without the limit Λ→0, we set Λ= Λ0=0.001 and the wave number

k=
3

0

0

2

1

r
k  with r0=1 mean distance from the bgr.

At r→∞ {dAb,Eb,As,Es} take the values derived for the bgr in 4.4.
{As,Es}→{Asinfv,Esinfv}=

dAb→dAbinfv=

Eb→Ebinfv=EGK the Gauss-Kerr-tetrad from 4.4.1.
The calculation is carried out by Ritz-Galerkin method with trigonometric polynomials in θ

 {cos(θ) , sin(θ) ,
4/3)sin(

1


} and in r with polynomials of {

r

1
} , in total 40 base functions.

The lattice is here a 201x31 {r, θ}-lattice and the Ritz-Galerkin minimization runs in parallel with 8 processes
on random sublattices with 20 points.
The processing time on standard 4GHz-processors was 150000s, minimal RG-deviation=0.032, median
equation error mederr(eqtoievnu3b)=0.016 mederr(eqtoievnu3w)=0.012 .
The metric gμν(Eb) generated by the background Eb has a horizon at r≈1.9 for the free fall, that means that for
weak coupling (Λ=0.001) the singularity of GR still exists. So there is a Λ , (0.001< Λ<1 ) , where the
singularity disappears.
The resulting solution {dAb(r,θ),Eb(r,θ),As(r,θ),Es(r,θ)} is shown below for some variables:
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Sin(θ)3/4 As00 :

Sin(θ)3/4 As22 :

Sin(θ)3/4 As33 :

Sin(θ)3/4 Es00 :

Sin(θ)3/4 Es03 :
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Sin(θ)3/4 Es11 :
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B7. The energy tensor for the gravitational wave

electromagnetic energy tensor

in cgs units

[T]== energy/r3=endensity

Poynting vector [S]=energy/(r^2 *t)=energy-flux, [S/c]= energy/r3=endensity

Maxwell stress tensor
conservation of momentum and energy

where is the (4D) Lorentz force per unit volume on matter.
electromagnetic energy density

electromagnetic momentum density

gravitational Ashtekar-Kodama energy

GR grav. wave energy density (plane wave)    
2
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 ,

([2] 34.23)
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dimension [tμν]= energy/r3=endensity ([2]), e is the polarization.

when the metric wave is spherical  
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e
h  exp
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(transition from spherical wave Ar to plane wave Ap via energy condition:
22224 psr ArAr  )

AK grav. wave energy density 
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 , dimension [tμν]=energy/r3=endensity

(the dimensionless factor 
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is inserted for compatibility with GR and to account for the Λ-

scaled wave ansatz) , where m
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Planck-lambda scale

second term: gravitational stress energy : cEDEDt e 






  (Λ must be inserted for dimensional 

reasons), which is normally negligible

for the standard spherical wave )0,0,,( 00 kkk  x-y-polarization unit amplitude
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AK energy density
for a standard scaled spherical wave with a single r-t-amplitude
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kt  , which is identical to the GR expression apart from

a dimensionless factor
4

1
, which can be incorporated in As00

The AK energy density has the form: csst   , where


 ADs  and dimension [sμ]=1/r2

The current is 



 t
x

x
cj  , where






x

x
n  is a unit direction 4-vector ,

the energy flux in the direction ni is then ([2] 41.11 )

 ii ntcS 0 , dimension [S]=energy/r2 t

the total power of gravitational radiation for a quadrupole Q is in GR ([2] 42.21)
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 ,

in the special case of a binary gravitational rotator with masses m1 and m2 (total mass m= m1+ m2 ) and the
mean orbit radius r0 we get
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 is a constant with

dimension of power.

In 4.4.2. we have shown that for bgr
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we get 











222

2

002

000

1

Ps l
c

rr

As
kt  ,

2

22

00

2

0
2

00

1
44 










sP

KA
rl

cAskrctP 

Setting
0

0
00

r

c
As  , with

3

0

2

0
2r

r
k s it follows from GRKA PP  ,

32

2

2
21

62

0











m

mm

rc s ,
24

2
21

3

0











m

mm

rc s

So the amplitude of the gravitational wave of the binary gravitational rotator becomes
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 , where
2

2

c

Gm
rs  is the Schwarzschild radius of the total mass m , and

 22
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m
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m is the ratio of the reduced mass to the total mass 1
2

1 
m

m
 .

This formula can be easily generalized to multiple masses rotating around their common center-of mass:
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...21 and r0 the mean diameter of the rotator.
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B8. Quantum AK-gravitation
We recall the Ashtekar-Kodama equations

spatial spacetime curvature 21

21


















  AAAAF 

4 gaussian constraints 





  EAEG  (covariant derivative of E vanishes )

4 diffeomorphism constraints





 FEI 

24 hamiltonian constraints 








  EFH
3
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In this section, we will find the lagrangian, from which the AK equations can be derived.

8.1. Lagrangian of the hamiltonian equations

In electrodynamics, the lagrangian of the fundamental Maxwell equations is


 FFLem

4

1


Therefore we make at first the analogous ansatz for the AK-lagrangian of the Hamiltonian equations
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The formal expression for the variation of action for the variables
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,A

L

A

L

A

L









 , where











x

A
A




,

We have 4 intermediate results
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and the result of the variation follows
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This is a derived equation )(4
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  AHHH  from a 3-tensor H=F , which is the first term in

the AK hamiltonian equations.
Now consider the following lagrangian
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One can show easily that for 
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So the complete Lagrangian for the derived hamiltonian equations is















  )(

34

1
)

34

1
( 2

1

2

1

21
1

11

222






















  AAEAEFFLLL FH

The corresponding derived Hamiltonian equations are
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are the AK hamiltonian equations.

Furthermore , we follow the ansatz of Smolin in [5] and let Λ be generated by a scalar field 

with the constraint 
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AAEAEFFcLH  , which brings the action to the

correct dimension
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 , therefore this action is formally

renormalizable.
If we carry out the variation for φμν , we get the following expression
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LH  , which becomes the Λ-gauge condition for the

AK equations in the form
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We use the Hamiltonian equations, and after some algebra we get the expression
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C

t AAAAEEEG ,where (μ,ν)=C(κ,λ) is the complementary index

pair.
For the classical case with  Λ≈0 with the constant half-antisymmetric background Ahab and the Gauss-
Schwarzschild tetrad EGS the first term in GΛ is negligible and the second vanishes for A= Ahab .
In the general case , GΛ is a single gauge condition, which fixes one free parameter of the AK-solution.

8.2. Lagrangian of the remaining equations

For the diffeomorphism equations





 FEI  , we set simply the variable
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and take the lagrangian 2
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 FEFEcCCcLI   as the corresponding lagrangian

As for the gaussian equations 





  EAEG  , they can be derived from the fact, that this is the

covariant derivative for the tetrad E , so it must vanish.
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the complete AK lagrangian is then
























2

22
21

11
1

2

1

2

1

21
1

11

222
)(

34

1

































 


FEFE

AAEAEFF
cLLL IHgr 

8.3. Dirac lagrangian for the graviton

The Dirac lagrangian for the photon reads

  


  FFmcDicLDem
4

12   , where   AiA
c

ei
D 


is the covariant derivative of the photon (note the negative sign in the first term: we use here the metric
η=diag(-1,1,1,1))
This describes the interaction of the photon with a fermion and yields the corresponding Feynman diagrams and
cross sections.

The Dirac lagrangian for the graviton reads

  grDgr LmcDicL   
 2 , where   a

a AD 





 )( is the covariant derivative of the

graviton , where the generator matrix 



  1)( a

The electron-graviton interaction term is



81

   
 a

aDgrI AciL  , where   ))(exp(2exp trkii
r

As
A  





 is the graviton quadrupole

wave function , so (background Ab≈0) , so the term is linear in As , like in the electromagnetic case.
The presence of Λ  makes the term very small . 
Let us compare this to the GR-Dirac lagrangian

  



 ))((2

2

)det( 2mcxcigR
g

LGRD 


 

where

and    ,
2

i
   are the Dirac σ-matrices 

and ω the GR connection field  in tetrad-expression 

with the tetrad i.e. gee 

compared to the metric condition for the inverse densitized background tetrad Eb
4/31 ))det(/( ggEbEb t   , so   8/31 ))det(/( gEbe

t
 

Here the interaction term is

 






 ))(()det(
4

)()det(
4

1 Ebfg
c

g
c

L ab

ab

GRDI



where the middle term )( 1 Ebf 



 is a sum of γ–matrices with coefficients, which are quadratic functions

of 1Eb so GRDI L is quite different from the AK-interaction term DgrI L .

8.4. The graviton wave function and cross-sections

For the Compton effect, i.e. electron-photon scattering

the Thompson cross-section for small energies is σTh= =
3

8
2

2

2 
 









mc

c
, where m=me

is the electron mass,

c

e



2

 is the fine-structure-constant and

the reduced de-Broglie wavelength of the electron m
cm

c

e

e
12

2
10*38.0

~ 


 .

So the electron-photon Thompson cross-section is with these denominations
3

8
~
1

2

2 




e

th 

The photon wave function is here [20, 7.53]

 )exp()exp(
2

)( xikxik
kV

Ae 


 

where εμ is unit-polarization vector , 0
kk and 0

 k . Aμ is normalized to give the energy

ckxdAcAE     32)()(

The covariant derivative of the photon is   AiD 

We use the results from 4.3.1

0
6

)
3

4
exp(3030

12/17


rr

icAsAs
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)2exp(
2

20
10 i

cAs
As 

)2exp(
2

20
00 i

cAs
As 

0)2exp(
20

20  i
r

cAs
As

and from 7 and write the graviton wave function as a plane wave analogous to the photon (the quadrupole
characteristics disappear in the plane wave, therefore )2exp( i is skipped)

 )exp()exp(
2222
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2

xikxik
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r

r

r
fA ss

mg 






 , with the polarization matrix according to the

results from 4.3.1





















0000

0000

1111

1111





According to 7 we get now for the energy density  
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 , and as   1)exp()exp(
2

1 32


V

xdxikxik
V

and
3

02r

r
k s ,

we get for the energy
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  , now we demand that ckAE g )( , so the normalization factor is

  6/7

3/14

1

s
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kr
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r
c


 and the normalized wave function becomes

 )exp()exp(
2

1
)()(

2/1

xikxik
V

r

kr
cAA s

s

grnggn  









 , where

9110*55.0
2




 ps

gr

lr
 and αgr is the gravitational fine structure constant and the photon-like wave

function can be written






  )()( pgrgn AA 

The covariant derivative is then   a

pgra AD 





  )()( 

where Ap is completely analogous to the photon wave function Ae , and matrices   





 aa  a=0,1,2,3 in

analogy to the Dirac gamma-matrices .

By analogy we can then assess the electron-graviton scattering cross-section
2

2
~
1

e

greg


  ,

ignoring the tensor form and the -dependence .

8.5. The graviton propagator

As is well known, the photon propagator in QFT is [20]

, which follows from the Maxwell equations
We consider the wave equations eqgravlxA0 , eqgravlxA3 and eqgravlxEn in the momentum representation,
i.e. in the k-space . Then the r-derivatives transform into k-powers
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),()(),( krfkikrf nn

r 

We write the equations as polynomials in k :

eqgravlxEninf lxikrikrikriklxikEsP 34443 2322)1( 

eqgravlxA0  2)1(3)0( krlxirkilxAsP  +

 222 )221())(21()10( rkikrilxikrkrilxlxrEsAsP 

at r-infinity: 33
inf 3)0( rikAsP  + 32

inf )10( rkEsAsP  , so

1
3

1)10()0(0 inf
1

inf Es
k

i
EsEsAsPAsPAs  

3

1

2
)1(1

ilxk

Es
EsEsPEs


  

46
0
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Es
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 , so the As0-propagator is

)(6

1
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4

2

iqlx
qAsD F




eqgravlxA3 lxkikrikrlxkAsP 6)1(6)3(  +

ilxilxkrlxikrlxirkrkrkEsAsP  1)1())()(()32()13( 222222 , so

4212

)1(
3

klx

Esilxi
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 , so the As3-propagator is

)(12

)(
),3(

42

2

iqlx

lxi
qAsD F






The As-propagators are identical apart from a constant factor and are finite-integrable in dqq2 .

8.6. The gravitational Compton cross section

For the Compton effect, i.e. electron-photon scattering

the total Klein-Nishina cross-section  [22]  σ= 

where , for small energies it becomes the

Thompson cross-section  σTh= =
3

8
2

2

2 
 









mc

c
, where m=me is the electron mass,

c

e



2

 is the fine-structure-constant and

the reduced de-Broglie wavelength of the electron m
cm

c

e

e
12

2
10*38.0

~ 


 .

so
3

8~ 22 
 eth  with these de nominations.

The start formula for the calculation of the differential cross-section according to the Feynman rules is [20
7.7.2], [21 4.218]
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with the initial and final momenta pi pf of the electron, k k’ momenta of the photon and polarizations ε ε’ of
the photon. The following conditions have to be satisfied:

2mpp ii  2mpp ff  0''  kkkk energy relations

kpkp if  ' 4-momentum conservation

)cos1(1

'
0

0
0





m

k

k
k Compton condition for the photon energy

There is 3 degrees of freedom in the choice of the polarization, the choice is made to simplify the expression
above

1''   0''  kk  0'  ii pp 

After some manipulations using the conditions and commutation rules for Dirac matrices, the famous Klein-
Nishina formula results [20 7.74]

, where the scalar denomination k k’ is used for the energy k0 k0’
We get the total cross-section using the Compton condition and integrating over cosz

and averaging over polarizations [21 4.221]
2)'.( 

for small energies 0
m

k
, the Thomson cross section arises

3

8~

3

8 22

2

2

2 



 eth

mc

c













For the graviton, we insert the photon-like (dimensionless, dropping the scale rs =rgr ) wave function

 )exp()exp(
2

1
)( xikxik

Vk
Ap 









with the covariant derivative   a

pgra AD 





  )()( 

and again the starting formula above, where the only change is in the polarization terms 
  and


  '' , which, with the setting
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 and the new initial polarization ),,,( 3210 eeeee 

and final polarization )',',','(' 3210 eeeee 

1'
2

3

2

2

2

1

2

0  eeeeee , and the totally antisymmetric matrices a , become

  











  gee  ))(( 10
2

1 , where )( 10   g are the matrices analogous to the

 γ-matrices in the “Dirac-dagger”  
  in the quantum-electrodynamics.
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After going into the rest frame of the electron )0,0,0,(mp  and some manipulations we get
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, where the functions ),',(0 eed s and

),',(1 eed s are series-coefficients in the
m

k0 -series .

Now perform the integration over θ and averaging over e and  ee '

to get the total cross-section

22022 ~
36.9...400.0170.1

~
8 egregr

m

k
 








 , where the last expression is the gravitational low-

energy Thomson cross-section .
The different form of the bracket expression in the differential cross-section as compared to the electromagnetic
cross-section is due to the different nature of polarization: for the photon the polarization is transversal to the
momentum, so the averaging depends on k and k’ , for the graviton the polarization is a free parameter
independent of momentum.
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B9. Unified QFT

electromagnetic: gauge-group=Lie group SU(1) (trivial) commutative, long-range, classical and quantum,

scale mre
1510*8.2  , energy scale MeV

r

c
E

e

em 07.0


, the interaction-boson=photon is a vector with

spin=1

covariant derivative  A
c

ei
D


 , fundamental equations Maxwell equations 0 

 F

wave: photon Aμ spin=1 one polarization, modes: spherical( 0l ) and and all 0l , angular function lmY ,

wave equation , radial Helmholtz equation, lagrangian 
 FFLem

4

1
 with the Maxwell field tensor







 AAF 

gravitation: gauge-group=extended SU(2) with 4 generators  ,additional invariance: background

independence, long-range, classical and quantum, its interaction-boson=graviton is a 2-tensor with spin=2

scale mmlr Pgr 3110*1.3
1 5 


  , energy scale eV
r

c
E

gr

gr
310*34.6 



fundamental equations: Ashtekar-Kodama equations AK(Aμ
ν ,Eμν ,Λ )=0 for the graviton tensor Aμ

ν , the tetrad
Eμν and the cosmological constant Λ , in the limit Λ->0 the Einstein-equations are valid (except at the horizon)
and Aμ

ν =const (i.e. trivial background)

Λ generated by the tensor field ϕΛ is scale dependent, classical scale r>>rgr Λ =Λ0=2.7 10-52m-2

wave: graviton Aμ
ν spin=2 two polarizations, modes: quadrupole and higher 2l , angular function

)exp( li , gravitational radial wave equation weqν(
v

r
v EE 131 , ) for the tetrad component E1ν

determines Aμ
ν ,Eμν with 4 free parameters for Eμν and 4 free parameters for Aμ

ν , Eμν damped )
3

4exp(
r



for mrr gr 31 QFT gravity

covariant derivative 







  tAttD  , aa
AiD   , where 

aa i are the generators of

the extended SU(2)-algebra with 4 generators a and the Lie-algebra cab

c
ba i  ],[

(renormalizable) lagrangian
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FEFE

AAEAEFF
cLLL IHgr 

with the constraint 

and with the field tensor 21

21


















  AAAAF 

weak interaction: gauge-group=Lie-group SU(2) 3 generators Pauli matrices σj , corresponding 3 massive

gauge bosons
Z, W+ , W- ,short range, pure quantum
cut-off energy MZ=91.17GeV ,

length scale mrweak
1710

energy scale eVEE emweak 710 4  

lagrangian , where
where the physical gauge fields Z, W+ , W- are
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covariant derivatives left and right

strong (color) interaction: gauge-group=Lie-group SU(3) 8 generators Gell-Mann-matrices , corresponding 8
massless spin-1 gauge bosons , 3 charges (colors) r g b , short range, pure quantum, asymptotically free
(confinement),

confinement length scale mrr prcol
1510*84.0  , energy scale MeVEcol 210

cut-off energy GeVeV
r

c
M

col

col 2310*33.2 10 


lagrangian



aa

col GGL
4

1


with the field tensor

covariant derivative , where is the coupling constant, is the gluon gauge field, for
eight different gluons and where is one of the eight Gell-Mann matrices,

(hypothetical preon [25]) hypercolor interaction: gauge-group= Lie-group SU(4), 15 generators massless
bosons spin=1, short range, pure quantum

4 charges


RLRL rrrr for r-preon and


RLRL qqqq for q-preon resp. with charge + or - and helicity L

or R, antiparticle


 RL rrC )( ,


 RL rrC )(

the weak-interaction is the Yukawa-limit of the hypercolor interaction
the angular momentum 1l determines the flavor 0zl for flavor 0, 1zl for flavor 1 and 1zl for

flavor 2

L-R-symmetry breaking RRL USSUSUSU )1()1()2()4( 

GUT (approximate) SU(5) :

R=( 3 rgb d-antiquark, 2 leptons e ν )= )2,1()1,3( ed 

L=(3x2 rgb u-quark d-quark, 3 rgb u-antiquark, 1 antilepton e)= )1,1()1,3()2,3( euud 
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