NP?=EXP

Thinh D. Nguyen*

Moscow State University kosmofarmer@gmail.com

June 30, 2018

Abstract

We only point out that the work of algorithmic algebra community is not enough, at least so far.

I. **Proposition**

M [SM13], authors presents an algorithm named ANEwDsc claiming in *Corollary* 27 of efficient computation time. The *n* in that corollary is the given polynomial's degree. Thus, if the polynomial is given in the form of 567 * x * x * x * x * x + 872 * x * x + 12, then indeed, we have a polynomial time algorithm for the problem at hand. But what if, the polynomial is given like $x^{123456789} + 2 * x^7 - 5$. To the best of our knowledge, we have not devised an algorithm with reasonable time bound.

DEFINITION

REALROOTCOUNT = { $(P, k) \mid$ polynomial *P* given in the latter (described above) way has exactly *k* distinct real roots }

Proposition

RealRootCount \leq_p ExistentialRealThy

where EXISTENTIALREALTHY is the definitive problem of existential first-order theory. Details can be found in [WikiExistRealThy]

We can use the expressive capability of existential first-order theory to build things up like y = x * x, z = y * y, u = z * x + y + y + y + x + x + 1 + 1, etc. Note that in the REALROOT-COUNT we have the exponentiation symbol, but in the theory considered here, we only have 0, 1, +, * and existential quantifier. For large coefficient, we utilize the same idea.

i. Conclusion

We have to ask ourselves whether the question in the title is significant.

References

- [SM13] , Michael Sagraloff, Kurt Mehlhorn, Computing Real Roots of Real Polynomials, 2013
- [WikiExistRealThy] , The free encyclopedia, https://en.wikipedia.org/wiki/ Existential_theory_of_the_reals

^{*}Perebor