GRAPH ISOMORPHISM AND CIRCUIT ISOMORPHISM

Thinh D. Nguyen

(former member of Vietnam Mathematics Institute)

(email: kosmofarmer@gmail.com)

Abstract. In this note, we show that graph isomorphism is reducible to circuit isomorphism, in polynomial time.

1. Notation

We denote the well-known graph isomorphism problem by **GraphIso** which is defined as follows:

GraphIso = { $\langle G_1, G_2 \rangle$, graph G_1 is isomorphic to graph G_2 }

By CircuitIso, we denote the circuit isomorphism problem:

CircuitIso = { $< C_1, C_2 >$, two *n*-input circuit C_1 and C_2 are isomorphic}

Two *n*-input C_1 , C_1 are isomorphic if there exists a permutation $\pi \in S_n$ such that $C_1(x)$ and $C_2(\pi(x))$ are equivalent.

2. Main result

We will show that **GraphIso** \leq_p **CircuitIso**.

3. Details of the reduction

Given two *n*-vertex graph G_1 , G_2 , we construct two corresponding circuits C_1 , C_2 as follows:

The number of input bits to G_1 , G_2 is equal to n. We will describe the circuit C_1 , the construction of C_2 is similar. To code the structure of G_1 into C_1 , we consider each edge (u, v) of G_1 . For each such edge, we create a sub-circuit (gadget in poly-time reduction literature) which guarantees that among the *n*-input bit **only** two bits corresponding to u and v are 1. Then, to complete our construction, we take the **OR** of all the gadgets as output of C_1 .

Now, it is easy to see that: G_1 , G_2 , are isomorphic iff C_1 , C_2 are isomorphic. Because G_1 , G_2 can be seen as edge-tester for their corresponding graphs. If there is a permutation on vertices making G_1 into G_2 , then the same permutation on input bits will make C_1 equivalent to C_2 . The reverse is also not difficult.

ACKNOWLEDGMENT

My sincere thanks to all my (former) colleagues at Vietnam Institute of Mathematics, Vietnam National University.

REFERENCES

Norman L. Biggs, Discrete Mathematics, 2nd edition, Oxord University Press, 2003.