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ABSTRACT
We present notes on the Marcus-de Oliveira conjecture. The conjecture concerns
the region in the complex plane covered by the determinants of the sums of two
normal matrices with prescribed eigenvalues. Call this region ∆. This paper focuses
on boundary matrices of ∆. We prove 2 theorems regarding these boundary matrices.
This paper uses ideas from [1].
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1. Introduction

Marcus [2] and de Oliveira [3] made the following conjecture. Given two normal
matrices A and B with prescribed eigenvalues a1, a2...an and b1, b2...bn respectively,
det(A+B) lies within the region:

co
{∏

(ai + bσ(i))
}

where σ ∈ Sn. co denotes the convex hull of the n! points in the complex plane. As
described in [1], the problem can be restated as follows. Given two diagonal matrices,
A0 = diag(a1, a2...an) and B0 = diag(b1, b2...bn), let:

∆ =
{
det(A0 + UB0U

∗) : U ∈ U(n)
}

(1)

where U(n) is the set of n× n unitary matrices. Then we can write the conjecture
as:
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Conjecture 1.1 (Marcus-de Oliveira Conjecture).

∆ ⊆ co
{∏

(ai + bσ(i))
}

(2)

Let

M(U) = det(A0 + UB0U
∗). (3)

Note that the unitary matrices are a compact set. And since the continuous image
of a compact set is compact, ∆ is compact. Since a compact set in a metric space is
closed, ∆ is closed. So ∂∆ ⊆ ∆ where ∂∆ is the boundary of ∆.

The paper is organized as follows. In section 2 we define terms and functions that
will be used in the rest of the paper. These definitions are necessary to state our results.
In section 3, we state 3 lemmas and 2 theorems that form the bulk of the paper. We
state them in the order they are proved.

2. Preparatory definitions

2.1. Ordinary point of ∂∆

For the purposes of this paper we call a point P ∈ ∂∆ an ordinary point of ∂∆ if P
isn’t any kind of singularity of ∂∆. (Note that ∂∆ is the boundary of ∆). Formally,
we define an ordinary point P of ∂∆ as one that satisfies the following four conditions:

• ∂∆ has a unique tangent at P.

To state the other three conditions we first replace the real and imaginary axes with
the x-y axes. Then we translate ∆ so that P coincides with the origin. Now we rotate
the resulting figure about the origin so that the tangent to ∂∆ at P coincides with the
x-axis. For simplicity we keep the labels ∆, ∂∆ and P post translation and rotation.
Then if P (now the origin) is an ordinary point of ∂∆, there exists an open ball B
centered on the origin and a function f from R→ R such that:

• (x, y) ∈ ∂∆ ∩B ⇐⇒ y = f(x).
ie: within B, we don’t have two different boundary points with the same x-
coordinate.
• ∀(x, y) ∈ ∆ ∩B we have y ≤ f(x) OR
∀(x, y) ∈ ∆ ∩B we have y ≥ f(x)
ie: within B, ∆ lies entirely above the boundary, or entirely below the boundary.
• f is continuous and differentiable at the origin.

Note some of these may be redundant conditions, but we state them all for com-
pleteness and clarity.
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Now suppose P is an ordinary point of ∂∆ and we have a curve R ⊆ ∆ that intersects
P and has a unique tangent at P. We wish to demonstrate that the tangent to R at
P is the same as the tangent to ∂∆ at P (this may be intuitively obvious but still
needs proving). We translate ∆ so that P coincides with the origin, then we rotate
∆ so that the tangent coincides with the x-axis. We keep the labels ∆, ∂∆, P and R
post translation and rotation. We know there’s an open ball B centered on the origin
such that within B we can write the points of the boundary as (x, f(x)) for some
function f. We can also write the points of R as (x, g(x)) for some function g. Note
that f(0) = g(0) = 0. Let d(x) = f(x)− g(x). We know that within B

g(x) = f(x)− d(x)

g′(x) = f ′(x)− d′(x)

g′(0) = f ′(0)− d′(0).

Since we know that ∆ lies entirely above, or entirely below ∂∆ within B, we know
that d(0) = 0 is either a local maximum or a local minimum of d(x). So d′(0) = 0. We
already know f ′(0) = 0 by our setup.

Therefore

g′(0) = 0.

Therefore the tangent to g(x) at the origin is the x-axis. ie: it coincides with the
tangent to the boundary. And this holds true of the curve and the boundary before
translation and rotation.

2.2. Terms

Given a unitary matrix U and square, diagonal matrices A0 and B0 all of dimension
n× n,

• If M(U) is a point on ∂∆ (the boundary of ∆), we call M(U) a boundary point
of ∆ and we call U a boundary matrix of ∆. See eq. (1) and eq. (3).
• We define the B-matrix of U as UB0U

∗.
• We define the C-matrix of U as A0 + UB0U

∗.
• We define the F-matrix of U as C−1A0 − A0C

−1 where C is the C-matrix of
U. Note that the F-matrix is only defined when C is invertible, or equivalently
when det(C) = M(U) 6= 0. See eq. (3). Also note that since A0 is diagonal, the
F-matrix is a zero-diagonal matrix. The idea for using the F-matrix comes from
[1], Theorem 4, p.27.

Throughout the rest of the paper, we’ll assume A0 and B0 are defined, even if we
don’t explicitly mention them.
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2.3. Functions given a unitary matrix U

Given a unitary matrix U with B-matrix B, C-matrix C and F-matrix F. For every
skew-hermitian matrix Z, we define the following functions

let

UZ(t) = (eZt)U (4)

where t is any real number.

Since the exponential of a skew-hermitian matrix is unitary, UZ(t) is a function of
unitary matrices.

let

BZ(t) = UZ(t)B0U
∗
Z(t) (5)

let CZ(t) = A0 +BZ(t)

We note that BZ(0) = B and CZ(0) = C.

let

RZ(t) = det(CZ(t)) (6)

We can see by eq. (1) that RZ(t) ⊆ ∆.

RZ(0) = A0 + UB0U
∗

So by eq. (3) we see that RZ(0) = M(U).

So all the RZ(t) functions go through M(U) at t = 0.

We shall refer to these functions in the rest of the paper with the same notation
(for example RZ(t) for a skew-hermitian matrix Z. RZ1

(t) for a skew-hermitian matrix
Z1). Note that RZ(t) requires A0, B0, U and Z in order to be defined. But we won’t
explicitly mention A0 and B0. All the results in this paper assume there are two
diagonal matrices A0 and B0 defined in the background.

2.4. Skew-Hermitian matrices Zab and Zab,i

Given two integers a,b where 1 ≤ a, b ≤ n and a 6= b.

We define the n× n skew-hermitian matrix Zab as follows. Zabab = −1 (the element
at the ath row and bth column is -1.) Zabba = 1 (the element at the bth row and ath
column is 1.) And all other elements are 0. Note that Zab = −Zba.

We define the n× n skew-hermitian matrix Zab,i as follows. Zab,iab = i and Zab,iba = i.
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All other elements are zero. Note that Zab,i = Zba,i.

It is straightforward to verify that Zab and Zab,i are skew-hermitian.

3. Main Results

Lemma 3.1. Given a unitary matrix U with M(U) 6= 0. Let F be its F-matrix. Then
R′Z(0) = M(U)tr(ZF ) for any skew-hermitian matrix Z.

Lemma 3.2. Given an n × n zero-diagonal matrix W. Given tr(ZabW ) = 0 and
tr(Zab,iW ) = 0 for all pairs (a,b) where 1 ≤ a, b ≤ n and a 6= b. Then W is the
zero-matrix.

Lemma 3.3. Given a boundary matrix U with M(U) 6= 0 and with F-matrix F 6= 0.
Given M(U) is an ordinary point of ∂∆. Then there exists a complex number v such
that for every skew-hermitian matrix Z, tr(ZF ) = cv where c is some real number.

Theorem 3.4. Given a boundary matrix U with M(U) 6= 0 and with F-matrix F 6= 0.
Given M(U) is an ordinary point of ∂∆. Then F can be written uniquely in the form
F = eiθH where H is a zero-diagonal hermitian matrix and 0 ≤ θ < π.

Theorem 3.5. Given a boundary matrix U with M(U) 6= 0 and with F-matrix F 6= 0.
Given M(U) is an ordinary point of ∂∆. Let L be the tangent line to ∆ at M(U). By
the previous theorem we know that F = eiθH for some real 0 ≤ θ < π. Then L makes
an angle arg(M(U)) + θ + π/2 with the positive real axis.

4. Proof of lemma 3.1

The proof given here uses ideas from [1], Theorem 4, p.26-27. But the proof given here
is complete on its own.

Proof. We’re given a unitary matrix U where M(U) 6= 0. So its F-matrix is well-
defined and we call it F. Let B be its B-matrix, and C be its C-matrix. Given an
arbitrary skew-hermitian matrix Z.

We can use Jacobi’s formula [4] on eq. (6) to find R′Z(t)

R′Z(t) = tr(det(CZ(t))C−1Z (t)C ′Z(t)) (7)

R′Z(0) = tr(det(CZ(0))C−1Z (0)C ′Z(0))

We can substitute C for CZ(0).

R′Z(0) = tr(det(C)C−1C ′Z(0))

R′Z(0) = det(C)tr(C−1C ′Z(0))
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We know that C ′Z(t) = B′Z(t) so

R′Z(0) = det(C)tr(C−1B′Z(0))

By section 2.2 and eq. (3) we know that det(C) = M(U)

R′Z(0) = M(U)tr(C−1B′Z(0)) (8)

Using eq. (5),

B′Z(t) =
dUZ(t)

dt
B0U

∗
Z(t) + UZ(t)B0

dU∗Z(t)

dt
(9)

Using eq. (4),

dUZ(t)
dt = ZeZtU

U∗Z(t) = (U∗)e−Zt

dU∗
Z(t)
dt = −(U∗)Ze−Zt

Substitute these and eq. (4) into eq. (9)

B′Z(t) = ZeZtUB0(U
∗)e−Zt − (eZt)UB0(U

∗)Ze−Zt

B′Z(0) = ZUB0U
∗ − UB0(U

∗)Z

Using the definition of the C-matrix in section 2.2

B′Z(0) = Z(C −A0)− (C −A0)Z

C−1B′Z(0) = C−1ZC − C−1ZA0 − Z + C−1A0Z

tr(C−1B′Z(0)) = tr(C−1ZC)− tr(C−1ZA0)− tr(Z) + tr(C−1A0Z)

The first and third terms cancel since similar matrices have the same trace.

tr(C−1B′Z(0)) = −tr(C−1ZA0) + tr(C−1A0Z).

Using the idea that tr(XY ) = tr(Y X)

tr(C−1B′Z(0)) = −tr(ZA0C
−1) + tr(ZC−1A0)

tr(C−1B′Z(0)) = tr(Z(C−1A0 −A0C
−1))

tr(C−1B′Z(0)) = tr(ZF )

Substitute this into eq. (8) to get

R′Z(0) = M(U)tr(ZF ) (10)

This proves lemma 3.1.
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5. Proof of lemma 3.2

Proof. Given an n×n zero-diagonal matrix W. Given that for every pair (a,b) where
1 ≤ a, b ≤ n and a 6= b,

tr(ZabW ) = 0.

tr(Zab,iW ) = 0

(See section 2.4 for definitions of Zab and Zab,i).

by direct computation we see that

tr(ZabW ) = Wab −Wba = 0

tr(Zab,iW ) = (Wab +Wba)i = 0

Solving these, we get that Wab = 0 and Wba = 0. So all the off-diagonal elements of
W are zero. Hence W is the zero-matrix.

6. Proof of lemma 3.3

Proof. Given a boundary matrix U with M(U) 6= 0 and with F-matrix F 6= 0. Given
M(U) is an ordinary point of ∂∆. Let L be the tangent line to ∂∆ at M(U). Let h be
the direction vector of the line L. Note that h is just a non-zero complex number.

Let Z be a skew-hermitian matrix. By lemma 3.1 we know that R′Z(0) =
M(U)tr(ZF ).

Since RZ(t) ⊆ ∆ and RZ(0) = M(U) (see section 2.3), we know that R′Z(0) = ch
for some real number c. (since L is the unique tangent to ∂∆ at M(U), then it must
the tangent to every curve that lies in ∆, goes through M(U) and has a well-defined
derivative at M(U). We demonstrated this at the end of section 2.1).

So, M(U)tr(ZF ) = ch

tr(ZF ) = c( h
M(U))

We can write v = h
M(U)

Then

tr(ZF ) = cv.

Note that v is fixed since it does not depend on the choice of Z.
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7. Proof of theorem 3.4

Proof. Given a boundary matrix U with M(U) 6= 0 and with F-matrix F 6= 0. Given
M(U) is an ordinary point of ∂∆.

We pick an arbitrary pair (a,b) such that 1 ≤ a, b ≤ n and a 6= b

We have two skew-hermitian matrices Zab and Zab,i defined as per section 2.4.

By direct computation we see that

tr(ZabF ) = Fab − Fba

tr(Zab,iF ) = (Fab + Fba)i

Suppose Fab = Fab,r + iFab,i. (note that these are not tensors. Fab,r is just the real
component of Fab and Fab,i is just the imaginary component.) We can substitute this
in to get

tr(ZabF ) = (Fab,r − Fba,r) + i(Fab,i − Fba,i) (11)

tr(Zab,iF ) = (−Fab,i − Fba,i) + i(Fab,r + Fba,r) (12)

We know by lemma 3.3 that these are collinear vectors in the complex plane.

So we know that

(Fab,i − Fba,i)(−Fab,i − Fba,i) = (Fab,r + Fba,r)(Fab,r − Fba,r)

We can simplify this to get:

F 2
ab,r + F 2

ab,i = F 2
ba,r + F 2

ba,i

|Fab| = |Fba|

We can write:

Fab = |Fab|∠θab

Fba = |Fab|∠θba

Note that we are given that F 6= 0. Note that we already know by section 2.2 that
F is zero-diagonal.

We will divide the possible values of F into multiple cases. First we split all cases
into two. The first is when only one pair of elements of the F-matrix, Fab and Fba
is nonzero. The second case is when multiple pairs of elements of the F-matrix are
nonzero. We shall further subdivide the second case using the fact that all tr(ZF)
values are collinear. We can divide these cases into 3 possibilities: 1. All nonzero
tr(ZF ) values are imaginary. 2. All nonzero tr(ZF ) values are real. 3. All nonzero
tr(ZF ) values are not real or imaginary. (note that since F is nonzero, we don’t have
to deal with the possibility that tr(ZF) is 0 for all skew-hermitian matrices Z. see
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lemma 3.2).

So we have 4 cases to deal with.

Case 1: |Fab| is non-zero for only one pair {a, b} where a 6= b

In this case,

H = e−(θab+θba)/2F is a hermitian matrix, and we’re finished.

Case 2: |Fab| is non-zero for multiple pairs {a, b} where a 6= b. For any
skew-hermitian Z, when tr(ZF) is non-zero, it is imaginary.

If |Fab| 6= 0, then by eq. (11) and eq. (12), θab = −θba. This holds for all distinct
pairs {a,b}, so our F-matrix is already hermitian, and we’re done.

Case 3: |Fab| is non-zero for multiple pairs {a, b} where a 6= b. For any
skew-hermitian Z, when tr(ZF) is non-zero, it is real.

If |Fab| 6= 0, then by eq. (11) and eq. (12), θab = π − θba. This holds for all distinct
pairs {a,b}

H = e−(
π

2
)F is hermitian and we’re done.

Case 4: |Fab| is non-zero for multiple pairs {a, b} where a 6= b. For any skew-
hermitian matrix Z, when tr(ZF) is non-zero, it isn’t real or imaginary.

Suppose |Fab| 6= 0 and |Fcd| 6= 0

if tr(ZabF ) 6= 0, then using eq. (11) and eq. (12),

slope of tr(ZabF ) = sin(θab)−sin(θba)
cos(θab)−cos(θba) = − cot( θab+θba2 )

if tr(Zab,iF ) 6= 0:

slope of tr(Zab,iF ) = cos(θab)+cos(θba)
− sin(θab)−sin(θba) = − cot( θab+θba2 )

We know that since |Fab| 6= 0, at least one of tr(ZabF ) or tr(Zab,iF ) is non-zero.
(same idea as section 5)

similarly,

if tr(ZcdF ) 6= 0, then

slope of tr(ZcdF ) = − cot( θcd+θdc2 )

if tr(Zcd,iF ) 6= 0:

slope of tr(Zcd,iF ) = − cot( θcd+θdc2 )

We know that since |Fcd| 6= 0, at least one of tr(ZcdF ) or tr(Zcd,iF ) is non-zero.

So we have:

cot( θcd+θdc2 ) = cot( θab+θba2 ) (lemma 3.3)

therefore:

θcd+θdc
2 = θab+θba

2 + nπ for some integer n.
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We can freely adjust θcd by −2nπ. It makes no difference since |Fcd|∠θcd =
|Fcd|∠(θcd − 2nπ)

So after the adjustment we have:

θcd+θdc
2 = θab+θba

2 .

We make the same adjustment for any pair {c, d} 6= {a, b} where |Fcd| 6= 0

We set β = θab+θba
2

let H = e−iβF

For some pair (x,y) where x 6= y and |Hxy| 6= 0,

Hxy = |Hxy|∠αxy

αxy = −( θab+θba2 ) + θxy

αyx = −( θab+θba2 ) + θyx

But because of our adjustments,

θab+θba
2 = θxy+θyx

2

Plugging this into the above two formulas we have

αxy = θxy−θyx
2

αyx = −( θxy−θyx2 )

Therefore H is zero-diagonal, with transpositional elements of equal magnitude and
opposite arguments. Therefore H is hermitian.

So in all 4 cases we can write F = eiβH for some hermitian matrix H and some real
β. But we’ve not arrived at a unique representation for F yet.

Suppose

F = eiβ1H1 = eiβ2H2

ei(β1−β2)H1 = H2

ei(β1−β2)H1 = H2 = H∗2 = ei(β2−β1)H∗1 = ei(β2−β1)H1

So

(ei(β1−β2) − ei(β2−β1))H1 = 0

Since F 6= 0, we know H1 6= 0 so

ei(β1−β2) − ei(β2−β1) = 0

ei(β1−β2) = ei(β2−β1)

Then

β1 − β2 = β2 − β1 + 2kπ, for any integer k

β1 = β2 + kπ
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So if we restrict all β to 0 ≤ β < π, we have a unique representation since k is forced
to 0.

This completes our proof of theorem 3.4.

8. Proof of theorem 3.5

Given a boundary matrix U with M(U) 6= 0 and F-matrix F 6= 0. Given M(U) is an
ordinary point of ∂∆. Let L be the tangent line to ∂∆ at M(U).

Proof. By theorem 3.4 we know that

F = eiθH (13)

for some real 0 ≤ θ < π and some zero-diagonal hermitian matrix H.

We can substitute eq. (13) into eq. (11) and eq. (12) and simplify to get:

tr(ZabF ) = 2Hab,ie
i(θ+π/2) (14)

tr(Zab,iF ) = 2Hab,re
i(θ+π/2) (15)

By lemma 3.2 we know that at least one of the above equations is nonzero for some
pair (a,b) where 1 ≤ a, b ≤ n and a 6= b. So then using lemma 3.1 we know that
R′Z(0) = M(U)tr(ZF ) 6= 0 for some skew-hermitian matrix Z.

So by eq. (14) and eq. (15) we see that for some skew-hermitian matrix Z, tr(ZF )
forms an angle of (θ + π/2) or (θ + 3π/2) with the positive real axis (depend-
ing on whether the coefficient is negative or not). Therefore R′Z(0) forms an angle
arg(M(U)) + θ + π/2 or arg(M(U)) + θ + 3π/2 with the positive real axis.

Therefore the line L forms an angle arg(M(U))+θ+π/2 with the positive real axis
(since this is a line as opposed to a vector, a rotation of π makes no difference).

This completes our proof of theorem 3.5.
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