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Abstract In a previous article it was shown that the end state for the dust
metric of Oppenheimer and Snyder has most of its mass concentrated just inside
the gravitational radius; it is proposed that the resulting object be considered
as an idealized shell collapsar. Here the treatment is extended to include the
family of interior metrics described by Weinberg, and involving the curvature
parameter of a Friedmann metric. The end state is again a shell collapsar, with
a shell which becomes more concentrated as the curvature parameter increases,
which shows that the details of the shell structure are dependent on the initial
density profile at the beginning of the collapse. What is lacking in most previous
commentaries on the Oppenheimer-Snyder article is the recognition that their
matching of the time coordinate at the surface implies a finite upper limit for
the comoving time coordinate. A collapse process having all the matter going
inside the gravitational radius would require comoving times which go outside
that limit.

1 Introduction

Since the inception of General Relativity (GR), solutions have been sought for
the evolution of a mass distribution under its own gravity. The first attempt
at an equilibrium GR solution was the uniform density of Schwarzschild[1] in
1916, but progress on ”the problem of motion”[2] came very slowly. The first
time-dependent solutions, with the idealized equation of state p = 0, were those
of Tolman[3]; for simplicity, especially because of the absence of gravitational
waves, the Tolman solutions were all spherosymmetric. Models based on this
Tolman solution are known as dust models.

The 1939 article of Oppenheimer and Snyder[4] (OS) was a particular Tol-
man solution and played a central role in the birth of the black hole, especially
because it was used as a basis for Penrose’s[5] Theorem, which states that if cer-
tain conditions hold, the end state of a gravitational collapse must be a point
singularity having infinite density. Penrose claimed that the OS dust metric,
which at that time was the only known solution of the time-dependent field
equations, satisfied those conditions. However, it has now been demonstrated[6]
that the OS metric, describing collapse from an initially uniform density, has an
end state quite different from that described by Penrose; the end state of OS is
a shell with most of the dust material concentrated just inside the gravitational
radius.

A set of metrics described by Weinberg[7] has made it possible to extend the
OS family to nonuniform initial states, and another such family was described
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more recently by Choquet-Bruhat[8]. The latter author came to the same con-
clusion as Penrose regarding the end state of OS, and went on to generalize that
conclusion to the extended family[8], but Weinberg[7] preserved the analysis of
the OS article, and I shall show below that the family described in his article
has a similar end state to OS. The part of OS which was not properly imple-
mented, by either Penrose or Choquet-Bruhat, is the mapping by OS, from
the comoving coordinates used to describe the interior of the collapsar, onto
the exterior Schwarzschild coordinates. OS glued together these two metrics
by imposing continuity conditions at the surface. It would seem that the only
treatment, since the black-hole era, which maintains the continuity conditions
of OS is that of Weinberg[7]. On the whole the OS analysis has been forgotten.

The greater part of the mass of the OS collapsar is concentrated just inside
the gravitational radius; in the limit t→ +∞ the density at the surface, like that
at the centre of a black hole, becomes infinite, but with this more extended shell
version of collapse it is possible that a real collapsar with a nontrivial equation
of state will be a smeared out version of an OS shell, a possibility which we
discussed in two previous articles[6][9]. Such collapsars may be considered as a
revival of the frozen stars[10][11] discussed as early alternatives to black holes,
a more recent version of which is the gravastar [12].

2 The time according to Oppenheimer-Snyder

The Schwarzschild metric describing the space outside a spherosymmetric object
is

ds2 =
r − r0
r

dt2 − r

r − r0
dr2 − r2

(
dθ2 + sin2 θdφ2

)
, (1)

where, in units G = c = 1, the Newtonian far field is −r0/2r2 = −m/r2. A test
mass starting at rest at r = ∞ falls towards the gravitational radius r0 with
speed

v = −dr
dt

=
r − r0
r

√
r0
r

, (2)

which grows monotonically to v ≈ 0.38c at r = 3r0 and then decreases to zero
at r0. Integrating to find r(t), we find

t = r0

(
−2

3
y3/2 − 2

√
y + ln

√
y + 1
√
y − 1

)
+ const. , (3)

where the cotime y decreases from +∞ at t = −∞ to 1 at t = +∞. Hence a
test mass starting at any finite radius requires an infinite time to reach r0; we
have here the description of an apple, such as was observed by Newton, falling
to the ground, where in this case ”the ground” is the surface of a completely
collapsed object. This result was established in the OS article.

For the interior region R < Rb, the OS metric is, using the same units,

ds2 = dτ2 − r2

R2
dR2 − r2

(
dθ2 + sin2 θdφ2

)
, (4)
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where

r = R

(
1− 3τ

2

√
r0
R3
b

)2/3

, (5)

and the synchronous time τ is given the value τ = 0 when r = Rb > r0. The OS
coordinates are comoving, that is the freefall geodesics are simply R = const.,
θ = const., φ = const. The only nonzero component of the stress tensor is

T ττ = − 1

4π

[
1
√
gθθ

∂2

∂τ2
√
gθθ +

2
√
gRR

∂2

∂τ2
√
gRR

]
=

3R3r0
8πR3

br
3

, (6)

and hence

T ττ
√
−g =

3r0R
2 sin θ

8πR3
b

(R < Rb) . (7)

OS imposed continuity of the metric at the surface R = Rb by relating the
cotime y in the interior (see [4] equation (36), which I shall designate (OS36))
to R

y =
rRb
r0R

+
1

2

(
R2

R2
b

− 1

)
=
Rb
r0

(
1− 3τ

2

√
r0
R3
b

)2/3

+
1

2

(
R2

R2
b

− 1

)
. (8)

The interior OS metric, in the coordinates (t, r, θ, φ), is then

ds2 =
Rbr

2(y − 1)2

r0R(r − r0R3/R3
b)y

3
dt2 − r

r − r0R3/R3
b

dr2

−r2
(
dθ2 + sin2 θdφ2

)
, (9)

where R(r, y) is the inverse function of (8) and is parametrically defined, for
0 ≤ 2 sin θ ≤

√
3/(2y + 1), as

R = 2Rb

(
2y + 1

3

)1/2

sin θ, r = r0

(
2y + 1

3

)3/2

sin 3θ . (10)

The metrics (1) and (9) are now manifestly continuous at R = Rb where y =
r/r0, and this completes the glueing of the interior to the exterior metric.

By (8) the limiting value of y = 1, corresponding to t→ +∞, is

τ = τ0(R) =
2

3

√
R3
b

r0
− r0

3
√

2

(
3− R2

R2
b

)3/2

. (11)

This result is equivalent to (OS37), which led to a main conclusion of their OS
article[4], namely

From this relation we see that for a fixed value of R as t tends to
infinity, τ tends to a finite value τ0 which increases with R.

For given R, there is no time t corresponding to τ later than τ0(R), which means
that synchronous times later than τ0(R) fall outside physical time, or one could
say they are ”beyond infinity”.
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3 The Penrose version of OS

From his interpretation of [4], Penrose[5] deduced that

The general situation with regard to a spherically symmetrical body
is well known[4]. For a sufficiently great mass, there is no final
equilibrium state. When sufficient thermal energy has been radiated
away, the body contracts and continues to contract until a physical
singularity is encountered at r = 0. As measured by local comoving
observers, the body passes within its Schwarzschild radius r = r0.

I emphasize that Penrose described no collapse process apart from that of
OS, and did not give any indication that his interpretation differs from that
of OS themselves. Choquet-Bruhat repeated the Penrose analysis, concluding
similarly[8] that

If the density1 is uniform (Oppenheimer-Snyder case), the dust shells
all arrive at the same time at the centre.

Both of these statements are in contradiction with the OS analysis of the
previous section; they ignore the continuity requirement of OS, and the conse-
quent restriction in the range of τ . The source of the contradiction is shown
in the second of these quotations; Choquet-Bruhat is clearly referring to the
relation (5), carrying the time τ through to

τ0 =
2

3

√
R3
b

r0
, (12)

which, according to (OS37), that is (11), lies outside the physical range of τ .
Yet, paradoxically, Penrose, as recently as November 2016, continues to

say[14] that the OS article was the ”first description of a black hole”. I would
say, on the contrary, that OS, together with some generalizations described in
the next but one section, are the only full descriptions we have of a collapse
process (as distinct from an alleged collapsed final state). So the fact that OS
and its generalizations have no singularity should cast doubt on the validity of
all black hole physics.

4 The shell collapsar

Substituting (11), that is (OS37), in (5), that is (OS25), gives immediately

r(τ0) =
r0R

2Rb

(
3− R2

R2
b

)
. (13)

This is the end state of OS collapse. It is appropriate to call it a shell collapsar,
because its density is strongly concentrated near R = Rb. This may be seen

1meaning initial density
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from the fact that half of the total dust for large y lies within Rb > R >
2−1/3Rb = 0.794Rb, and in the end state this maps into r0 > r > 0.941r0.
Furthermore, because in this limit dr/dR → 0, the density at the surface r0
actually becomes infinite. When we take account of the relativistic mass effect
of the dust particles[6], by analysing the stress tensor (7) in the (r, t) coordinates,
the concentration is even more pronounced, and the half-mass shell lies between
r0 and 0.947r0.

Note that a given dust particle follows the geodesic

r =
r0R

2Rb

(
2y + 1− R2

R2
b

)
, (14)

so that, for y → +∞, that is t → −∞, r is proportional to R, and therefore
in this limit the dust density is uniform in both the comoving and external
coordinate frames.

A recent treatment of the OS dust model by Zakir[13] supports the con-
clusion that no collapse occurs beyond the gravitational radius; this author
concludes that OS is an example of a frozen star [10][11].

5 Generalizations of Oppenheimer-Snyder

We consider now the Weinberg interior metric2[7] (see equation (11.9.16))

ds2 = dτ2 − z2

1 + kR2
dR2 − r2

(
dθ2 + sin2 θdφ2

)
, (15)

where z(τ) = r/R is given parametrically ([7] (11.9.25)) by

z = k−1 sinh2
√
kη, τ =

2

3
+ k−1

(
η − k−1/2 sinh

√
kη cosh

√
kη
)

; (16)

OS is the case k → 0. We may rewrite the metric as

ds2 =
z2(1 + kR2)

(1 + kz)(z −R2)

[
dz +

(1 + kz)RdR

1 + kR2

]2
− z

z −R2
dr2 − r2

(
dθ2 + sin2 θdφ2

)
. (17)

At this point Weinberg constructed an integrating factor

dy = f(R, z)

[
dz +

(1 + kz)RdR

1 + kR2

]
(f(1, z) = 1) , (18)

with the property that dy is a perfect differential. In this case the solution is
simple, namely

f(R, z) =

√
1 + kR2

1 + k
, (19)

2I have changed the sign of k; the negative k case describes not a collapsing but a spherically
pulsating object. I have also simplified the algebra, by suitable choice of units, so that r0 = 1
and Rb = 1.
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leading to

y =
1

k

[
(1 + kz)

√
1 + kR2

1 + k
− 1

]
=

1

k

[
R+ kr

R

√
1 + kR2

1 + k
− 1

]
. (20)

Note that, for k → 0, this gives the OS value (8). Then the metric becomes

ds2 =
r2(1 + k)

(R+ kr)(r −R3)
dy2 − r

r −R3
dr2 − r2

(
dθ2 + sin2 θdφ2

)
, (21)

with R(r, y) given as the inversion of (20). As with OS, this metric becomes
continuous with the exterior metric at R = 1 once a suitable transformation
t(y) is made, namely (

dy

dt

)2

=
(y − 1)2(1 + ky)

y3(1 + k)
; (22)

the resulting metric is3

ds2 =
r2(y − 1)2(1 + ky)

(r −R3)y3(R+ kr)
dt2 − r

r −R3
dr2 − r2

(
dθ2 + sin2 θdφ2

)
, (23)

and, as with OS, the continuity property is manifested by putting R = 1.
We may now plot r(R, y) at y = 1, and, following analysis of the stress tensor

as in[6], we find that the final half-mass shell has radius 0.961 at k = 0.5 and
0.967 at k = 1. Comparison with the OS value 0.947 at k = 0 shows that the
density of the shell is greater than in the corresponding OS shell.

A somewhat wider generalization of OS was given by Choquet-Bruhat[8],
namely

ds2 = dτ2 −
(
∂r

∂R

)2

dR2 − r2
(
dθ2 + sin2 θdφ2

)
, (24)

where

r(τ,R) = R

(
1−

3τ
√
F (R)

2

)2/3

, (25)

with the surface at F (1) = 1; F(R) is simply related to the comoving mass
density. An analysis similar to that of Weinberg is possible, but the integrating
factor is less simple and must be obtained by a numerical integration. I have
been able to do this with the function F (R) given by

F (R) = 1 + F0(1−R), (F0 > −1) , (26)

and again we find a limiting density which is a shell near to r = 1, with a
shell thickness depending on F0. Of course, in the case F0 = 0 the density
corresponds to OS. As stated earlier, Choquet-Bruhat, unlike Weinberg, did
not do the matching of the t-coordinate.

3The metric is identical to Weinberg’s[7] equations (11.9.31-2); to see this we have to change
k to −k, and then make the changes in notation (a,R, S) = (1, kz, ky).
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6 Discussion

We have shown how complete matching of the interior with the exterior metric,
leading to a proper understanding of the limits of the time variables, is inti-
mately linked with the shell structure of the end state. This step, requiring
the construction (18) of the integrating factor f(R, z), was an essential part of
the analysis of the original OS article, and also of Weinberg[7], but was not
considered by Penrose[5] or Choquet-Bruhat[8].

Of course, we should recognize that only a limited set of inferences may be
drawn from these highly idealized dust models, but, since they are the only
complete time-dependent solutions for collapse, they should properly be taken
account of in trying to describe collapsars with more realistic equations of state.
A contemporary statement from Christodoulou[15] along these lines is

An important remark at this point is that it is not a priori ob-
vious that closed trapped surfaces are evolutionary. That is, it is
not obvious whether closed trapped surfaces can form in evolution
starting from initial conditions in which no such surfaces are present.
What is more important, the physically interesting problem is the
problem where the initial conditions are of arbitrarily low compact-
ness, that is, arbitrarily far from already containing closed trapped
surfaces, and we are asked to follow the long time evolution and show
that, under suitable circumstances, closed trapped surfaces eventu-
ally form. Only an analysis of the dynamics of gravitational collapse
can achieve this aim.

The alleged evolution of a collapsar towards a trapped surface inside the
horizon is, of course a necessary step in the black-hole conjecture. The argument
of the previous sections was almost entirely geometrical, but the latter quotation
emphasizes the need for a field-theoretic content. A first step in that direction
was already taken in [6], by considering the stress tensor, but a more ambitious
and revealing programme will necessitate studying, for example, the Landau
energy pseudotensor[16]; this is an area which we investigated in a previous
publication[9].

I draw attention to two aspects of my stress-tensor analysis which indicate
the role played by gravitational energy. First there is the obvious question of
what physical force intervenes to prevent gravitational attraction causing col-
lapse to a black hole. With due respect to fifty years of tradition, I submit that
this is the wrong question. My analysis shows that Einstein’s insistence[17] on
a proper treatment of time dilation, involving infinite red shift as an external
object approaches the gravitational radius[18], has led us to particle paths in the
interior of the collapsar which are continuous with those of an exterior object,
and which go asymptotically towards the surface and not to the centre. The
conclusion then seems inescapable; the force taking such particles towards the
surface is one of gravitational repulsion[19]. A second question is posed by the
form of the mass density revealed in [6]. The total mass increases steadily as
y decreases and tends to infinity as y tends to 1. This is an extreme example
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of a long recognized behaviour in collapsing bodies first noted by Cameron[20],
who discovered that a neutron star of gravitational mass a little under 2M� has
a ”proper mass” of about 3M� and a radius about 1.35 times its gravitational
radius. The factor linking these two masses, discussed also by Weinberg[7] (see
his section 11.1), is the time dilation factor given as y/(y − 1) in [6]. So, in the
highly idealized dust models, which are the only ones giving exact solutions, re-
pulsive gravity is associated with both an infinite surface density and an infinite
energy.

Both of the latter features of the dust collapsar indicate the need to take ac-
count of the nonzero pressures inside real collapsars, a theme we have discussed
previously[6][9][19]. In dense bodies like neutron stars and galactic centres there
is a core of negative gravitational energy with negative mass, which not only
produces repulsion but also cancels out a proportion of the ”proper mass” con-
tained in the stellar material. A nonzero pressure is what prevents repulsive
gravity effects going to the extremes of the dust models. The pioneering work
in this area was the article of Oppenheimer and Volkoff[21] (OV), published a
few months prior to the OS article. To the extent that such an investigation
has been carried through to black hole related models, it has been completely
dominated by what may be considered a newtonian insistence that gravity can
only be attractive, with the consequence that nuclear material is squeezed to
very high central densities, giving birth to exotic material such as hyperons and
quarks. Note, however, that Oppenheimer and Volkoff, in their footnote 10,
conceded the possibility of varying the central boundary condition, but did not
investigate it further in the light of the OS article. In our articles cited above
we indicated the profound way in which the incorporation of repulsive gravity
changes such theories, through changed boundary conditions at the centre. It
should be borne in mind that the pressures required to prevent infinite density
at the surface are less by many orders of magnitude than would be required
to prevent an infinite central density. It should also be noted that collapsars
with shell-like density profiles, and with a realistic equation of state, have been
proposed in the context of metrics having an empty de Sitter metric[12] at the
centre.
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