BOUNDARY MATRICES AND THE MARCUS-DE OLIVEIRA 2 DETERMINANTAL CONJECTURE*

AMEET SHARMA[†]

Abstract. We present notes on the Marcus-de Oliveira conjecture. The conjecture concerns the 4 region in the complex plane covered by the determinants of the sums of two normal matrices with 5 6 prescribed eigenvalues. Call this region Δ . This paper focuses on boundary matrices of Δ . We prove 3 theorems regarding these boundary matrices. We propose 2 conjectures related to the Marcus-de 7 Oliveira conjecture and prove a theorem related to these 2 conjectures. This paper uses ideas from 8 9 [1].

Key words. determinantal conjecture, Marcus-de Oliveira, determinants, normal matrices, 10 11 convex-hull

12AMS subject classifications. 15A15, 15A16

1. Introduction. Marcus [4] and de Oliveira [2] made the following conjec-13 ture. Given two normal matrices A and B with prescribed eigenvalues $a_1, a_2...a_n$ and 14 $b_1, b_2...b_n$ respectively, det(A+B) lies within the region: 15

16
$$co\{\prod(a_i+b_{\sigma(i)})\}$$

where $\sigma \in S_n$. co denotes the convex hull of the n! points in the complex plane. As 17 described in [1], the problem can be restated as follows. Given two diagonal matrices, 18 $A_0 = diag(a_1, a_2...a_n)$ and $B_0 = diag(b_1, b_2...b_n)$, let: 19

20
$$\Delta = \{ det(A_0 + UB_0U^*) : U \in U(n) \}$$
(1.1)

where U(n) is the set of $n \times n$ unitary matrices. Then we can write the conjecture 21 22as:

CONJECTURE 1.1 (Marcus-de Oliveira Conjecture). 23

$$\Delta \subseteq co\left\{\prod(a_i + b_{\sigma(i)})\right\} \tag{1.2}$$

Let 25

24

26

1

3

$$M(U) = det(A_0 + UB_0U^*).$$
(1.3)

Then the points forming the convex hull are at $M(P_0), M(P_1)...M(P_{n!-1})$, where 27the P's are the $n \times n$ permutation matrices. We will refer to these as **permutation** 28points from now on. 29

Note that U(n) is a compact set. A continuous image of a compact set is compact. 30 Therefore Δ is compact. And so Δ is a closed set, because a compact subset of any metric space (in this case the complex numbers) is closed. 32

^{*}Submitted to the editors June 6th, 2018.

[†] (ameet_n_sharma@hotmail.com).

A. SHARMA

The paper is organized as follows. In section 2 we define terms and functions that will be used in the rest of the paper. These definitions are necessary to state our results. In section 3, we state 3 theorems, 1 lemmas and 1 corollary that form the bulk of the paper. We state them in the order they are proved. The lemma is an intermediate tools for proving the 3 theorems. The corollary is an interesting consequence of the third theorem. In sections 5-10 we prove all of these. In section 9, we state 2 conjectures and prove a theorem related to these conjectures. In section 10, we conclude.

41 **2.** Preparatory definitions.

42 **2.1. Terms.** Given a unitary matrix U and square, diagonal matrices A_0 and 43 B_0 all of dimension $n \times n$,

44	• If $M(U)$ is a point on $\partial \Delta$ (the boundary of Δ), we call U a boundary matrix
45	of Δ . See (1.1) and (1.3).

- We define the **B-matrix** of U as UB_0U^* .
 - We define the **C-matrix** of U as $A_0 + UB_0U^*$.
- We define the **F-matrix** of U as $C^{-1}A_0 A_0C^{-1}$ where C is the C-matrix of U. Note that the F-matrix is only defined when C is invertible, or equivalently when $det(C) = M(U) \neq 0$. See (1.3). Also note that since A_0 is diagonal, the F-matrix is a zero-diagonal matrix. The idea for using the F-matrix comes from [1], Theorem 4, p.27.

Throughout the rest of the paper, we'll assume A_0 and B_0 are defined, even if we don't explicitly mention them.

2.2. Multidirectional Unitary Matrix. Given a unitary matrix U with $M(U) \neq 0$ o and F-matrix F. If there exist two skew-hermitian matrices Z_1 and Z_2 such that $tr(Z_1F)$ and $tr(Z_2F)$ are both non-zero, non-collinear vectors in the complex-plane, we say U is multidirectional.

2.3. Functions given a unitary matrix U. Given a unitary matrix U with B-matrix B, C-matrix C and F-matrix F. Given $M(U) \neq 0$. For every skew-hermitian matrix Z, we define the following functions

62 let

63

68

47

$$U_Z(t) = (e^{Zt})U \tag{2.1}$$

64 where t is any real number.

Since the exponential of a skew-hermitian matrix is unitary, $U_Z(t)$ is a function of unitary matrices.

$$67$$
 let

$$B_Z(t) = U_Z(t)B_0 U_Z^*(t)$$
(2.2)

69 let $C_Z(t) = A_0 + B_Z(t)$

- We note that $B_Z(0) = B$ and $C_Z(0) = C$.
- 71

72

$$R_Z(t) = det(C_Z(t)) \tag{2.3}$$

- 73 We can see by (1.1) that $R_Z(t) \subseteq \Delta$.
- 74 $R_Z(0) = A_0 + UB_0 U^*$
- 75 So by (1.3) we see that $R_Z(0) = M(U)$.
- So all the $R_Z(t)$ functions go through M(U) at t = 0.

We shall refer to these functions in the rest of the paper with the same notation (for example $R_Z(t)$ for a skew-hermitian matrix Z. $R_{Z_1}(t)$ for a skew-hermitian matrix Z_1). Note that $R_Z(t)$ requires A_0, B_0, U and Z in order to be defined. But we won't explicitly mention A_0 and B_0 . All the results in this paper assume there are two diagonal matrices A_0 and B_0 defined in the background even if we don't explicitly mention them.

83 3. Main Results.

LEMMA 3.1. Given a unitary matrix U with $M(U) \neq 0$. Let F be its F-matrix. Then $R'_Z(0) = M(U)tr(ZF)$ for any skew-hermitian matrix Z.

THEOREM 3.2. Given a unitary matrix U with $M(U) \neq 0$. If U is a boundary matrix then U is not multidirectional.

THEOREM 3.3. Given a boundary matrix U with $M(U) \neq 0$ with F-matrix F. If $F \neq 0$, F can be written uniquely in the form $F = e^{i\theta}H$ where H is a zero-diagonal hermitian matrix and $0 \leq \theta < \pi$.

91 THEOREM 3.4. Given a boundary matrix U with $M(U) \neq 0$ and F-matrix $F \neq 0$. 92 So we know that $F = e^{i\theta}H$ for some real $0 \leq \theta < \pi$. Given $\partial \Delta$ has a tangent line L 93 at M(U). Then L makes an angle $arg(M(U)) + \theta + \pi/2$ with the positive real axis.

94 COROLLARY 3.5. Given a point P in the complex plane such that $P \neq 0$, $P \in \partial \Delta$ 95 and $\partial \Delta$ has a tangent at P. Given two different unitary matrices U_1 and U_2 , with 96 corresponding non-zero F-matrices F_1 and F_2 , such that $M(U_1) = M(U_2) = P$. Then 97 $F_1 = e^{i\theta}H_1$ and $F_2 = e^{i\theta}H_2$ for some unique $0 \leq \theta < \pi$.

98 4. Proof of Lemma 3.1. The proof given here uses ideas from [1], Theorem 4,
99 p.26-27. But the proof given here is complete on its own.

100 Proof. We're given a unitary matrix U where $M(U) \neq 0$. So its F-matrix is well-101 defined and we call it F. Let B be its B-matrix, and C be its C-matrix. Given an 102 arbitrary skew-hermitian matrix Z.

103 We can use Jacobi's formula [5] on (2.3) to find $R'_{Z}(t)$

104
$$R'_{Z}(t) = tr(det(C_{Z}(t))C_{Z}^{-1}(t)C'_{Z}(t))$$
(4.1)

- 105 $R'_{Z}(0) = tr(det(C_{Z}(0))C_{Z}^{-1}(0)C'_{Z}(0))$
- 106 We can substitute C for $C_Z(0)$.

107	$R'_{Z}(0) = tr(det(C)C^{-1}C'_{Z}(0))$
108	$R'_{Z}(0) = det(C)tr(C^{-1}C'_{Z}(0))$
109	We know that $C'_Z(t) = B'_Z(t)$ so
110	$R'_{Z}(0) = det(C)tr(C^{-1}B'_{Z}(0))$
111	By subsection 2.1 and (1.3) we know that $det(C) = M(U)$
112	$R'_{Z}(0) = M(U)tr(C^{-1}B'_{Z}(0)) $ (4.2)
113	Using (2.2) ,
114	$B'_{Z}(t) = \frac{dU_{Z}(t)}{dt} B_{0}U_{Z}^{*}(t) + U_{Z}(t)B_{0}\frac{dU_{Z}^{*}(t)}{dt} $ (4.3)
115	Using (2.1) ,
116	$\frac{dU_Z(t)}{dt} = Ze^{Zt}U$
117	$U_Z^*(t) = (U^*)e^{-Zt}$
118	$\frac{dU_Z^*(t)}{dt} = -(U^*)Ze^{-Zt}$
119	Substitute these and (2.1) into (4.3)
120	$B'_{Z}(t) = Ze^{Zt}UB_{0}(U^{*})e^{-Zt} - (e^{Zt})UB_{0}(U^{*})Ze^{-Zt}$
121	$B'_{Z}(0) = ZUB_{0}U^{*} - UB_{0}(U^{*})Z$
122	Using the definition of the C-matrix in subsection 2.1
123	$B'_{Z}(0) = Z(C - A_0) - (C - A_0)Z$
124	$B'_{Z}(0) = ZC - ZA_0 - CZ + A_0Z$
125	$C^{-1}B'_Z(0) = C^{-1}ZC - C^{-1}ZA_0 - Z + C^{-1}A_0Z$
126	$tr(C^{-1}B'_Z(0)) = tr(C^{-1}ZC) - tr(C^{-1}ZA_0) - tr(Z) + tr(C^{-1}A_0Z)$
127	The first and third terms cancel since similar matrices have the same trace.
128	$tr(C^{-1}B'_Z(0)) = -tr(C^{-1}ZA_0) + tr(C^{-1}A_0Z).$
129	Using the idea that $tr(XY) = tr(YX)$
130	$tr(C^{-1}B'_Z(0)) = -tr(ZA_0C^{-1}) + tr(ZC^{-1}A_0)$
131	$tr(C^{-1}B'_Z(0)) = tr(ZC^{-1}A_0) - tr(ZA_0C^{-1})$
132	$tr(C^{-1}B'_Z(0)) = tr(Z(C^{-1}A_0 - A_0C^{-1}))$
133	$tr(C^{-1}B'_Z(0)) = tr(ZF)$
134	Substitute this into (4.2) to get

4

$$R'_Z(0) = M(U)tr(ZF) \tag{4.4}$$

136 This proves Lemma 3.1.

135

(5.2)

137 **5. Proof of Theorem 3.2.** We will prove the contrapositive. ie: We'll start 138 with a multidirectional matrix U, and prove that it is not a boundary matrix.

139 *Proof.* Given a unitary matrix U with $M(U) \neq 0$. Let F be its F-matrix and C 140 be its C-matrix.

141 Assume U is multidirectional. See subsection 2.2.

142 Then there exist two skew-hermitian matrices Z_1 and Z_2 such that

143
$$T_1 = tr(Z_1 F)$$
 (5.1)

144
$$T_2 = tr(Z_2F)$$

- 145 are both non-zero and non-collinear.
- 146 We know by Lemma 3.1 that:

147
$$R'_{Z_1}(0) = M(U)tr(Z_1F)$$

148
$$R'_{Z_2}(0) = M(U)tr(Z_2F)$$

149 substitute in (5.1) and (5.2),

150
$$R_1'(0) = M(U)T_1$$

151
$$R'_2(0) = M(U)T_2$$

Since we know T_1 and T_2 are non-collinear, $R'_{Z_1}(0)$ and $R'_{Z_2}(0)$ are non-collinear. They are also non-zero since $T_1, T_2, M(U) \neq 0$. Therefore they form a linear basis for all the complex numbers over the real numbers. Let Q be an arbitrary non-zero complex number.

156 $Q = aR'_{Z_1}(0) + bR'_{Z_2}(0)$ where a and b are real.

157
$$Q = a(M(U))T_1 + b(M(U))T_2$$

158
$$Q = M(U)(aT_1 + bT_2)$$

159 substitute in (5.1) and (5.2),

160
$$Q = M(U)(tr(aZ_1F) + tr(bZ_2F))$$

161
$$Q = M(U)tr((aZ_1 + bZ_2)F)$$

- 162 let $Z_3 = aZ_1 + bZ_2$
- 163 $Q = M(U)tr(Z_3F)$

- 164 Note that Z_3 is also a skew-hermitian matrix.
- Again by Lemma 3.1, we know that, 165

166
$$R'_{Z_3}(0) = M(U)tr(Z_3F) = Q$$

 $R'_{Z_3}(0) \neq 0$ since we chose Q to be non-zero. 167

Therefore since $R'_{Z_3}(0) \neq 0$, $R_{Z_3}(t)$ goes through M(U) in a direction parallel to Q. But Q was chosen arbitrarily. So through M(U) there exist curves $R_{Z_3}(t) \subseteq \Delta$ 168 169going in all possible directions. Therefore M(U) is an internal point of Δ . So it's not a 170boundary point. Therefore U is not a boundary matrix. That gives us Theorem 3.2. 171

6. Proof of Theorem 3.3. For n = 3, we define the following 12 skew-hermitian 172matrices with zero diagonal: 173

174
$$Z_{12} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad Z_{13} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad Z_{23} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

175
$$Z_{21} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$Z_{31} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

$$Z_{32} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$$

176
$$Z_{12,i} = Z_{21,i} = \begin{bmatrix} 0 & i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 $Z_{13,i} = Z_{31,i} = \begin{bmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{bmatrix}$ $Z_{23,i} = Z_{32,i} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{bmatrix}$

Note that the commas do not indicate tensors. They're just used here as a label 177to distinguish imaginary and real matrices. 178

We define Z_{ab} and $Z_{ab,i}$ similarly for all n > 3, where $a \neq b$. For a given n we 179have n(n-1) real matrices and n(n-1) imaginary matrices. 180

Proof. Given a boundary matrix U with $M(U) \neq 0$. Let F be its F-matrix. We 181 know that F is zero-diagonal by subsection 2.1. 182

183 Suppose
$$F_{ab} = F_{ab,r} + iF_{ab,i}$$
 where $F_{ab,r}$ and $F_{ab,i}$ are real numbers.

184
$$tr(Z_{ab}F) = F_{ab} - F_{ba}$$

- $tr(Z_{ab,i}F) = (F_{ab} + F_{ba})i$ 185
- Substitute in for F_{ab} and F_{ba} 186

$$tr(Z_{ab}F) = (F_{ab,r} - F_{ba,r}) + i(F_{ab,i} - F_{ba,i})$$
(6.1)

$$\begin{aligned}
& tr(Z_{ab}F) = (F_{ab,r} - F_{ba,r}) + i(F_{ab,i} - F_{ba,i}) & (6.1) \\
& tr(Z_{ab,i}F) = (-F_{ab,i} - F_{ba,i}) + i(F_{ab,r} + F_{ba,r}) & (6.2)
\end{aligned}$$

(Note that if both of the above are zero, we get that $F_{ab} = F_{ba} = 0$. So if $F_{ab} \neq 0$ 190191 at least one of the above is non-zero.)

By Theorem 3.2, we know that U is not multidirectional. So either $tr(Z_{ab}F)$ and $tr(Z_{ab,i}F)$ are collinear as vectors in the complex plane or at least one of them is zero. In either case we know that

- 195 $(F_{ab,i} F_{ba,i})(-F_{ab,i} F_{ba,i}) = (F_{ab,r} + F_{ba,r})(F_{ab,r} F_{ba,r})$
- 196 We can simplify this to get:
- 197 $F_{ab,r}^2 + F_{ab,i}^2 = F_{ba,r}^2 + F_{ba,i}^2$
- 198 $|F_{ab}| = |F_{ba}|$
- 199 We can write:
- 200 $F_{ab} = |F_{ab}| \angle \theta_{ab}$
- 201 $F_{ba} = |F_{ab}| \angle \theta_{ba}$

In the 4 cases below, we will show that when $F \neq 0$, we can get a representation of F as $F = e^{i\theta}H$ where θ is real and H is zero-diagonal and hermitian. After that we will show that restricting θ to $0 \leq \theta < \pi$ gives us a **unique** representation.

- 205 Case 1: $|F_{ab}|$ is non-zero for only one pair (a,b) where $a \neq b$
- 206 In this case,
- 207 $H = e^{-(\theta_{ab} + \theta_{ba})/2}F$ is a hermitian matrix, and we're finished.

Case 2: $|F_{ab}|$ is non-zero for multiple pairs (a,b) where $a \neq b$. For any 209 Z, when tr(ZF) is non-zero, it is imaginary.

If $|F_{ab}| \neq 0$, then by (6.1) and (6.2), $\theta_{ab} = -\theta_{ba}$. So our F-matrix is already hermitian, and we're done.

Case 3: $|F_{ab}|$ is non-zero for multiple pairs (a,b) where $a \neq b$. For any Z, when tr(ZF) is non-zero, it is real.

- 214 If $|F_{ab}| \neq 0$, then by (6.1) and (6.2), $\theta_{ab} = \pi \theta_{ba}$.
- 215 $H = e^{-(\frac{\pi}{2})}F$ is hermitian and we're done.

Case 4: $|F_{ab}|$ is non-zero for multiple pairs (a,b) where $a \neq b$. For any Z17 Z, when tr(ZF) is non-zero, it isn't real or imaginary.

- 218 Suppose $|F_{ab}| \neq 0$ and $|F_{cd}| \neq 0$
- 219 if $tr(Z_{ab}F) \neq 0$, then

220 slope of
$$tr(Z_{ab}F) = \frac{\sin(\theta_{ab}) - \sin(\theta_{ba})}{\cos(\theta_{ab}) - \cos(\theta_{ba})} = -\cot(\frac{\theta_{ab} + \theta_{ba}}{2})$$

- 1221 if $tr(Z_{ab,i}F) \neq 0$:
- 222 slope of $tr(Z_{ab,i}F) = \frac{\cos(\theta_{ab}) + \cos(\theta_{ba})}{-\sin(\theta_{ab}) \sin(\theta_{ba})} = -\cot(\frac{\theta_{ab} + \theta_{ba}}{2})$
- We know that since $|F_{ab}| \neq 0$, at least one of $tr(Z_{ab}F)$ or $tr(Z_{ab,i}F)$ is non-zero.
- similarly,

225	if $tr(Z_{cd}F) \neq 0$, then
226	slope of $tr(Z_{cd}F) = -\cot(\frac{\theta_{cd} + \theta_{dc}}{2})$
227	if $tr(Z_{cd,i}F) \neq 0$:
228	slope of $tr(Z_{cd,i}F) = -\cot(\frac{\theta_{cd} + \theta_{dc}}{2})$
229	We know that since $ F_{cd} \neq 0$, at least one of $tr(Z_{cd}F)$ or $tr(Z_{cd,i}F)$ is non-zero.
230	So we have:
231	$\cot(\frac{\theta_{cd}+\theta_{dc}}{2}) = \cot(\frac{\theta_{ab}+\theta_{ba}}{2})$ (since U is not multidirectional)
232	therefore:
233	$\frac{\theta_{cd}+\theta_{dc}}{2} = \frac{\theta_{ab}+\theta_{ba}}{2} + n\pi$ for some integer n.
234 235	We can freely adjust θ_{cd} by $-2n\pi$. It makes no difference since $ F_{cd} \angle \theta_{cd} = F_{cd} \angle (\theta_{cd} - 2n\pi)$
236	So after the adjustment we have:
237	$\frac{\theta_{cd} + \theta_{dc}}{2} = \frac{\theta_{ab} + \theta_{ba}}{2}.$
238	We make the same adjustment for any pair $(c,d) \neq (a,b)$ where $ F_{cd} \neq 0$
239	We set $\beta = \frac{\theta_{ab} + \theta_{ba}}{2}$
240	let $H = e^{-i\beta}F$
241	For some pair (x, y) where $x \neq y$ and $ H_{xy} \neq 0$,
242	$H_{xy} = H_{xy} \angle \alpha_{xy}$
243	$\alpha_{xy} = -(\frac{\theta_{ab} + \theta_{ba}}{2}) + \theta_{xy}$
244	$\alpha_{yx} = -(\frac{\theta_{ab} + \theta_{ba}}{2}) + \theta_{yx}$
245	But because of our adjustment,
246	$\frac{\theta_{ab}+\theta_{ba}}{2} = \frac{\theta_{xy}+\theta_{yx}}{2}$
247	Plugging this into the above two formulas we have
248	$\alpha_{xy} = \frac{\theta_{xy} - \theta_{yx}}{2}$
249	$\alpha_{yx} = -(\frac{\theta_{xy} - \theta_{yx}}{2})$
250 251	Therefore H is zero-diagonal, with transpositional elements of equal magnitude and opposite arguments. Therefore H is hermitian.
252 253	So in all 4 cases we can write $F = e^{i\beta}H$ for some hermitian matrix H and some real β . But we've not arrived at a unique representation for F yet.
254	Suppose

255 $F = e^{i\beta_1}H_1 = e^{i\beta_2}H_2$

256	$e^{i(\beta_1 - \beta_2)}H_1 = H_2$
257	$e^{i(\beta_1-\beta_2)}H_1 = H_2 = H_2^* = e^{i(\beta_2-\beta_1)}H_1^* = e^{i(\beta_2-\beta_1)}H_1$
258	So
259	$(e^{i(\beta_1 - \beta_2)} - e^{i(\beta_2 - \beta_1)})H_1 = 0$
260	Since $F \neq 0$, we know $H_1 \neq 0$ so
261	$e^{i(\beta_1 - \beta_2)} - e^{i(\beta_2 - \beta_1)} = 0$
262	$e^{i(\beta_1 - \beta_2)} = e^{i(\beta_2 - \beta_1)}$
263	Then
264	$\beta_1 - \beta_2 = \beta_2 - \beta_1 + 2k\pi$, for any integer k
265	$\beta_1 = \beta_2 + k\pi$
266 267	So if we restrict β to $0 \le \beta < \pi$, we have a unique representation since k is forced to 0.
268	This completes our proof of Theorem 3.3. $\hfill \Box$
269 270 271	7. Proof of Theorem 3.4. Given a boundary matrix U with $M(U) \neq 0$ with F-matrix $F \neq 0$. Given $\partial \Delta$ has a tangent line L at $M(U)$. <i>Proof.</i> By Theorem 3.3 we know that
411	1700J. By Theorem 5.5 we know that
272	$F = e^{i\theta}H\tag{7.1}$
273	for some real $0 \le \theta < \pi$ and some zero-diagonal hermitian matrix H.

We can substitute (7.1) into (6.1) and (6.2) and simplify to get: 274

275

$$tr(Z_{ab}F) = 2H_{ab,i}e^{i(\theta+\pi/2)}$$
(7.2)

276
$$tr(Z_{ab,i}F) = 2H_{ab,r}e^{i(\theta + \pi/2)}$$
(7.3)

Assume the above two equations are always 0 for all pairs (a, b). Then H = 0277278and by (7.1) and F = 0. But we are given that $F \neq 0$, so we have a contradiction. So our assumption is false and for some skew-hermitian matrix Z, $tr(ZF) \neq 0$. So by 279Lemma 3.1 we know that $R'_Z(0) = M(U)tr(ZF) \neq 0$. 280

By (7.2) and (7.3) we see that tr(ZF) forms an angle of $(\theta + \pi/2)$ with the positive 281 real axis (By Theorem 3.2 U is not multidirectional so any non-zero tr(ZF) forms 282the same angle with the positive real axis. So the angle is always $\theta + \pi/2$) Therefore 283 $R'_Z(0)$ forms an angle $arg(M(U)) + \theta + \pi/2$ with the positive real axis. 284

Assume $R'_Z(0)$ is not parallel to L. Then since $R'_Z(0) \neq 0$, $R_Z(t)$ crosses $\partial \Delta$ at 285t = 0. So $R_Z(t) \not\subseteq \Delta$ for some t. But we know by subsection 2.3 that $R_Z(t) \subseteq \Delta$ for 286287all t. We have a contradiction. So our assumption is false and we know that $R'_Z(0)$

A. SHARMA

is parallel to L. So L also forms an angle $arg(M(U)) + \theta + \pi/2$ with the positive real axis.

- 290 This completes our proof of Theorem 3.4.
- **8.** Proof of Corollary **3.5.** This is a simple consequence of Theorem 3.4.

292 Proof. $\partial \Delta$ has a unique tangent line at P.

- 293 So if $F_1 = e^{i\theta_1}H_1$ and $F_2 = e^{i\theta_2}H_2$, then
- 294 $arg(M(U_1)) + \theta_1 + \pi/2 = arg(M(U_2)) + \theta_2 + \pi/2$
- 295 Since $M(U_1) = M(U_2)$,

296
$$arg(M(U_1)) + \theta_1 + \pi/2 = arg(M(U_1)) + \theta_2 + \pi/2$$

297 giving

298
$$\theta_1 = \theta_2$$

9. **Conjectures.** Before we state our conjectures we define a region Δ_S which is a restriction of Δ . See (1.1).

301
$$\Delta_S = \left\{ det(A_0 + OB_0 O^*) : O \in O(n) \right\}$$
(9.1)

where O(n) is the set of $n \times n$ real orthogonal matrices.

As proven in [3], p.207, theorem 4.4.7, a matrix is normal and symmetric if and only if it is diagonalizable by a real orthogonal matrix.

Therefore Δ_S is the set of determinants of sums of normal, symmetric matrices with prescribed eigenvalues. We know Δ_S contains all the permutation points.

307 CONJECTURE 9.1 (Restricted Marcus-de Oliveira Conjecture).

308
$$\Delta_S \subseteq co\{\prod(a_i + b_{\sigma(i)})\}$$

309 CONJECTURE 9.2 (Boundary Conjecture).

 $310 \qquad \qquad \partial \Delta \subseteq \partial \Delta_S$

THEOREM 9.3. If the boundary conjecture is true, the restricted Marcus-de Oliveira conjecture imples the full Marcus-de Oliveira conjecture.

³¹³ Proof. Suppose we know Conjecture 9.1 is true. Then Δ_S along with its boundary ³¹⁴ is within the convex-hull. Suppose we also know that Conjecture 9.2 is true. Then we ³¹⁵ know that $\partial \Delta$ is inside the convex-hull. Can we have a unitary matrix U such that ³¹⁶ M(U) is outside the convex-hull? No, because that would mean we have points of Δ ³¹⁷ on both the inside and outside of $\partial \Delta$. This is impossible since Δ is a closed set (See ³¹⁸ the paragraph on the compactness of U(n) in section 1). So Δ is within the convex ³¹⁹ hull proving Conjecture 1.1.

BOUNDARY MATRICES AND THE MARCUS-DE OLIVEIRA DETERMINANTAL CONJECTURE

10. Conclusion. We hope that further analysis on boundary matrices of Δ , either by expanding on the results in this paper, or novel research, leads to a proof of the Boundary Conjecture. Then proving the full Marcus-de Oliveira conjecture would amount to proving the restricted conjecture. Whether the restricted conjecture is any

a24 easier to prove is unknown, but it's an avenue worth exploring.

325

REFERENCES

- [1] N. BEBIANO AND J. QUERIÓ, The determinant of the sum of two normal matrices with prescribed
 eigenvalues, Linear Algebra and its Applications, 71 (1985), pp. 23–28.
- [2] G. N. DE OLIVEIRA, Research problem: Normal matrices, Linear and Multilinear Algebra, 12
 (1982), pp. 153–154.
- 330 [3] R. HORN AND C. JOHNSON, Matrix Analysis, Cambridge University Press, 1990.
- [4] M. MARCUS, Derivations, plücker relations and the numerical range, Indiana University Math
 Journal, 22 (1973), pp. 1137–1149.
- [5] WIKIPEDIA CONTRIBUTORS, Jacobi's formula Wikipedia, the free encyclopedia, 2018, https:
 //en.wikipedia.org/w/index.php?title=Jacobi%27s_formula&oldid=838689851. [Online; ac cessed 16-September-2018].