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Abstract: In this paper we show that the Schwarzschild radius can be extracted easily from any
gravitationally-linked phenomena without having knowledge of the Newton gravitational constant
or the mass size of the gravitational object. Further, the Schwarzschild radius can be used to predict
any gravity phenomena accurately, again without knowledge of the Newton gravitational constant
and also without knowledge of the size of the mass, although this may seem surprising at first.

Hidden within the Schwarzschild radius are the mass of the gravitational object, the Planck mass
(their relative mass), and the Planck length. We do not claim to have all the answers, but this seems
to indicate that gravity is quantized, even at a cosmological scale, and this quantization is directly
linked to the Planck units. This also supports our view that the Newton gravitational constant is

a universal composite constant of the form G =
l2pc

3

~ , rather than relying on the Planck units as a
function of G. This does not mean that Newton’s gravitational constant is not a universal constant,
but that it is instead a composite universal constant that depends on the Planck length, the speed
of light, and the Planck constant. Further, G

c2
can be seen as a Schwarzschild radius calibrated to

one weight unit. So G is only needed when we want to use gravity to find the weight of an object,
such as weighing the Earth.

This is, to our knowledge, the first paper that shows how a long series of major gravity predictions
and measurements can be completed without any knowledge of the mass size of the object, or
Newton’s gravitational constant. As a minimum we think it provides an interesting new angle for
evaluating existing gravity theories, and it may even give us a small hint on how to combine quantum
gravity with Newton and Einstein gravity.

Key words: Schwarzschild radius, Weight, Planck mass, Planck length, measurement, gravita-
tional constant, Heisenberg.

I. INTRODUCTION

We will start this paper on what some may think is a
slightly unscientific tone, but we believe it is well-suited
for a short introduction to what we will show later on.
In subsequent sections we will expand on the key points
with more rigorous derivations and scientific principles.

Thus, let us assume that an alien came to Earth and
gave you the following formula

re =
g2R2

c2
(1)

The alien explained that g is the gravitational accelera-
tion, R is the radius from the center of the planet (grav-
itational mass) to the surface, and c is the well-known
speed of light. The gravitational acceleration is easy to
measure without any knowledge of gravity (for example
with two time-gates and a object in free fall); it is about
9.8 m/s2. The radius of the Earth is not that easy to
measure, but we know it is about 6,371,000 meters. As
for the speed of light, we can measure it with a low cost
kit and or just take the standard accepted speed, which
is defined as exactly 299,792,458 meters per second. The
main point is that one needs no knowledge of gravity to
measure each of these input factors.

Next we plug these values into the formula above and
get

re =
9.82 ⇥ 63710002

2997924582
⇡ 0.00442588 meter (2)

Some will recognize that this is very similar to half of
the value of the Schwarzschild radius of the Earth; this is
not a coincidence, as that is exactly what it is, something
we will return to soon. Next, we can use this value of re
and plug it into any of the formulas below to calculate
almost any major gravity predictions. We can predict the
orbital velocity of a satellite, or the moon, for example,
by the formula

vo = c

r
re
Ro

(3)

where Ro is the radius from the center of the Earth to
the object for which we want to predict orbital velocity.
Further, the time dilation between two clocks at di↵erent
altitudes around a planet is given by

Th

TL
=

q
1� 2 re

RLq
1� 2 re

Rh

(4)

where Rh is the radius further from the center of the
earth than RL. We can test this by placing one atomic
clock at sea level and one at the top of a 2,000-meter
mountain top. We naturally need to synchronize the
clocks before performing this task. The clocks will be
consistent with our gravity prediction. Again, all we
need is re, which we can easily extract from the gravita-
tional acceleration on the surface of the Earth, as already
shown.
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Next we can predict the red-shift; it is given by using
the following formula

lim
R!+1

z(R) =
1q

1� 2re
R

� 1 (5)

If both the emitter and receiver are inside the gravita-
tional field and we focus on frequency rather than change
in wavelength, we have the well-known formula

fh = fL

q
1� re

RLq
1� re

Rh

(6)

So based on this we can accurately predict the results
of experimental set ups equal to the Pound and Rebka
experiment [1]. This is just one example of how we can
perform a series of gravitational predictions that can be
confirmed by experiment without any knowledge of New-
ton’s gravitational constant or the mass size of any ob-
ject. What we have relied on instead is re, which can
simply be obtained from the gravitational acceleration
at the surface of the Earth, the speed of light, and the
radius of the Earth.

II. THE SCHWARZSCHILD RADIUS IN A NEW
PERSPECTIVE

The Schwarzschild radius comes from the
Schwarzschild metric [2, 3] solution to the Einstein
field equation [4] and is given by

rs =
2GM

c2
(7)

where G is the Newton’s gravitational constant, M is
the mass of the object, and c is the well-known speed of
light. In other words, we need to know the mass of the
object of interest and the Newton gravitational constant
in order to find its Schwarzschild radius. The escape
velocity [5] from a mass M at the radius R from the
center of the mass is given by

ve =

r
2GM

R
(8)

When we replace the radius in the escape velocity with
the Schwarzschild radius r = rs =

2GM
c2 we get

ve =

s
2GM
2GM
c2

= c (9)

So, if an object with mass M is packed inside the
Schwarzschild radius, then we have a mass where even

light cannot escape from inside the radius. This phe-
nomenon is often known as a black hole, and the
Schwarzschild radius is linked to black holes in this way.
Any object we have observed directly in the sky or

on Earth has mass where the radius is extending out-
side the Schwarzschild radius. In other words, no mass
has directly been detected that has all of its mass in-
side the Schwarzschild radius (even though recent gravi-
tational wave detections may have detected collisions of
black holes, but we not will discuss that further in this
paper).
What is important here is that neither the Newton

gravitational constant, nor the mass of the cosmological
or smaller-sized objects, needs to be known to find the
Schwarzschild radius. The Schwarzschild radius can be
found directly as described in the section above from the
gravitational acceleration of the Earth, or directly from
the measured orbital velocity of a satellite such as the
moon simply by using the formula

rs = 2re = 2
v2oR

c2
(10)

where R is now the radius from the center of the Earth
to the orbital object of interest. Further, vo is the “eas-
ily” observed orbital velocity of the moon, for example.
Alternatively, we could use two atomic clocks, measure
time dilation between them, and then plug the values
into this formula to find the Schwarzschild radius

re = R

s

1� T 2
0

T 2
f

(11)

where Tf is a far away clock from the gravity field and
T0 is a clock placed at radius R relative to the gravita-
tional object. In most cases, we do not actually have
access to a far-away clock Tf from Earth, but we can
easily have two clocks on Earth at altitude RL and Rh,
and from this we can easily calculate find re by solving
the following equation with respect to re

Th

TL
=

q
1� 2 re

RLq
1� 2 re

Rh

(12)

this gives

re =
RhRL(T 2

h � T 2
L)

2(RLT 2
h �RhT 2

L)
(13)

In 2016, Haug [6] suggested that the gravitational con-
stant is likely a universal composite constant of the form

G =
l2pc

3

~ ⇡ 6.67⇥ 10�11 m3 · kg�1 · s�2 (14)
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Which is basically identical to a similar composite con-
stant suggested by McCulloch [8]. This leads to an eval-
uation of the Schwarzschild radius at a deeper level by

rs =
GM

c2
=

l2pc
3

~ M

c2
= 2Nlp (15)

where N is the number of Planck masses in the mass
M . This is not new in itself, but the idea that we can
find the Schwarzschild radius with no knowledge o↵ G, or
even the mass and use this to predict “all” known gravity
phenomena is new, to the best of our knowledge. What
seems important for gravity phenomena is the measure-
ment of N and lp, and in this case, we do not need to
know N separately (the number of Planck masses), or lp
separately, but the combination of the two Nlp will be
su�cient.

III. G IS RELATED TO A STANDARDIZED
SCHWARZSCHILD RADIUS CALIBRATED TO

WEIGHT

We have shown in the section above that the
Schwarzschild radius can be easily found without any
knowledge of the mass size or Newton’s gravitational
constant. We have also claimed that the Newton’s grav-
itational constant is a composite constant of the form

G =
l2pc

3

~ . Actually, in order to use the Schwarzschild ra-
dius to find the mass of the object in terms of weight, we
need to standardize it in relation to our weight definition.
If we use kg to describe mass, we need the Schwarzschild
radius for one kg and this is simply 2G

c2 . The gravitational
constant divided by c2 can be seen as a standardized unit
of half the Schwarzschild radius in relation to weight

re,1 =
GM

c2
=

G⇥ 1

c2
=

G

c2
=

l2pc
3

~
c2

=
1

mp
lp = N1lp (16)

where N1 is the number of Planck masses in one kg.
This is the Schwarzschild radius of one weight unit of
whatever weight unit we have decided to use. Since New-
ton’s gravitational constant is a function of also the re-
duced Planck constant, it automatically adjusts if we use
another weight measure; if we use pounds, then the re-
duced Planck constant will be in pounds and G will be in
pounds (m3 ·Pounds�1 · s�2). Further, when we want to
extract the wegith of an object from gravity observations
we will need G, otherwise we never need it.

This means in cases of gravity predictions and obser-
vations where we are not always interested in finding the
weight of the object, such as the weight of the Earth,
can be done completely without Newton’s gravitational
constant. The gravitational constant was first indirectly
found by Cavendish in 1798 [7] to measure the weight of
the Earth, and that is indeed when one needs to find it,

as one then needs to calibrate the model with respect to
the weight measure units one is using. Today the kg is
redefined in terms of the Planck constant, so it should be
not shocking that Newton’s composite constant in this
view must contain the reduced Planck constant.
Any Schwarzschild radius contains the relative mass of

the gravity object. That is the size relative to that of
the Planck mass (multiplied by the Planck length). So,
all gravity is clearly related to mass. However, it is only
when we also want to know the weight of a given object
that need to know the Newton gravitational constant 1.
The relative weight, and thereby also the relative

weight of any two cosmological objects, is simply their
Schwarzschild radius divided by each other.
Only if we want to extract the weight of an object from

gravity do we need to know the Schwarzschild radius per
weight unit chosen. In other words, that is when big G is
needed. Some will possibly claim that the Schwarzschild
radius naturally was discovered after Newton discovered
the gravity constant, so the Schwarzschild radius cannot
be the central entity for gravity. We will claim that New-
ton’s formula, even if it is correct and wonderful (at least
as a first approximation), has not been fully understood.
It has always been a mystery exactly what the Newton
gravitational constant is.
Now, by showing all that gravity phenomena (in cases

where we do not need to find the weight of the object)
can be found by using the Schwarzschild radius directly
from any gravity observation phenomena, and then this
again can be used to predict any other gravity phenomena
(except from finding the weight of the object, where we
need the Schwarzschild radius per weight unit which is
related to G.).

IV. ARGUMENTS IN FAVOR OF NEWTON’S
GRAVITATIONAL CONSTANT BEING A

COMPOSITE CONSTANT

There are several observations that clearly support the
idea that the Newton gravitational constant is a compos-
ite constant; here is a selection of them:

1. If we “never” need the Newton gravitational con-
stant for any gravitation observation, not even in
calibrating a model, does this imply that it is not
central for gravity either? See Table 1 for a long
series of gravity calculations and observations that
all can be done without any knowledge of the New-
ton gravitational constant, or the size of the mass
in question. Further, if we want to separate out

1 That we can also obtain by finding the Planck mass weight
first in a Cavendish apparatus, or alternatively the G from the
Cavendish apparatus

2 Needs further investigation and confirmation; see [11] for more
details.
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TABLE I. The table shows that the most common gravitational measurements and predictions can be done without any
knowledge of Newton’s gravitational constant. Is it not time to ask if the Newton gravitational constant is a composite
constant? Only when we want to separate out the Planck units or the gravitational constant do we need to know the mass size
of the gravitational object.

What to measure/predict Formula How Is it easy to do Knowledge
of mass size

Half Schwarzschild radius re = g2R2

c2
From g (9.8 m/s2 Earth) Yes No

Half Schwarzschild radius re =
v2
oRo

c2
From orbital velocity Yes No

Half Schwarzschild radius re = R

r
1� T2

0
T2
f

From time dilation Di�cult No

needs high precision clocks need far away clock

Half Schwarzschild radius re =
RhRL(T2

h�T2
L)

2(RLT2
h�RLT2

L)
From time dilation Yes No

needs high precision clocks

Half Schwarzschild radius re =
RhRL(f2

h�f2
L)

2(RLf2
h�RLf2

L)
From red-shift Yes No

Half Schwarzschild radius re = �R
4 From light-bending less so No

”need” eclipse

Gravitational acceleration field g = re
R2 c

2 Find re first Yes No
Orbital velocity vo = c

p
re
R Find re first Yes No

Escape velocity ve = c
p

2 re
R Find re first Yes No

Time dilation t2 = t1
p

1� 2 re
R Find re first Yes No

GR bending of light � = 4 re
R Find re first Yes No

Gravitational red-shift limR!+1 z(R) = re
R Find re first Yes No

Bekenstein-Hawking luminosity P = 1
15360⇡

~c2
r2e

Find re first Yes No

Schwarzschild radiusa

for the Cavendish sphere rs = 4L⇡2R2✓
c2T2 Cavendish apparatus Yes No

Planck mass mp =
q

~cMT2

L2⇡2r2✓
Cavendish apparatus Yes Yesb

Planck length lp =
q

~L2⇡2R2✓
MT2c3

Cavendish apparatus Yes Yesc

Planck time tp =
q

~L2⇡2R2✓
MT2c5

Cavendish apparatus Yes Yesd

Gravitational constant G = ~c
m2

p
=

l2pc
3

~ ⇡ 6.67⇥ 10�11

G = L2⇡2r2✓
MT2 Cavendish apparatus Yes Yese

Half Schwarzschild radius 1 kg G
c2

⇡ 7.43⇥ 10�28

a Be aware that this is not the Schwarzschild radius of the Earth, as can be found by using the formulas further up in the table. Instead,
this is the Schwarzschild radius of the large lead balls in the Cavendish apparatus. In this formula, no mass is needed, in contrast to a
situation where we need to find Newton’s gravitational constant.

b Need to know the mass of the large lead ball in the Cavendish apparatus, but this can be done by simply weighing it.
c Same as footnote above.
d Same as footnote above.
e Same as footnote above.
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the Planck units, we need to know the size of the
mass of the gravity object, otherwise that is not
necessary.

2. When we understand that the Newton gravitational
constant is related to a standardized Schwarzschild
radius with respect to our chosen weight measure,
then things become more clear. The Newton grav-
itational constant is only needed when we want to
use gravity to find the weight of an object, for ex-
ample the weight of the Earth or the Sun. How-
ever, we could then have found the Planck mass in
a Cavendish apparatus instead (and just as easily)
without knowledge of big G.

3. The output units of Newton’s gravitational con-
stant are given by: m3 · kg�1 · s�2. It would seem
very strange if something fundamental existed at
the deepest level that is meters cubed, divided by
kg and seconds squared. It cannot be excluded, but
one should first undertake a serious attempt to find
a simpler explanation. We will claim this strongly
indicates that the Newton gravitational constant
must be a composite universal constant consisting
of more fundamental constants.

4. By re-formulatingG as a composite of the formG =
l2pc

3

~ , a long series of the Planck units are dramat-
ically simplified and become more logical. For ex-

ample, the Planck time is described as tp =
q

G~
c5 ,

but such formulas give minimal intuition. We may
ask, what is the logical meaning of c5 and what is
the deeper logic behind the gravitational constant?
When replacing G with its composite form, we sim-
ply show the Planck time as tp = lp

c , so the time
it takes for light to travel the Planck length – this
is naturally known.

5. The Planck mass and the Planck length can be
measured totally independent of any knowledge
of the Newton gravitational constant, as recently
shown by Haug [9, 10]. This means the elements
of a Newtonian composite gravitational constant
all are known. It seems more logical that at a
fundamental level there exists a unique and likely
the shortest possible length with any real mean-
ing, namely the Planck length, as well as the speed
of light. In addition, we have the Planck constant
that is more complex, but in all observable gravity
phenomena the gravitational constant even cancels
out, and we are left with the Schwarzschild radius
(or half of this in many cases) as the essential thing
we need to know and can measure easily. Again,
this consists of the number of Planck masses times
the Planck length in the gravity object of interest.

6. We can possibly derive a gravitational theory from
scratch based on the Heisenberg uncertainty prin-
ciple, that combined with the analysis given here,

generates a long series of gravity equations that give
correct predictions without any knowledge of the
Newton gravitational constant. This is the topic
for section 2 .

V. MCCULLOCH-HEISENBERG NEWTON
EQUIVALENT GRAVITY

We will also mention a recently-published way of de-
riving Newtonian equivalent gravity that is potentially
linked to the above analysis. The analysis above is in
no way dependent on this theory, but is possibly com-
patible with it. In 2014, McCulloch [8] derived Newton’s
gravitational force from Heisenberg’s uncertainty princi-
ple. Although the method can be criticized, it provides
an interesting perspective on the themes of this paper.
Here we will give a short overview of his derivation and
point out several valid questions that we will answer, at
least in part.
Heisenberg’s uncertainty principle [12] is given by

�p�x � ~ (17)

McCulloch goes on to say “ Now E = pc so” :

�E�x � ~c (18)

This assumption only holds for the Planck momentum
E = pc = mpcc, in our opinion. Further, from equation
18, McCulloch suggests that

F =
1

(�x)2

nX

i

NX

j

(~c)i,j (19)

where
Pn

i is the number of Planck masses in a smaller

mass m we are working with, and
PN

i corresponds to the
the number of Planck masses in the larger mass we are
working with. From this, McCulloch gets the equation

F =
~c
m2

p

mM

(�x)2
(20)

Further, McCulloch replaces �x with the radius and
points out that

G =
~c
m2

p

⇡ 6.67384⇥ 10�11 m3 · kg�1 · s�2 (21)

This is equivalent to the empirically observed Newton
gravitational constant. It should be observed that there
are still large measurement errors in the gravitational
constant; see [13–17].
This means his derivation is equivalent to the Newto-

nian gravity formula
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F = G
mM

r2
(22)

Although the idea is promising, several aspects of this
derivation and gravity concept should be questioned.

First of all, in a follow up paper McCulloch states, [18].

In the above gravitational derivation, the
correct value for the gravitational constant G
can only be obtained when it is assumed that
the gravitational interaction occurs between
whole multiples of the Planck mass, but this
last part of the derivation involves some cir-
cular reasoning since the Planck mass is de-
fined using the value for G.

The Planck mass was first derived by Max Planck in
1899 [19, 20], who assumed that there were three funda-
mental universal constants, namely the speed of light, the
Newton gravitational constant, and the reduced Planck

constant. The Planck mass was given as mp =
q

~c
G . To

find the Planck mass, we need to know G, as pointed out
by McCulloch and the McCulloch derivation appears to
rest on Newtonian theory.

However, as has recently been shown by Haug, this
is not necessarily the case, as we can measure the mass
mp directly using a Cavendish apparatus without any
prior knowledge of Newton gravity theory or the Newto-
nian gravitational constant [10]. In that case, we need
to know the Planck constant in addition to the speed of
light. The Planck constant can be measured independent
of any knowledge of the Newton gravitational constant,
using the Kibble balance, for example; see [21–23]. The
main point is that we do not need to know the Newton
gravitational constant to find the Planck mass.

Secondly, how can a principle derived by Heisenberg to
understand the uncertainty in quantum world be relevant
to this area of physics? Haug has recently re-derived the
Heisenberg uncertainty principle with a specific focus on
the Planck scale [25]. He has shown that the uncertainty
principle likely collapses at the Planck scale and should
be replaced with a certainty principle in the special case
of the Planck mass:

mpclp = ~ (23)

that is, when we are at the Planck scale for a particle
with position lp. We may also ask, How can the Planck
mass be relevant when we are working with cosmological
objects? In other working papers, we have presented
a model of how the Planck mass particle could be the
building block of all other particles. This may sound
absurd at first, as the Planck mass is so much larger
than any known particle. However, recent research has
indicated that mass at a deeper level can be seen as a
Compton clock [26, 27]. This suggests that the Planck

mass is related to the Planck time [28], and instead of
looking for a very large mass (compared to any observed
particle), we should be looking for a very small mass,
approximately 1.17⇥ 10�51 kg.
One could also question why McCulloch has not used

the Kennard [24] version of the Heisenberg principle, as it
is commonly known today that the correct version of the
uncertainty principle is �p�x � ~

2 , rather than �p�x �
~. Here, we have to understand again that the Planck
mass is very unique. The Planck mass is the only mass
where the momentum always is related tomc, rather than
to a velocity v that varies between 0 and up to, but less
than, c. This is discussed in more detail by Haug [25].
Just as the bending of light needs a factor of 2 relative
to Newton to fit experiments (and relative to GR), could
it be that the Planck mass particle, which is linked to c
rather than v, is also linked to ~ rather than ~

2 ?. We do
not claim to have all the answers on this topic, but think
one should keep an open mind that around the Planck
mass, in particular, there could be aspects that are not
fully understood in relation to the Heisenberg uncertainty
principle.
Finally, we may ask, “Is the work standing on solid

theoretical ground when McCulloch transforms the mass
momentum relation into an energy position relation?”.
Due to the Pauli objection [29], the energy time ver-
sion of the uncertainty relation is not considered valid
by many physicists, because according to Pauli one can-
not find a time operator that is both Hermitian and self-
adjoint. McCulloch does not need a time operator, as he
does not use time, but instead uses position in relation
to energy. However, due to the fact that energies have
been proven to come in quanta, and there is typically as-
sumed continuous position when deriving the Heisenberg
principle, then the position energy operator will likely
also not be Hermitian and self-adjoint with respect to
energy. In other words, the McCulloch derivation could
run into the Pauli objection. More likely we think that
the energy position and the energy time version of the
uncertainty principle first introduced by Heisenberg are
actually valid. Further, several researchers have recently
suggested ways to get around the Pauli objection; see
[31–33].

VI. CONCLUSION

We have shown how a long series of gravity predictions
and measurements are totally independent of knowledge
of the Newton gravitational constant, or the size of the
mass in question. One important component is (half)
of the Schwarzschild radius, which at a deeper level is
the number of Planck masses in the gravitational object
multiplied by the Planck length. However, for most grav-
itational observations and predictions we do not need to
break down the Schwarzschild radius into these funda-
mental components.
We also show, that contrary to possibly beliefs, we
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do not need any knowledge of the mass of the gravity
object or the Newton gravitational constant to find the
Schwarzschild radius of a cosmological object, or even a
small clump of matter on Earth. This strongly supports
our recent view that the Newton gravitational constant

is a composite constant of the form G =
l2pc

3

~ . In under-
standing this, we may be a bit closer to understanding
the link between the quantum world and the macroscopic
world in terms of gravity. We have not shown any new
predictions in gravity, but we think our fresh angle on
existing theory is interesting and also relevant from a
practical point of view.

Newton’s gravitational constant divided by c2 is the
Schwarzschild radius of one standardized mass unit in
terms of weight, for example, one kg. The Newton gravi-
tational constant is only needed when we are using grav-
ity observations to find the mass of an object in terms
of a standardized weight measure. However, the same

can be done by finding the Planck mass weight using a
Cavendish apparatus instead, without any knowledge of
Newton?s gravitational constant.
If our theory is correct, then any student or researcher

can now, based on only measuring the gravitational ac-
celeration on Earth, perform a long series of accurate
gravity predictions without any knowledge of G or the
mass size of the object. Well we should be more specific
here, the relative mass size of an object, that is relative
to the Planck mass is indeed hidden in the Schwarzschild
radius, the mass ratio times the Planck length is inde-
pendent on weight.
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