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Abstract

A mathematical model for interpreting Newtonian gravity by means of elastic deformation
of space is given.
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1 Introduction

In this paper we show that Newtonian gravity may be interpreted in a framework of equilibrium in
elastic material. Based on this fact, we propose a theory of particles made of compact manifolds
connected to the space by means of a direct sum.

2 An Elastic Model for Gravity

In this section we will show how it is possible to derive a non relativistic model for gravity based on
the theory of elasticity.

2.1 Shearless Displacements in Elastic Material

We want to study the equilibrium in an elastic material in presence of a solution with vanishing curl
for the displacement field (i.e a solution with shearless stress tensor). The vanishing curl may be
due to several reasons but in particular we are interested in the following one:

• Spherical symmetry: A solution to a problem with spherical symmetry has clearly displace-
ments with spherical symmetry and vanishing curl. If we consider a solution given by the
superposition of several spherical symmetric solutions, given the linearity of the curls, this will
also have have a vanishing curl.

To find our solution we start from the Navier-Lame equation for the equilibrium in elastic ma-
terials:

p+ µL∇2u + (λL + µL)∇∇ · u = 0 (1)

where p is the distributed force in the material, µL and λL are Lame’s parameters end u is a field
of displacements that solves our problem. In absence of distributed force (p = 0) and using the
following identity:

∇2u = ∇(∇ · u)−∇× (∇× u) (2)

we can write Eq. (1) as folows:

µL∇2u + (λL + µL)[∇2u +∇× (∇× u)] = 0 (3)

since we assume that ∇×u = 0, we have immediately that the above equation simplifies as follows:

∇2u = 0 (4)
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The above vectorial equation together with the boundary conditions having the appropriate sym-
metry, can be used to find the field of displacements for problems where we know that the solution
has shearless displacements. (i.e. problems with vanishing curl).

Finally, we are interested in strains. By definition, strains are represented by a dimensionless
tensor ε defined by:

εii =
∂ui
∂xi

; εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(5)

Since in our case there are no shears, meaning that εij = 0 for i 6= j, strains are just a vector
ε = (εxx, εyy, εzz) which is the diagonal of a rank 2 tensor with two covariant indices.

2.2 Strains for the Space Deficiency Problem

Let us suppose we have a three-dimensional space composed of a material which is uniform, isotropic
and elastic and that we remove some material defined by a density deficiency function λ(x) (which
will be better defined further on). The material will readjust creating displacements and strains and
we want to find an equation to evaluate them. We will call this the Elastostatic Space Deficiency
Problem.

We start from a simple case where we remove a discrete quantity of material from the origin of
the axis described by the density deficiency function λ2

0δ(x). This corresponds to removing from the
space a ball of material having radius λ0 and identifying the boundary of the ball to a point. As a
matter of fact it turns out that the forcing function will need to have dimensions of surfaces.

Using Eq. (4) we find that the solution to our spherical space deficiency problem is the following
field of displacements and strains (See Appendix):

u(r, θ, φ) = −λ
2
0

r
îr (6)

ε(r, θ, φ) =
λ2

0

r2
îr (7)

both defined for r > λ0.
Now define a field µ as follows:

µ = −Y ε

[
N

m2
⇒ kg

m s2

]
(8)

where Y is the Young’s modulus of the elastic material and µ is basically a field equal to the usual
field σ of stress but with opposite sign. Dimension of µ, being stress, is force per unit surface (i.e.
pressure). Moreover, if we have a distributed space deficiency in our material obtained by removing
tiny balls of material of external area s0 and radius λ0 with λ2

0 = s0
4π , we can define a space deficiency

density function:

λ(x) = n(x)s2
0 ⇒ n(x)λ2

0 =
λ(x)

4π
(9)

where n(x) is the density of removed balls per unit area.
We note that given Eq. (7), if Σ is a sphere of equation r = R in spherical coordinates, oriented

outward and having interior V , we have:∫
Σ

(−ε) · dS =

∫
Σ

λ2
0

R2
R2dS = 4πλ2

0 = 4π

∫
V

λ2
0δ(x) (10)

Now, given any volume V having a closed surface Σ as its boundary with Σ oriented outward,
for the Gauss theorem we have:∫

Σ

µ(x) · dS = 4πY

∫
V

n(x)λ2
0dV = 4πY

∫
V

λ(x)

4π
dV ⇒ ∇ · µ = Y λ (11)

Since the field µ is conservative (and irrotational), it can be expressed in terms of a scalar
potential φ,

µ = −∇φ (12)
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from which we have:
∇ · (−∇φ) = −Y λ (13)

and eventually the Poisson’s equation for the space deficiency problem:

∇2φ = Y λ (14)

This was highly expected. Note that deficiency of space has dimensions of [m2] and therefore it is
proportional to the external surfaces of the removed balls rather then their volume or radius.

2.3 Analogy between Elastostatics and Gravity

Equation (14) is also the equation of gravitational field in empty space. For the above reason, there
is a perfect analogy between the field µ = −Y ε and the Newtonian gravitational field g. In this
analogy we interpret stress (with opposite sign) due to the displacements field to be the equivalent to
gravitational field and the function φ present in (14) to be the equivalent to gravitational potential.

It is possible to show that two space deficiencies experience an attractive force to each other
as two masses would do and, if they are be free to move, they would fall into each other. This is
because the field µ generated by each deficiency goes outward as 1

r2 exactly as for gravitational field
and if we reduce the distance between the two deficiencies the energy stored in the sum of the two
filed would be given by:

E =
1

2
Y

∫
VT

|ε|2dV =
1

2

1

Y

∫
VT

|µ|2dV (15)

where V0 is the whole space, V1 and V2 are the removed spaces and VT = V0 − V1 − V2.

Figure 1: Field Generated by 2 space deficiencies

Now, if we reduce the distance d between the two deficiencies by a virtual displacement δd, the
total energy stored in the field µ decreases and the force experienced by the two deficiencies is equal
to:

F = −δE
δd

=
Y

4π

s2
1s

2
2

d2
(16)

where s1 and s2 are the areas of the external surfaces of the two spherical decencies. This calculation
is not difficult and it could be done explicitly. To see how it works refer to [1] where the calculation
is carried out explicitly for the gravitational field but it could be done in exactly the same way for
our deficiency problem.

In our analogy, since we identify µ with gravitational field, we can say that they are proportional
by a constant Ω as follows:

Ω =
g

µ

[
m2

kg

]
(17)

Comparing the two expressions for the energy of gravity and space deficiency (see the table
below) we find:

Ω2 = 4π
G

Y
(18)
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Finally, using the definition (17) above and comparing the two expressions for the fields of gravity
and space deficiency (see the table below) we find:

m =
Y Ω

4πG
s =

Ω

Ω2
s =

s

Ω
⇒ Ω =

s

m
(19)

The analogy is summarised in the following table:

Gravitation Space Deficency

Poisson’s eq. ∇2φ(x) = 4πGρ(x) ∇2φ(x) = Y λ(x) = n(x) s0

Potential φ(r) = −Gm
r îr for mδ(x) φ(r) = − Y

4π
s
r îr for sδ(x)

Gradient g = −∇φ µ = −∇φ = −Y ε = g
Ω

Field g(r) = −Gm
r2 îr for mδ(x) µ(r) = − Y

4π
s
r2 îr for sδ(x)

Energy E = 1
2

(
1

4πG

) ∫
Σ
|g|2dV E = 1

2
1
Y

∫
Σ
|µ|2dV

Force F = G
m2

1m
2
2

d2 F = Y
4π

s21s
2
2

d2

Mass m s = Ωm = 4πλ2
0

(20)

For what we have said so far, we can conclude this paragraph with our personal equivalence principle:

Equivalence principle. Space deficiency is equivalent to mass and there is no classical mechan-
ics experiment that can tell an observer if the measured gravitational field is due to space deficiency
or mass. Moreover a spherical space deficiency having area of its external surface equal to s is
equivalent to a mass m = s

Ω .

2.4 The Newtonian Event Horizon

We want to follow our analogy between elastostatic and gravity to its logical conclusion and we
identify the elastic material with space itself and displacements with space being stretched. Our
space deficiency problem became a problem of space curvature. In a few words in our analogy space
deficiency, as mass does in General Relativity, curves space.

When we defined Oρ(ρ, θ, φ) (see Appendix) we made a spherical region of radius R of the original
space to disappear. This is not really correct. We may think that rather then removing a ball of
elastic material we make the boundary S of the ball collapsing toward the centre without actually
removing the material. In the process, the space outside S will be stretched while the internal space
will be compressed. This means that the metric gρρ will increase inside S but the integral of its
square root will stay constant and equal to R. At the end of the process we get a Dirac delta function
for ρ = 0 in

√
gρρ while the rest of the metric will go to the value evaluated in (34).

Based on this idea we may redefine the metric (34) as:

√
gρρ = Rδ(ρ) +

1

2

(
ρ√

ρ2 + 4R2
+ 1

)
(21)
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Eq. (21) is not formally correct because gρρ cannot be defined since δ2(ρ) does make sense. However,
the idea behind it is clear and it makes sense.

Moreover, by definition ρ ≥ 0 and therefore the Dirac delta function above must be squeezed
between 0 and 0+ and it cannot have negative values. We have:

r(ρ) =

∫ 0+

0

√
gρρ(ρ)dρ = R (22)

The above means that an observer close to the centre of space relevant to the metric (34) (i.e. ρ ≈ 0)
would still see a distance R to the centre. This is also clear from Eq.(35) and (36) which for ρ = 0,
are metrics of a sphere of radius R.

In a few words, for an observer that lives in our space and uses metric (34) to measure space, if
he looks towards the centre of the coordinates systems, he will not see a point but a sphere of radius
R with nothing in it. This sphere is like a sort of ”Newtonian event horizon” for him.

2.5 Space Deficiency vs Relativity

Our theory introduces curvature in space as the theory of General Relativity does. We want to
compare the amount of curvature introduced by the two theories by comparing the amount of
length contraction. We start from the General relativity. A mass M curves spaces as described by
the metric given by the Schwarzschild solution:

ds2 = −
(

1− 2MG

c2r

)
c2dt2 +

(
1− 2MG

c2r

)−1

dr2 + r2dθ + r2 sin θdφ (23)

for dt = 0, dθ = and dφ = 0 we have the length contraction of a rood parallel to the radial coordinate
given by: √

g̃rr =

√(
1− 2MG

c2r

)(−1)

(24)

For r →∞ we have: √
g̃rr = 1 +

MG

c2r
+ 3

(
MG

c2r

)2

+ o

(
1

r

)3

(25)

For the space deficency, using Eq.(34), we can evaluate the metric as:

√
grr =

1

2

(
r√

r2 + 4R2
+ 1

)
(26)

For r →∞ we have:
√
grr = 1− 2R2

r2
+ o

(
1

r

)4

(27)

If we compare
√

˜grr with
√
grr we see that the former goes like 1

r and is greater then one while the
latter goes like 1

r2 and is smaller then one.

2.6 Evaluation of Ω

A Possible way to evaluate Ω is to assume that the radius of an elementary particle is its Newtonian
event horizon. For example, assuming a quark radius of rq ≈ 10−19 m (See [2]) and a mass of
mq ≈ 10−30 kg) we have:

Ω =
sq
mq

=
4π r2

q

mq
≈ 10−7 m

2

kg
(28)

This will give at least an upper bound for Ω. We have1:

Y = 4π
G

Ω2
≈ 104 N

m2
(29)

which seems a bit too low. However, this is a lower bound.

1G = 6.67 · 10−11
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3 A Particle Physics Theory

So far we have shown simple interesting mathematical facts from which it is clear that it is possible
to have a full analogy between an elastic space deficiency theory and a Newtonian theory.

In Quantum Mechanics, all successful theory have been developed starting from an analogous
classical theory which is then quantised. For Example in QFT, the starting point for the theory is
a classical theory of fields with its Lagrangians.

Regardless the likelihood that space is an elastic material or not, we think that the space defi-
ciency model may be used as a starting point for making a quantum theory of particle. Although
the astonishing results of QFT are difficult to be overcome by any other theory at the moment,
we think that it is worth to further research in a quantised space deficiency theory even only for
academic reasons.

In such a theory, we suggest to suppose space to be an elastic material where space is conserved.
Energy can be interpreted as elastic energy of the material. Moreover, when a particle is created this
may be interpreted as a change in the configuration of the material where space is reorganised in a
final configuration equal to a compact 3D manifold attached to the space by means of a connected
sum. At that point the material would pull the manifold due to its elastic property and the manifold
would shrink to a tiny region (i.e. our particle) where the energy due to the bending of the space
in the attached manifold would be in equilibrium with the energy due to space which is pulled. In
a few words, space, rather then disappear, would turn in a manifold attached to space itself and
pulling it.

In this theory, particles are simply 3D manifolds attached to space and their mass is simply the
deficiency of space caused by the fact that space assumes a different topological configuration (not
locally homeomorphic to R3). Each particle would be associated to a specific (in the topological
sense) manifold attached to the space and physical property of particles may then be explained by
the topological properties of the relevant manifolds associated with them.

Appendix

A.1 Systems of Coordinates

In this paper, when dealing with the spherical space deficiency of radius R, we use spherical co-
ordinates (r/ρ, θ, φ) that will always refer to coordinates where θ is the polar angle and φ is the
azimuthal angle:

Figure 2: Spherical Coordinate System
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We will use 3 coordinate systems:

System Defined for Definition Note

O(x, y, z)
√
x2 + y2 + z2 > R Cartesian flat

Or(r, θ, φ) r > R Spherical flat

Oρ(ρ, θ, φ) ρ > 0 ρ = r − R2

r curved

(30)

System Or(r, θ, φ):

The metric in the system Or is the following:

grr = 1; gθθ = r2; gφφ = r2 sin2 θ (31)

all other components vanish. The line element is:

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2 (32)

System Oρ(ρ, θ, φ):

The coordinates transformations to go from Or(r, θ̄, φ̄) to Oρ(ρ, θ, φ) are defined in (30). The
inverse transformations are:

xr : r =
ρ+

√
ρ2 + 4R2

2
; xθ̄ : θ̄ = θ; xφ̄ : φ̄ = φ (33)

we have:

gρρ =
∂xr

∂xρ
∂xr

∂xρ
grr =

[
1

2

(
ρ√

ρ2 + 4R2
+ 1

)]2

(34)

Figure 3: System Oρ(ρ, θ, φ) metric

and in the same way:

gθθ =
∂xθ̄

∂xθ
∂xθ̄

∂xθ
gθ̄θ̄ = r2 =

(
ρ+

√
ρ2 + 4R2

2

)2

(35)

and:

gφφ =
∂xφ̄

∂xφ
∂xφ̄

∂xφ
gφ̄φ̄ = r2 sin2 θ =

(
ρ+

√
ρ2 + 4R2

2

)2

sin2 θ (36)
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A.2 Solution of EQ. (4) for Discrete Space Deficiency

We want to solve Eq.(4) for a discrete space deficiency in the origin s0δ(x). Since s0 is the external
area of the removed material, this correspond to a ball of radius λ0 = s0

4π . Due to symmetry of the
problem we know that u(x) has non vanishing components only in the radial direction and vanishing
derivative with respect of θ and φ for all components. Given the above, the radial component of the
vector Laplacian in spherical coordinates can be written as:

(∇2u)r =
1

r

∂2(rur)

∂r2
− 2ur

r2
(37)

Given Eq. (4) we have:
r(rur)

′′ − 2ur = 0 (38)

Which is:
r2u′′r + ru′r − ur = 0 (39)

This is a Cauchy-Euler Differential Equation and can be solved through trial solution. By setting
ur = rm and substituting we get:

m2 − 1 = 0 (40)

From which we have:

ur(r) = c1
1

r
+ c2r (41)

From the boundary condition at infinity we get c2 = 0 and from the boundary condition r(λ0) = −λ0

we get c1 = −λ2
0 from which eventually:

u(r, θ, φ) = −λ
2
0

r
îr (42)

defined for r > λ0.
As far as the strains are concerned, they also have radial components only which are given by

the directional derivative of u in spherical coordinates along r:

ε(r, θ, φ) =
λ2

0

r2
îr (43)

defined for r > λ0.
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