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Once More About Quantum "Entanglement"1) 
 

V.A. Kasimov (E-mail: quadrica-m@mail.ru) 
 
 

Phenomenology 
 

 There are two aspects to the presentation of the problem − conceptual and technological. Here we 
will not touch upon the technological aspects of preparation and implementation of the technique of 
execution of experiments (for example, the A. Aspect's experiment ), focusing on the conceptual principles of 
quantum theory. 
 

  In physics, topologically separable objects are initially distinguishable. Because of this, topological 
properties, we always have the opportunity to count objects to assign them a sequence number and be 
addressed to the objects by the assigned numbers. 
 

 1. Using this circumstance and considering photons as initially distinguishable particles (in the 
classical sense, although as we will see, it will lead us to a significant adjustment of this view), we will talk 
about two photons propagating in two opposite directions. In this case, the photon propagating to the left is 
assigned the number 1, and the photon propagating to the right is the number 2. The separability of photons is 
demonstrated by the fact that one photon can be registered on the left and the second on the right, thus 
illustrating the spatial distinctiveness and the possibility of their numbering. Instead of numbering the 
photons, it may be more convenient to use the arrow symbols "←" and "→", indicating the direction of 
movement. The separability of photons is demonstrated by the fact that one photon can be registered on the 
left and the second on the right, thus illustrating the spatial distinctiveness and the possibility of their 
numbering. Instead of numbering the photons, it may be more convenient to use the arrow symbols "←" and 
"→", indicating the direction of movement. 
 

 In the classical presentation, we will consider the Aspect's two-photon setting as a working model: 
two photons are born and propagated in opposite directions. We will consider another characteristic of the 
photon, except for the numbering of 1 and 2  −  its polarization, which can take two values - "left" and 
"right", and in the spin notation  −  " ↑ " and " ↓ ". 
 

 So, photon 1 flies to the left (←), photon 2 − to the right (→). Symbolically, we can consider the 
following situations: 
 

1) |�↑, ←〉 ≡ |�↑〉�   −   the first photon is in the "spin up" state, without any information about the second photon;  
 

2) |�↓, →〉 ≡  |�↓〉� −  the second photon is in the "spin down" state, without any information about the first 
photon; 
3) |�↑, ←〉 ⊗ |�↓, →〉 ≡ |�↑〉� ⊗ |�↓〉� −  the joint state of two photons: the first photon is in the "spin up" state, the 
second photon is in the "spin down" state;  
 

4) |�↓, ←〉 ⊗ |�↑, →〉 ≡  |�↓〉�⊗|�↑〉� − the joint state of two photons: the first photon is in the "spin down" state, the 
second photon is in the "spin up" state. 

 

  

 Cases 1) and 2) are descriptions of single-particle systems, their formal solutions (without initial 
conditions) coincide, and there is no need for particle indexing. 
 Cases 3) and 4) are descriptions of two-particle systems, and indices specify the states of each 
particle. 
 

 In principle, for all these States, we can give the corresponding analogs of the description of one-and 
two-photon systems in classical physics. However, in quantum physics, there is a fundamentally new and 
important point, non-reproducible in classical physics. Explain this.  
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 2. The wave equation of quantum mechanics can describe two-photon States as |�↑〉� ⊗ |�↓〉� и |�↓〉� ⊗ |�↑〉�, so and superposition |�↑〉� ⊗ |�↓〉� + |�↓〉� ⊗ |�↑〉�. Let's pay attention to the chain 
 
  
In the last equality |�↑, ←; ↓, →〉 ≡ |�↑, ↓〉 the connection between the spin projection and the direction of the 
particle motion or between the spin and the unique number of the particle is erased. This procedure can be 
called a procedure of symmetrization on the indices of the particles. 
 

 It can be seen that the result of following in the re-values along the given chain is a description of the 
non-index construction �|�↑, ↓〉�, which we can say that it represents the path-tangled or "spin"-tangled system 
of two photons. This construction is a kind of integrity, which is described by a single state vector or wave 
function, that is, is a single quantum object. Topological separability of photons disappears. And, if somehow 
we manage to assign numbers to the photons of the pair at their birth, we can not to know which of the 
photons (first or second) will be registered on the left or right. This is what was mentioned at the beginning of 
the article. Due to the integrity of a two-photon object, correlations can be observed between spatially 
separated points that are in the sphere of influence of this object. Indeed, when this integrity was observed 
from two spatially separated points in the experiment of the Aspect, the existence of a correlation between the 
ends of this integrity was confirmed. 
 

 3. It is further. The state of the quantum system can be expressed in a General form as � = ����, 
which allows us to represent the left part (1) as 
 
Then 
 
 
 
where ��и �� −  real numbers and � = �� − ��. Let us pay attention to the fragment of the equality (3): 
 
 
 

Here on the left is the phase �� of the left part of the quantum object, on the right is the phase �� of the right 
part, and in brackets − the phase �, characterizing the integral construction of the quantum object. 
Measurements are made by left and right detectors of Aspect's device. Moreover, in the quantum description 
of the whole object exponential multipliers with phase �� and �� outside of the braces can be omitted, 
because quantum mechanics describes the states  with accuracy up to an arbitrary multiplier modulo is equal 
to 1, i.e. !A� + ����#$ and !A��%�# + ��$ describe the same condition of two-photon quantum system. 
 

 And here − the most important thing: changing �� while preserving � we inevitably, according to 
(4), should get the change ��. From the point of view of the technology of the Aspect's experiment, it looks 
like this: by changing the phase �� of a pair of photons (phase constancy � )  by the polarizer, we should 
observe the phase change ��. Since the phases ��, ��, � do not contain dependences on the z-axis coordinate 
and time &, the spatiotemporal dependence �� on �� will not be deterministic, i.e. functional, and the 
observations can show only the statistical dependence ��(��)  under an unknown mechanism of interaction 
between parts of coherent integrity2). The state of the integral object while preserving � is referred to as the 
coherent states of the "particles"3) of the pair. 
                                                           
2
 ) The determination of the dependence δ (z) can give an opportunity to describe the signal propagation through the 

modulation of this phase (for example, by the type of "pilot wave" de Broglie-Bohm). This is to the model (4) of the 
computational algorithm.  

3
 ) Realizing that the concept of particle in quantum mechanics is rather conventional, we will use this term for brevity 

in quotes. However, in the process of decoherence (see below) the notion of a particle acquires classical certainty 

�|�↑〉� ⊗ |�↓〉� + |�↓〉� ⊗ |�↑〉�� ≡ �|�↑, ←; ↓, →〉� ≡ �|�↑, ↓〉�  (1) 

ψ = A����* + �����+ = !A� + ����#$���* = !A��%�# + ��$���+ ,   (3) 

!A� + ����#$���* = !A��%�# + ��$���+ ,   (4) 

�|�↑, ↓〉� ≡ ψ = A����* + �����+   (2) 
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Formalism 
 

 When understanding the results of the Aspect's experiment, it is necessary to speak the language of 
quantum mechanics, not the language of some Argo insights. The subject of one of these representations is 
the concept of "quantum entanglement". Meanwhile, the language of quantum mechanics makes it possible to 
clearly and unambiguously fill the issues raised in this regard with concrete content. For the analysis the 
elementary model used in [1, 2] is offered. 
 
 

 We consider two particles and mark them with index ,, (, = 1, 2). Each of them can be in one / of 
two states (/ = 1,2), often indicated by arrows (in the spin notation): ↑ for (/ = 1) and ↓ for (/ = 2). 
 

 We introduce a two-index designation 0�1, where the upper index , denotes a particle, the lower 
index / − its state (,, / = 1, 2). Then the state of each of the two particles can be represented by the vector |�0�1〉 of a single-particle space. For example, the vector |�0��〉 represents the first particle in the state ↑;  |�0��〉 is 
the second particle in state  ↓,  and so on. These vectors are obtained as a solution of the one-particle equation 
of quantum mechanics. 
 

 We also introduce four-index expression 0�2��, which will determine the vector |�0�2��〉 is already two-

particle space using a direct product of one-particle spaces |�0��〉 and |�02�〉. If the Hamiltonian of a two-particle 
system assumes the possibility of separating the variables of the wave equation, then at least the order of the 

solution of the wave equation is known and allows the representation of the solution |�0�2��〉 in the form: 
 
 

 

that is, the vector |�0�2��〉 is obtained as a composition of solutions of single-particle wave equations. 
 

 Integrating upon continuous variables and summing upon all quantum numbers of one particle in (5), 
of course, as a convolution with complex conjugate parameters, we will obtain a wave vector (function) for 
another particle. It should be noted that the possibility of performing the convolution operation will allow us 
to talk about the particles as some separable entities (in this case, as two particles). *******************  
 

 In the case of particles of the same type4), we are interested in two possible solutions for a pair of 
particles according to the particle identity principle: symmetric (for bosons) and antisymmetric (for 
fermions). According to the superposition principle, these solutions can be represented as: 

 

where the upper sign corresponds to the case of Bose-particles, the lower sign corresponds to Fermi-particles.  
 

 Let select  the phases �� and �� in  |�0�2��〉 and |�0�2��〉: 
 

 
and (6) we will rewrite in the form 

 

 
 

where  � = �� − ��. 
                                                           
4 ) The case of the same type particles is considered due to the fact that the pair of photons (bosons) or a pair of fermions 
(in the EPR version) is used in the interpretation of the Aspect's experiments. The conclusions of the preliminary results 
become more transparent. This particular can be overcome by considering the separation and symmetrization of 
variables of not all particle parameters, but a group of identical properties. Then "entanglement" as an argo-concept gets 
its certainty for different particles of micro- and mesoscales, although there is no reason for refusal of and macroscales. 

|�0�2��〉  = |�0��〉 ⊗ |�02�〉, (5) 

(6) |�03�2 〉 =  |�0�2��〉 ± |�0�2��〉, 

(7) |�0�2��〉 = |�50�2��5〉���* , |�0�2��〉 = |�50�2��5〉���+, 

(8) |�03�2 〉 = ||�0�2��|〉���* ± ||�0�2��|〉���+ = !||�0�2��|〉 ± ||�0�2��|〉��#$���* , 
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 Note the arbitrariness of the phases �� and �� is a property solutions |�0��〉, |�02�〉 and |�0�2��〉, defined 
accurate to an arbitrary phases. These solutions represent pure quantum mechanical states as described by the 

state vectors: |�0��〉 and |�02�〉  in the single-particle space and |�0�2��〉  − in the two-particle space.  

 Locking the phase difference � = �� − ��, we transform the two-particle system |�03�2 〉 in the holistic 

object of the coherent coexistence of quantum objects |�0�2��〉 and |�0�2��〉. Actually this is the essence of 
manifestation of the phenomenon of entanglement of states of two  quantum objects. By freeing the phases �� 
and ��, we give quantum objects the possibility of free and independent coexistence for each of them. 

 In this regard, the principle of identity of quantum particles can be considered as a static aspect of 
entanglement and the correlation in the Aspect's experimental results as a dynamic aspect of exchange 
interaction. 
 

 

 It should be noted that the procedure of projection (associated with the reduction) of the symmetrized 
vector of a two-particle space |�03�2 〉 onto a one-particle subspace will no longer be represented by a unitary 
transformation, which is necessary to describe evolution according to the Schrödinger's equation, and is an 
important feature of the decoherence phenomenon. This projection will not represent a pure one-particle state 
because the corresponding particle will already be in the environment of the other. Because of this, its state 
can not be described by the state vector, it must be described by the density matrix. Decoherence as a 
phenomenon allows describing the transition from quantum mechanics to classical mechanics ( see, for 
example, [4]).  
 

Appendix 1 
 

 

Single-particle density matrix in 2-space 
  

 In the basis of the one-particle state space 
 

 

  

the state �|0�1〉 = 60�10�17 can be represented as a superposition 

 

 

where 0�1 and 0�1 are probability amplitudes for the states �| ↑〉 and �| ↓〉   of the first (, = 1) or second  (, = 2) particles. 
 

 From the condition of normalization of the vector (п1.2) follows 
 

 
 

 Matrix elements 89�21  of the density matrix 891 take the form5):  
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 ) The tilde sign "   :"  here denotes the complex conjugate quantities. 

 

   �| ↑〉 = ;10= ; �| ↓〉 = ;10=  
 

(п1.1) 
 

   �|0�1〉 = 0�1 ;10= + 0�1 ;01=  = 0�1 �| ↑〉 + 0�1 ��| ↓〉〉, 
 

(п1.2) 
 

   |0�1|� + |0�1|� = 1. 
 

(п1.3) 
 

�89�21 = |0�1〉〈021|� = ? |0�1|� 0�1 ∗ 0A�10A�1 ∗ 0�1 |0�1|� B. (п1.4) 
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 Using (п1.4) taking into account (п1.3), we obtain: 
 
 
  
 

 
 

 
 
 
 
 
 
 
  

Thus, 
 
 
a density matrix 891, determined by (п1.4), describes the pure state as well as the vector (п1.2) 6).   

 

Two-particle density matrix in 4-space 
 

 

 In the basis of the two-particle states space 
 
 
 
 
 
 

the state �|0�21C〉 =
D
EF

0����0����0����0����G
HI  can be represented as a superposition 

 
 
 
 
 
 
 
where 0����, 0����, 0����, 0���� the probability amplitudes for the states of a pair of particles �| ↑↑〉, �| ↑↓〉, �| ↓↑〉, �| ↓↓〉  
the first and the second, respectively. 
 
 

 Matrix elements 899�2 of the density matrix 899 take the form 7) : 
 

 

                                                           
6)

 Operators that have the idempotence property 8� = 8, are called projection operators. Thus, the pure state density 
matrices are represented by projection operators. 
 

7
 
)
 see Appendix 2 

 

|0�1|� ∗ |0�1|� + 0�1 ∗ 0A�1 ∗ 0A�1 ∗ 0�1 = |0�1|� ∗ |0�1|� + |0�1|� ∗ |0�1|� = |0�1|� ∗ (|0�1|� + |0�1|�) = |JKL|M |0�1|� ∗ 0�1 ∗ 0A�1+0�1 ∗ 0A�1 ∗ |0�1|� = 0�1 ∗ 0A�1 ∗ (|0�1|� + |0�1|�) = JKL ∗ J:ML 0A�1 ∗ 0�1 ∗ |0�1|� + |0�1|� ∗ 0A�1 ∗ 0�1 = 0A�1 ∗ 0�1 ∗ (|0�1|� + |0�1|�) = J:KL ∗ JML 0A�1 ∗ 0�1 ∗ 0�1 ∗ 0A�1 + |0�1|� ∗ |0�1|� = |0�1|� ∗ (|0�1|� + |0�1|�) = |JML|M 

Notation 1 

 

(п1.5) 
N 89�O1 89O21 

O = ? |0�1|� 0�1 ∗ 0A�10A�1 ∗ 0�1 |0�1|� B ∗ ? |0�1|� 0�1 ∗ 0A�10A�1 ∗ 0�1 |0�1|� B = 

= ?|0�1|� ∗ |0�1|� + 0�1 ∗ 0A�1 ∗ 0A�1 ∗ 0�1      |0�1|� ∗ 0�1 ∗ 0A�1+0�1 ∗ 0A�1 ∗ |0�1|�0A�1 ∗ 0�1 ∗ |0�1|� + |0�1|� ∗ 0A�1 ∗ 0�1       0A�1 ∗ 0�1 ∗ 0�1 ∗ 0A�1 + |0�1|� ∗ |0�1|�B = 89�21  , 

(891)� = 891 , 
 

(п1.6) 
 

�|0�21C〉 = 0���� P1000Q + 0���� P0100Q + 0���� P0010Q + 0���� P0001Q = 0���� �| ↑↑〉 +  0���� �| ↑↓〉 + 0���� �| ↓↑〉 + 0���� �| ↓↓〉  , 
  
  

(п1.8) 
 

�| ↑↑〉 = P1000Q ;   �| ↑↓〉 = P0100Q ;  �| ↓↑〉 = P0010Q ;  �| ↓↓〉 = P0001Q (п1.7) 
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 Using (п1.9) taking into account the normalization of the vector (п1.8), we obtain: 
 
 
 
 
 
 
 
 
 
 
 
 
 The first line of the multiplication result (п1.10) of the density matrix itself is presented in  
Notation 2. Similarly, the results can be obtained for the following lines. Thus, as in the case of a single-
particle vector space, in the two-particle space, hold true the equality:  
 
 
 
and a density matrix 899  defined by (п1.9) describes the pure state as and the vector (п1.8). 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(important) Note 1 
 

 Consideration of wave equations for a two-particle system in 4-space of state in representation (п1.7) 
with corresponding Hamiltonians allows for chains of solutions of the type 
 
 
 
  
that will allow to obtain equivalent to the evolutionary (using Schrödinger equations) description of the 
change of states and "transfer" of the first particle to the opposite state): 
 

= 0���� ∗ 0A���� ∗ (|0����|� + |0����|� + |0����| + |0����|( = JKKKM ∗ J:KMKM
 

|0����|� ∗ 0���� ∗ 0A���� + 0���� ∗ 0A���� ∗ 0���� ∗ 0A���� + 0���� ∗ 0A���� ∗ |0����|� + 0���� ∗ 0A���� ∗ 0���� ∗ 0A���� = 0���� ∗ 0A���� ∗ '|0����|� + |0����|� + |0����|� + |0����|�( = JKKKM ∗ J:MKKM 

|0����|� ∗ 0���� ∗ 0A���� + 0���� ∗ 0A���� ∗ 0���� ∗ 0A���� + 0���� ∗ 0A���� ∗ 0���� ∗ 0A���� + 0���� ∗ 0A���� ∗ |0����|� ='| | | | | | | | (

Notation 2 
 |0����|� ∗ |0����|� + 0���� ∗ 0A���� ∗ 0���� ∗ 0A���� + 0���� ∗ 0A���� ∗ 0���� ∗ 0A���� + 0���� ∗ 0A���� ∗ 0���� ∗ 0A���� =  

 |0����|�'|0����|� + 0A���� ∗ 0���� + 0A���� ∗ 0���� + 0A���� ∗ 0����( = |0����|�'|0����|� + |0����|� + |0����|� +
|0����|�( = 5JKKKM5M

  

 |0����|� ∗ 0���� ∗ 0A���� + 0���� ∗ 0A���� ∗ |0����|� + 0���� ∗ 0A���� ∗ 0���� ∗ 0A���� + 0���� ∗ 0A���� ∗ 0���� ∗ 0A���� =  

 

RS���� �| ↑↑〉  ⇒   '[0���� �| ↑↑〉 +  0���� �| ↑↓〉 + 0���� �| ↓↑〉 + 0���� �| ↓↓〉(,
'0���� �| ↑↑〉 + 0���� �| ↑↓〉 + 0���� �| ↓↑〉 + 0���� �| ↓↓〉(  ⇒   V���� �| ↓↓〉 ,� 

(п1.9) 
 

899�2 = 

 

50����5�
 0���� ∗ 0A���� 0���� ∗ 0A���� 0���� ∗ 0A���� 

0���� ∗ 0A���� 50����5�
 0���� ∗ 0A���� 0���� ∗ 0A���� 

0���� ∗ 0A���� 0����0A���� 50����5�
 0����0A���� 

0���� ∗ 0A���� 0���� ∗ 0A���� 0���� ∗ 0A���� 50����5�
 

 

(п1.10) 
 

= 899�2 

=

50����5�
 0���� ∗ 0A���� 0���� ∗ 0A���� 0���� ∗ 0A���� 

0���� ∗ 0A���� 50����5�
 0���� ∗ 0A���� 0���� ∗ 0A���� 

0���� ∗ 0A���� 0����0A���� 50����5�
 0����0A���� 

0���� ∗ 0A���� 0���� ∗ 0A���� 0���� ∗ 0A���� 50����5�
 

 

50����5�
 0���� ∗ 0A���� 0���� ∗ 0A���� 0���� ∗ 0A���� 

0���� ∗ 0A���� 50����5�
 0���� ∗ 0A���� 0���� ∗ 0A���� 

0���� ∗ 0A���� 0����0A���� 50����5�
 0����0A���� 

0���� ∗ 0A���� 0���� ∗ 0A���� 0���� ∗ 0A���� 50����5�
 

 

*  = = 

N 899�O899O2
 

O
= 

= 

899� = 899, (п1.11) 
 

(п1.12) 
 

 {S���� �| ↑↑〉 ⇔  V���� �| ↓↑〉 
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 The main property of this method of describing the evolution of a quantum mechanical two-particle 
system is the representation of the solution as pure states with full preservation of information about the 
individual behavior of each of the particles in the system. 
 

Reduction: 4⇒⇒⇒⇒2 
 

  
 Let us now consider the possibility of describing a particle of a two-particle system in a single-
particle space. 
 

 The first and most important question: can we describe the behavior of one particle in the basis 
(п1.1)? 
 

 Using wave functions, the equality (5) can be represented as: 

 

 
  

where φ and χ are functions obtained by separating variables in the solution of the wave equation. In general 
case, they are represented by functions of different types. We will identify the particles by the parameters: 
'/, X( − for the first particle, 'Y, Z( −  for the second particle, and the previous relation is presented as8): 
 
 
By folding this equality by variables 'X, /(  or 'Z, Y( of one particle (upper indices), we can obtain the wave 
function of another. This operation allows you to get rid of information about one particle, providing "clean" 
information about another.  The information about the particle itself is contained in the properties described 
by variables 'X, /( or 'Z, Y(. 
 

 Given that the permutation of particles, each particle changes only its interface with "internal 
content", but not the environment of their stay, we have: 
 
 

and the condition of symmetry takes the form: 
    
 

Given that, we have for the symmetrized function �[�2 'X, Z(: 
 
 
The symmetrization procedure (п1.16) records the fact of identity of particles by the selected group of 
properties. 
 

 It follows from the relation (п1.16)  that convolution operation on the state variables of one particle 
was possible, for example, in the cases (5)  and (п1.13), 5, but cannot be performed for the expression 
(п1.16), since here as a result of symmetrization, the entanglement between the particles parameters 
occurred9). The latter means that in this case, the description of a particle in a one-particle state space in the 
medium of another particle as a certain separable entity is unrealizable, and to present its state as a 
superposition of base states (п1.1) impossible. 

                                                           
8)

 We will assume the possibility of some freedom in establishing the correspondence allowed by the procedure of 
solving the wave equation by the method of separating variables: : 1 ↔ '/, X(, 2 ↔ 'Y, Z(,  which will be used in the 
procedure of symmetrization. 
 

9 ) It should be noted that it is possible to talk about the entanglement of not all the properties of particles, that is, about 
the complete entanglement, and only about their some common properties. 

��2 'X, Z( = φ� 'X(χ2 'Z(, (п1.13) 

��2��'X, Z( = φ��'X(χ2�'Z(, (п1.13') 

ψ�2��'X, Z( → ψ�2��'X, Z( =  ψ2���'Z, _(, (п1.14) 

ψ�2 'X, Y( = ψ2� 'Y, X(.  (п1.15) 

�[�2 'X, Z( = φ� 'X(χ2 'Z( ±  φ2 'Z(χ� 'X(. (п1.16) 
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 Since it is impossible to describe a particle of a two-particle system in a vector 2-space as a 
superposition of basic States (п1.1), a different method is used, known in quantum mechanics as a method of 
describing using density matrices. 
 
** 

 The standard approach here is to solve the evolutionary equation for the density matrix of the 
quantum system described by the Hamiltonian [3]. However, if the previous approach in the solution of the 
Schrödinger equation with subsequent symmetry, leading to entanglement of particles and their States, here 
the main problem is the fragmentation of the system into component parts and factorization of the description 
of a single particle. 
 

 In the end, the second question arises: how to describe the behavior of one particle in the 
environment of another using a single-particle density matrix (п1.4)?   
 

 In such a situation, when measuring the characteristics of one of the two particles, it is necessary to 
provide first the possibility of choosing both the first and the second particles. 
 
 

 In this case, to describe a single particle, it is first necessary to establish the possibility of its choice in 
a two-particle system characterized by a combination of pure states 81', = 1, 2(. We define this capability 
by the corresponding probabilities b1. Then the expression for the density matrix 8 of the particle will take 
the form: 
 

 *******************  
 
where ∑ b1 = 1 1  , b1 ≥ 0, , = 1,2. The equality (п1.17) will be to determine the mixture of pure states of 
two particles, each of which being described in the one-particle space of states. The density matrix M itself is 
also an element of the one-particle space of states  and, therefore, allows a one-particle description of a 
particle in the medium of the another. This is how one can describe entanglement as a physical phenomenon. 
 

 It is not difficult to show that for a matrix of the form (п1.17) in general, the equality  
 

 
is not fulfilled, which is the criterion that the particle is in a pure state. However, this equality is possible if 
the condition of the probability unit b1 for one particle and zero for another is met. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8 = N b1891
 

1
 ,  (п1.17) 

8� = 8,  (п1.18) 

'891(� = 891 

                       8 = b�89� + b�89� '0 < b� < 1(, '0 < b� < 1(, 'b� + b� = 1(. 

8� = b��89�� + b��8 9 �� + b�b�'89�89� + 89�89�( 

89�89� + 89�89� = 89�� + 89�� − '89� − 89�(� 

                                                                             Notation 3  
Let us consider a system consisting of two particles, each of which ∀α (α=1,2) being in the pure 
state of 2-space, and is described by its density matrix 891, satisfying the condition 
 

 

The holistic two-particle system of the same 2- space is described by the density matrix 
 

The square of this matrix 

 

 

by virtue of identities 
 

 

(п1.19) 
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 The determinant of the density matrix constructed from the pure state vector as it is easy to verify 
from (п1.2) and (п1.4) is always zero. It follows that the mixture of states (п1.17) in general cannot be 
described by the state vector. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 Since the determinant of the two-row pure state density matrix is zero, its rank is one. This means 
that the matrix itself can be represented in a one-dimensional linear subspace, and the state by a vector in 
two-dimensional space. This vector may be is decomposed into basis vectors (п1.1), that is, it can be 
represented by a superposition, and thus represent a pure state. 
 

 In general, if the rank of a two-row matrix is not equal to one, then the matrix itself cannot be 
represented in a one-dimensional subspace, since it is actually a two-dimensional object. That is, the matrix 
itself is representable only a mixture (п1.17) of two 1-objects. These objects will be interacting particles, that 
is, one particle in the environment of another. These objects will represent interacting particles, that is, one 
particle in the environment of another. There is no reason to demand the uniqueness of such a representation.  
 
 

8 = b� ∗ 8� + b� ∗ 8�,  
{'b� ∗ |0�|� + b� ∗ |k�|�( ∗ 'b� ∗ |0�|� + b� ∗ |k�|�(} − {'b�0A� ∗ 0� + b�kA� ∗ k�( ∗ 'b� ∗ 0� ∗ 0A� + b� ∗ k� ∗ kA�(} = {b� ∗ |0�|� ∗ b� ∗ |0�|� + b� ∗ |0�|� ∗ b� ∗ |k�|� + b� ∗ |k�|� ∗ b� ∗ |0�|� + b� ∗ |k�|� ∗ b� ∗ |k�|�} − −{b�0A� ∗ 0� ∗ b� ∗ 0� ∗ 0A� + b�0A� ∗ 0� ∗ b� ∗ k� ∗ kA� + b�kA� ∗ k� ∗ b� ∗ 0� ∗ 0A� + b�kA� ∗ k� ∗ b� ∗ k� ∗ kA�} = = { b�� ∗ |0�|� ∗ |0�|� + b� ∗ b� ∗ |0�|� ∗ |k�|� + b� ∗ b� ∗ |k�|� ∗ |0�|� + b�� ∗ |k�|� ∗ |k�|�} − −{b�� ∗ |0�|� ∗ |0�|� + b� ∗ b� ∗ 0A� ∗ 0� ∗ k� ∗ kA� + b� ∗ b� ∗ kA� ∗ k� ∗ 0� ∗ 0A� + b�� ∗ |k�|� ∗ |k�|�} = = b� ∗ b�{|0�|� ∗ |k�|� + |0�|� ∗ |k�|� + 0� ∗ 0A�   kA� ∗ k� +  0A� ∗ 0� ∗ k� ∗ kA�} 

 

 

Notation 4 
 

Using (п1.17) in the form ********************************************************* 

for the determinant of the matrix M we obtain: *************************************************  
 

(п1.20) 

b�� + b�b� = b�'b� + b�( = b�, b�� + b�b� = b� 

8� = b�89�� + b�89�� − b�b�'89� − 89�(� 

8 − 8� = b�b�'89� − 89�(� 

 

and 

can be written as 

Since the matrices 8� and 8�, each separately, satisfy the condition 8� = 8, we find 

The right part represents positive matrix; hence 8 is equal  8� only if '89� − 89�(� = 0. The 
square of the hermitian matrix vanishes only when all elements are zero. One of the necessary 
conditions for the implementation of the equality 8� = 8 is the equality 89� = 89�. The same 
result is achieved when one of b� and b� is equal to zero. 
 

It follows from the relation (п1.20) that a two-particle system with particles in different states at 

b� > 0  and b� > 0 behaves as a mixture of particles (п1.19), each particle being described in 

an isolated form by its density matrix 89� or 89�.Место для формулы.  
 

When b� = 0  or b� = 0, the particle , with b1 = 1 will be described as being in the pure state. 
However, at b� > 0  and b� > 0  , the state of any of the particles cannot be considered pure, 
which means that it will be described by density matrices for which the equality '8 (� = 8 is not 
satisfied , which is a criterion of the pure state. 
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(important) Note 2 
 
 The reduction procedure 4⇒2 describes the" dissolution " of the individuality of one particle in the 
environment of another particle, accompanied by the loss of information about the individuality of their 
behavior, while maintaining, however, the holistic. The subject of the reduction procedure description is the 
decoherence theory, which aims to formalize the transition from quantum mechanics to classical mechanics. 
Important feature: this procedure is not described by unitary transformations, that is − solutions of 
Schrödinger equations. 
****** 

Appendix 2 
  

 Let consider the experimental installation of Aspect. We introduce the most transparent symbols (as 
far as possible) and use the results of Appendix 1. 
 

 To identify individual configurations, 4-index symbols 0�21C, will be used, where the subscript refers 

to the state of the particles, and the upper one − to the ends of the installation of Aspect: left and right. The 
correspondence between the observer and the state of its particle is established "vertically" in the expression 

0�21C. Here the state / corresponds to the observer ,, the state Y corresponds to the observer z. 
 

 As it is often done, we place on the left side of the installation of Aspect − Alice (A), on the right 
side − Bob (B). Since their presence is not necessary, we will denote the left and right ends of the installation 
by upper indices: 1 - (A) and 2 - (B). Since the position of observers is fixed by our condition, the designation 
of the upper indices not changing and will correspond to the representation of "12" or "AB", that is always  
, = 1, z = 2. 
 

 For clarity, the possible States of the Alice and Bob particle vectors are also denoted by the spin 
symbolism − ↑ and ↓, and for compactness − by the lower indices. With the index designation, the state �| ↑〉 
will receive the value of the lower index 1, and the state �| ↓〉 − the value of the lower index 2. In the 
representation of the states of the two-particle system with arrows, in the first place (left) will be represented 
by the state of the particle of the left end of the installation (A), in the second place (right) - the state of the 
particle of the right end of the installation (B). Then, for example, the state �| ↑↑〉 will correspond to such a 
configuration, in which the particles of Alice and Bob are in a state with spins "up", this situation is 
associated with the parameter 0����; the state �| ↓↑〉 will correspond to the configuration, when the particle of 
Alice has a spin "down", and Bob − spin "up", this situation corresponds to the parameter 0����,  etc. 
 

 System of vectors 
 
 
 
 
 
it is an orthonormal basis in a linear 4-space. We associate the possible configurations of a two-particle 
system with this basis as follows: 
 
 
 
 
 
 
 

{|}K = P1000Q ;   {|}M = P0100Q ;  {|}~ = P0010Q ;  {|}� = P0001Q 

 
�| ↑↑〉 = P1000Q ;   �| ↑↓〉 = P0100Q ;  �| ↓↑〉 = P0010Q ; �| ↓↓〉 = P0001Q. 

 
(п2.1) 
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Then an arbitrary state vector �|0〉 of a two-particle system of 4-space state can be expressed by a 
superposition: 
 
 
 
 
 

where 0�21C, will correspond to the components of vectors in the representation of the two-particle state in the 

basis {|}K, {|}M, {|}~, {|}�,   which are the amplitudes of the probabilities of finding the system in one  
of the basis states.  
 

 To illustrate the definition of the elements of the density matrix, we introduce new notation of the 
"coordinates" of the 4-vector and present the 4-vector (п2.2) in the form 
 
 
 
Then the elements of the density matrix can be expressed by the formula 
 
 
and the matrix itself takes the form 
 
 
 
 
 
********** 

 Returning to the variables 0�21C we get finally: 
 

 
 
 
 
 
 
 
 

  
 From the representation (п2.6) it is possible to see the full configuration of the probability amplitudes 
of the pair of particles at both ends of the experimental setup, emitted by the source. Here, as already noted, 
the upper indices refer to the observers: at the left (Alice) and right (Bob) ends of the installation, and the 
lower indices refer to the states of the particles.  The values 0����, 0����, 0����, 0����  represent the probability 
amplitudes for the States of the pair of particles �| ↑↑〉, �| ↑↓〉, �| ↓↑〉, �| ↓↓〉   − the first and the second, 
respectively. It is in this configuration of entanglement  represented by the coherent superposition of states 
(п2.2) or the density matrix (п2.6) of 2-system  of for subsequent  measurements appear 
 

 Let the state of the particle with its spin up, i.e. − ↑, be recorded as a result of measurement at the 
right end of the installation (B). This means that the system is in a state: 
 
 
with amplitudes 0���� = 0 0���� = 0 and the density matrix took the form: 
 

�|0〉 = 0���� P1000Q +  0���� P0100Q + 0���� P0010Q + 0���� P0001Q = 0���� �| ↑↑〉 +  0���� �| ↑↓〉 + 0���� �| ↓↑〉 + 0���� �| ↓↓〉, (п2.2) 

899�2 =  S�S�2 , 
  
  

(п2.4) 
 

(п2.5) 
 

899�2 = 

 

|S�|� S� ∗ S�� S� ∗ S�� S� ∗ S�� S� ∗ S�� |S�|� S� ∗ S�� S� ∗ S�� S� ∗ S�� S� ∗ S�� |S�|� S� ∗ S�� S� ∗ S�� S� ∗ S�� S� ∗ S�� |S�|� 
 

(п2.6) 
 

899�2 = 

 

50����5�
 0���� ∗ 0A���� 0���� ∗ 0A���� 0���� ∗ 0A���� 0���� ∗ 0A���� 50����5�

 0���� ∗ 0A���� 0���� ∗ 0A���� 0���� ∗ 0A���� 0����0A���� 50����5�
 0����0A���� 0���� ∗ 0A���� 0���� ∗ 0A���� 0���� ∗ 0A���� 50����5�

 
 

   0���� �| ↑↑〉 +  0���� �| ↑↓〉 + 0���� �| ↓↑〉 + 0���� �| ↓↓〉 = 0���� �| ↑↑〉 +  0 ∗ �| ↑↓〉 + 0���� �| ↓↑〉 + 0 ∗ �| ↓↓〉 , 
 

(п2.7) 
 

0���� �| ↑↑〉 + 0���� �| ↑↓〉 + 0���� �| ↓↑〉 + 0���� �| ↓↓〉 =  S� �| ↑↑〉 +  S� �| ↑↓〉 +  S� �| ↓↑〉 +  S� �| ↓↓〉.  
 

(п2.3) 
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 Further. There is a correlation between the particles-the connection established by the Aspect. 
Therefore, it is reasonable to expect a change in the state of the particle at the left end of the installation, after 
changing the state of the particle at its right end. The relationship between the states of the particles is not 
functional, but correlation, which means that the parameters of one particle can influence only the parameters 
of the probability distribution for another particle. In a single measurement, this relationship may not"work". 
In this case, we cannot judge the speed of the impact of one particle on another. This speed can be judged 
only statistically and on average, taking into account the arising noise suppressing the real value of the speed 
of influence. 
 

 The further development of events after the particle measurement at the right end of the installation 
should be considered as the process of evolutionary relaxation of the system with a real Hamiltonian, 
described by the wave equation for the density matrix (п2.8). Since this relaxation mechanism is unknown 
today, the quantum mechanical prediction (probabilistic) of matrix elements (п2.8) it is not possible. 
However, A. Aspects of his experimental results proved the reality of the existence of such a mechanism. 
 .  
 

Summary  
 
1. There are two ways to describe quantum objects − using state vectors and density matrices. Both methods 
give equivalent descriptions of non-interacting with the external environment, i.e. closed quantum systems. 
The states described in these cases are called pure states. 
*  

2. The quantum mechanical description of a closed two-particle system requires consideration of a solution in 
the 4-space of quantum States. It can be realized both with the help of 4-vectors and 4-matrix density . 
 

3. When describing a pair of particles, one particle is always in the medium of another. Although each 
isolated particle of the pair can be described as a pure state, however, in the two-particle description, one of 
them will always be in the environment of the other, and the system after the symmetry procedure of the 
equation solution will be a mixture of two particles. In this case, each of them can be described separately by 
its density matrix, through which the mixture of states is determined. A mixture of state turns into a pure state 
in the "disappearance" of a single particle, that is, when b� = 0 or b� = 0. This circumstance is fully 
consistent with the fact that a quantum system located in the external environment, can't be described with 
vector of states, as it cannot be in pure state.  
 

4. The reduction procedure: 4 ⇒ 2 ,allows you to switch from two-particle 4-dimensional description to a 
one-particle 2-dimensional  description, as if sticking together the history of the evolutions of two parts: the 
unitary and the post unitary. The result of non-unitary reduction is the boundary of these stories. 
 

5. It is the procedure of symmetrization in the description of quantum mechanical systems that causes the 
phenomenon of entanglement of particle States (see section 1). 
 

6. The concept of entanglement can arise only when several quantum objects (particles) are considered. In 
this case, we can talk about the entanglement of particle states. The entanglement of the states of one 
quantum object is nothing but a superposition of the states of a single object. When the characteristics of 
several objects are entangled, a new integrity can arise, that is, a new quantum object. 

50����5�
 0 0���� ∗ 0A���� 0 

0 0 0 0 

0���� ∗ 0A���� 0 50����5�
 0 

0 0 0 0 
 

(п2.8) 
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The mixture of states of different objects cannot lead to the emergence of a new object, because mixing as an 
operation is not identical to the superposition of states. However, a mixture of states admits a factorization of 
the description and simulation of the fragmentation of the system into two interacting subsystems. It should 
be emphasized that the considered model of states (п1.17), which is a mixture of states, becomes fictitious if 
the experiment in principle cannot obtain optimal information about the subsystems (particles) of the entire 
object. 
 

Q & A 
 

According to results of previous on-line dialogues on the author's seminar a number of questions which require 
clarification 

 
The description of the phenomenon of entanglement for identical particles by means of the operation of symmetrization 
in general convinces. The concept of coherence of states also arises here. More or less, it's understandable. But how to 
imagine the mechanism of decoherence is not strict, but clear? 
 

The coherency is strictly formalized concept in the framework of the phase dependences of the wave functions. 
Information on these issues can be found on the example of a two-particle quantum system in the present article [see 
(2,3,4)]. 
 

Violation of phase dependencies between the elements of the whole is decoherence. Decoherence as a phenomenon is 
described on the basis of density matrices. 
 

The emergence of many coherences of the object with the environment, that is, "dissolution" of its own phase on the 
elements of the environment - this can also be considered as decoherence, but already known to be different...  and this 
is a common problem solved by the "theory of decoherence" as a discipline. 
 

As for the experimental and technological mechanisms of the realization of coherence and decoherence at the present 
time − they are at the stage of experimental work with different results." 
 
I would like to hear briefly about Neumann's "Process 1" and his non-unitarily. 
 

General 
There are two possibilities for the construction of quantum mechanics: the use of the state vectors apparatus 
(Schrödinger wave functions) and the density matrix apparatus (hermitian operators), [Landau, 1927]. 
 

Representations using state vectors and density matrices are formally equivalent when considering closed quantum 
systems. These systems are exhaustively described by so-called pure states. 
 

The evolution of closed quantum systems or their temporal dynamics for both descriptions is represented by unitary 
transformations with Hamiltonian as a generator of infinitesimal shifts in time (solutions of the Schrödinger-type 
equation with initial data). Density matrices of such solutions, as well as any operators of the observed ones, are 
represented by hermitian operators. Hermitian matrices, in turn, can be reduced to a diagonal form by unitary 
transformations by choosing the corresponding representation basis. Unitary transformations leave the information status 
of the quantum system unchanged. It is the finding of unitary transformations (solutions of Schrödinger equations) in 
both cases that make up the essence of solutions to traditional problems of quantum mechanics.  
 

However, quantum subsystems immersed in the external environment cannot be considered closed. Such systems are 
represented by so-called mixtures of states. The fact is that mixtures of States cannot be described by vectors of pure 
States and their superpositions. Of the two possibilities, the description of the mixture of states can be realized only with 
the help of density matrices. This circumstance was used by von Neumann to clarify the Bohr's interpretation of 
quantum mechanics in terms of the interpretation of measurement procedures, that is, in terms of the interaction of the 
measured system with the measuring device or, in general, with the external environment. Consideration of 
transformations of quantum systems that violate unitary evolution leads to the necessity of consideration of issues 
related to changes in the information status of the resulting states. The same approach is used in the description of the 
transition from quantum systems to classical systems in the theory of decoherence, since the transition from the quantum 
description to the classical one is associated with the inevitable loss of phase information about quantum states. 
   

In particular 
1. Consider a specific example of a two-particle quantum system, for example, in an Aspect's experiment. This system 
must be described in Hilbert's 4-space. Description of one of the particles is possible in a single-particle 2-space. 
However, in our case - in the case when one particle is in the environment of another − it is impossible to describe  this  
particle   by means of the apparatus of the pure states. This is where the need arises to consider the transformation 
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associated with the transition from Hilbert's 4-space to 2-space. Such reduction cannot be realized by means of unitary 
(evolutionary) transformation, because it is associated with the loss of information about the state of the system, while 
all unitary transformations leave the system in pure States with entropy equal to zero, that is, with the maximum 
information status. The loss of information and the increase in entropy during this transition is obvious. This is the first 
aspect of non-unitary reduction. 
 

2. The second aspect of reduction is related to the loss of information on phase coherence, which is absent in classical 
manifestations.  
 

The essence of the matter is as follows. Information about phase dependencies and hence quantum correlations is 
contained in nondiagonal elements of the density matrix. As already mentioned, with the help of unitary transformations, 
it is possible to bring the density matrix to the diagonal form, which would allow to give a probabilistic interpretation of 
diagonal elements without phase correlations. With these transformations, the information status of the quantum system 
will not change. This means that information about the correlations do not disappear which means it will be obliged 
anyway to show itself that is contradict experience macroexperiments. Thus, unitary transformations cannot realize the 
transition from quantum description to classical one. Non-unitary operation of the density matrix diagonalization 
(reduction) is the process that led von Neumann as a necessary element for matching quantum mechanics (with quantum 
correlations) with classical (without quantum correlations). 
 
 

The loss of information and the increase of entropy in the reduction in both cases is quite obvious, and these processes 
cannot be described in the framework of unitary evolution. 
 

Von Neumann introduced Process 1 to ensure the integrity of the consideration of the transition from closed quantum 
systems to systems interacting with the environment. 
 

The first aspect is presented in detail in this paper; the second − in the article: 
https://www.dropbox.com/s/x3dtk8w4vv9kv3n/ZurekEn.pdf?dl=0     (original),*************************************  
https://www.dropbox.com/s/w6ewl825x8m01nh/Zurek.pdf?dl=0                 (translation into Russian). 
 

Does this mean that the collapse of wave functions should be described by non-unitary transformations, that is, outside 
the framework of traditional quantum mechanics (solutions of  Shrödinger equations)? 
 

That's right. Moreover, there is a radical view that in this area (the famous "FWT-theorem" Conway and Cohen, which is 
called "Free Will Theorem") do not work cause-effect relationships and it is confirmed experimentally. An elementary 
demonstration of the absence of a functional connection between the perturbation and the response in the spin system is 
the Cohen-Specker paradox described in the work of the same authors. This paradox has stirred the physical world. 
 
 

Unlike von Neumann, Zurek diagonalized the density matrix using a unitary transformation and" closed " the dynamics 
of the system under consideration to its Hamiltonian. But you needed a non-unitary transformation in an article about 
entanglement! 
 

Zurek 
It is known from quantum mechanics that any "quantum history" develops due to two types of independent processes - 
free evolution and measurement procedures that define a new branch of evolution. Both processes are not reducible to 
one another. Bohr proposed such an interpretation of the integrity of "quantum history" (Copenhagen interpretation): to 
consider the evolution of quantum systems using Schrödinger equations,  and measurements over quantum systems 
using classical devices. Despite the striking effectiveness of such a construction, there is a natural question of 
reducibility of one (quantum) description language with another (classical) and this question, first of all, concerns the 
coherence of States at the quantum level and decoherence, that is, the loss of this coherence at the macrolevel. It is the 
decision of this problem article is dedicated by Zurek. 
 
 

Zurek's  article considers the interaction of the 1/2-spin � subsystem with the �detector. The detector can only respond 
to the following states: ↑  and ↓. As closed, this composite system is described by a pure state, which can be represented 
by both a vector and a density matrix in a Hilbert's 4-space. Actually,  Zurek uses the density matrix, but in contrast to 
von Neumann, considering the unitary transformation, leading to the matrix diagonal form, but in the selected basis. 
 

In our article   on quantum entanglement, we consider the description of an holistic integral two - particle system in 4-
space, those wholeness that is due to the coherence of the States of the components. The transition from a two-particle 
description in 4-space to a one-particle description in 2-space, that is, the destruction of the wholeness of the system 
during observation, it is the subject of our article. 
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One thing in common is a discussion of the non-unitarity of the transformation called in one word reduction.  Zurek 
managed to link the integrity of the joint system without the non-unitary transformation of von Neumann. In our case, it 
is impossible. Just the tasks we consider are different. 
 

Read more about the Zurek's reasons "scattering of coherence" in the environment. 
 
The density matrix in general contains nondiagonal elements responsible for the correlation interactions between the 
subsystems that make up the integrity of the original system. This form of the matrix clearly did not fit into the picture 
of classical measurements. To bring it to the uncorrelated form required for the classical interpretation of the 
measurement procedure, von Neumann proposed to introduce a non-unitary matrix diagonalization procedure (that is, 
beyond the limits of quantum mechanics), whose diagonal elements could then be interpreted as classical probabilities 
(without quantum correlations). Why not unitary? 
 

Just because the " Unitary evolution condemns every closed quantum system to 'purity.' " (p. 9)10), preserving the 
quantum correlations, which cannot be deduced in the classical manner. In addition, unitary transformations are 
equivalent in terms of the evolution of the system with respect to the coherence of phase relations according to the 
Schrödinger equations. This was the reason for the introduction of non-unitary transformation. Von Neumann developed 
his idea by moving from (6) to (7) 10)  and called this procedure a reduction of the density matrix with a special emphasis 
on its non-unitary character, which corresponds to the transition to the classical measurement procedure. 
 

Zurek, in contrast to von Neumann, introduced the external environment ℇ as the third unclosed component of the 
general system, allowing to implement a complete description of the measurement procedure, while remaining within 
the framework of quantum mechanics. "The final state of the combined SDℇ “von Neumann chain” of correlated 
systems extends the correlation beyond the SD pair"  10).    Здесь:  S − система, D − детектор.  Thus, it represents an 
element of the mechanism of coherence scattering in the environment. 
 

If the states of the environment corresponding to the detector States are orthogonal, the density matrix folded over 
uncontrolled and unknown degrees of freedom takes the form (14) 10), which was proposed by von Neumann. In this 
case, if the observed Λ of the subsystem S commutes with the Hamiltonian of the Hint  detector-environment interaction, 
its dynamics invariantly closes on the diagonal of the reduced density matrix, that is, when the system is in its eigenstate 
Λ, the interaction with the environment will leave it unperturbed, and the observed Λ will be the motion integral. 
 

The last remark allows us to divide the system parameters into controlled, preserving coherence (entanglement), and 
uncontrolled (unknown, destroying entanglement). This fact makes it possible to "raise" the entanglement on a small 
group of controlled parameters to meso- and macro- levels and, at the same time, to explain the disappearance of 
coherence on a large group of uncontrolled parameters. 
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V.A.Kasimov. Once more about quantum "entanglement" (English version) 
 

Abstract 
During the conceptual design of the experimental results of Aspect one must speak the language of quantum mechanics, 
not the language Argo of the private insights. One of these insights is the concept of "entanglement" (of particles or 
states is unclear!) The language of quantum mechanics allows for a clear and unambiguous manner to give concrete 
content to the questions on this occasion. For the analysis of the proposed elementary model used in [1, 2]. 
 
 
 
 
 
 
 
 
 
 
 


