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Abstract. We present notes on the Marcus-de Oliveira conjecture. The conjecture concerns the4
region in the complex plane covered by the determinants of the sums of two normal matrices with5
prescribed eigenvalues. Call this region ∆. This paper focuses on boundary matrices of ∆. We prove6
4 theorems regarding these boundary matrices. We propose 2 conjectures related to the Marcus-de7
Oliveira conjecture.8
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1. Introduction. Marcus [4] and de Oliveira [2] made the following conjec-12

ture. Given two normal matrices A and B with prescribed eigenvalues a1, a2...an and13

b1, b2...bn respectively, det(A+B) lies within the region:14

co
{∏

(ai + bσ(i))
}

15

where σ ∈ Sn. co denotes the convex hull of the n! points in the complex plane. As16

described in [1], the problem can be restated as follows. Given two diagonal matrices,17

A0 = diag(a1, a2...an) and B0 = diag(b1, b2...bn), let:18

∆ =
{
det(A0 + UB0U

∗) : U ∈ U(n)
}

(1.1)19

where U(n) is the set of n×n unitary matrices. Then we can write the conjecture20

as:21

Conjecture 1.1 (Marcus-de Oliveira Conjecture).22

∆ ⊆ co
{∏

(ai + bσ(i))
}

(1.2)23

Let24

Rm(U) = det(A0 + UB0U
∗). (1.3)25

Then the points forming the convex hull are at Rm(P0), Rm(P1)...Rm(Pn!−1),26

where the P’s are the n× n permutation matrices. We will refer to these as permu-27

tation points from now on.28

Note that U(n) is a compact set. A continuous image of a compact set is compact.29

Therefore ∆ is compact. And so ∆ is a closed set, because a compact subset of any30

metric space (in this case the complex numbers) is closed.31
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2 A. SHARMA

The paper is organized as follows. In section 2 we define terms that will be32

used in the rest of the paper. These terms are necessary to state our main results.33

In section 3, we state our 4 main theorems. section 4 provides a proof of the first34

theorem, section 5 provides a proof of the second, section 6 provides a proof of the35

third and section 7 provides a proof of the fourth. In section 8, we state 2 conjectures.36

In section 9, we conclude.37

2. Terms and definitions.38

2.1. Boundary matrix.39

• Given a point P on ∂∆ (the boundary of ∆) and given a unitary matrix U40

such that Rm(U) = P , we call U a boundary matrix of ∆. See (1.3).41

• Given a boundary matrix U. If ∂∆ is smooth at Rm(U) and U is not the42

product of a unitary diagonal matrix and a permutation matrix, we say U is43

a regular boundary matrix.44

2.2. Properties of unitary matrices given A0 and B0. In this section, we45

define four properties of unitary matrices that will be very useful when examining46

boundary matrices of ∆.47

The first three of these properties are matrices related to U. These matrices are48

defined in [1], p.27. They provide a language to talk about unitary matrices within49

the context of the determinantal conjecture.50

B-matrix51

B = UB0U
∗ (2.1)52

C-matrix53

C = A0 + UB0U
∗ (2.2)54

Using (1.3), Rm(U) = det(C)55

F-matrix56

F = BC−1 − C−1B57

We can change the F-matrix into a more useful form:58

F = (C −A0)C−1 − C−1(C −A0)59

60

F = C−1A0 −A0C
−1 (2.3)61

The F-matrix is only defined when C is invertible or equivalently Rm(U) 6= 0.62

Since A0 is diagonal, we see that F is a zero-diagonal matrix.63

As demonstrated in [1], p.27, the F-matrix is 0 if and only if U is the product of64

a unitary diagonal matrix and a permutation matrix.65

The fourth property is conditional. Given a unitary matrix U with Rm(U) 6= 066

and with F-matrix F. Suppose there exist two skew-hermitian matrices Z1 and Z2 such67
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BOUNDARY MATRICES AND THE MARCUS-DE OLIVEIRA DETERMINANTAL CONJECTURE3

that tr(Z1F ) and tr(Z2F ) are both non-zero and non-collinear vectors in the complex68

plane. Then we say that U is a multidirectional matrix. A multidirectional matrix69

must have a non-zero F-matrix to allow those non-zero traces. So a permutation70

matrix cannot be multidirectional because its F-matrix is 0.71

Note that these properties require an A0 and B0 to be defined. Throughout the72

paper we will assume there’s a defined A0 and B0 in the background. We will not73

mention them explicitly in order to simplify our language. For example when we74

say ”the C-matrix of a unitary matrix U”, it is clear that there’s an unmentioned75

A0 and B0 according to which the C-matrix of U is defined. It is the same thing76

with the terms ”boundary matrix” and ”regular boundary matrix”. Obviously it is77

meaningless for a unitary matrix to be a boundary matrix ”in general”. These terms78

only make sense in the context of A0, B0 and the corresponding ∆. So we’ll assume79

this context has been defined.80

3. Main Theorems.81

Theorem 3.1. Given U is a unitary matrix that cannot be written as the product82

of a unitary diagonal matrix and a permutation matrix. Given Rm(U) 6= 0 and its83

F-matrix is F. Given an arbitrary skew-hermitian matrix Z. There exists a curve84

Rf (t) ⊆ ∆, where t is real, such that Rf (0) = Rm(U) and R′f (0) = Rm(U)tr(ZF ).85

Theorem 3.2. If U is a boundary matrix, then U is not multidirectional.86

Theorem 3.3. Given a boundary matrix U such that Rm(U) 6= 0. Then its F-87

matrix has the form F = eiθH where H is a zero-diagonal hermitian matrix.88

Theorem 3.4. Given a regular boundary matrix U such that Rm(U) 6= 0. Let89

F = eiθH be the F-matrix of U. let l be the tangent line to ∂∆ at the boundary point.90

Then l makes an angle arg(Rm(U)) + θ + π/2 with the positive real axis.91

4. Proof of Theorem 3.1. This theorem is apparent from [1], p.27, but it is92

not stated explicitly there. It is worth proving explicitly here as it will be used for93

the other theorems.94

Before we can prove the theorem we need to set up some tools. Our aim is to95

examine boundary matrices of ∆. Towards this aim, it is useful to consider smooth96

functions of unitary matrices going through these boundary matrices and see how97

they behave under (1.3). For this reason, we introduce the functional form of (1.3).98

Rf (t) = det(A0 + Uf (t)B0U
∗
f (t)) (4.1)99

where t is real and Uf (t) is some smooth function of unitary matrices.100

Every unitary matrix can be written as an exponential of a skew-hermitian matrix.101

So we can write:102

Uf (t) = eSf (t). (4.2)103

where Sf (t) is a smooth function of skew hermitian matrices104

For small ∆t,105
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4 A. SHARMA

Uf (t+ ∆t) = (eSf (t+∆t))106

Uf (t+ ∆t) = (eSf (t)+(∆t)S′
f (t))107

Uf (t+ ∆t) = (e(∆t)S′
f (t))Uf (t)108

If we take the above function and plug it into Rf (t) we’ll get Rf (t + ∆t), but it109

won’t be in a form useful to us. We use a result from [1], p.27 for this purpose. In110

order to state this result within the context of this paper, we first need the functional111

forms of the B-matrix, C-matrix, F-matrix (these were defined in section 2):112

Bf (t) = Uf (t)B0U
∗
f (t) (4.3)113

Cf (t) = A0 +Bf (t) (4.4)114

Ff (t) = C−1
f (t)A0 −A0C

−1
f (t) (4.5)115

Note, Ff (t) is only defined if Rf (t) 6= 0. Also Ff (t) = 0 only when Uf (t) is the116

product of a unitary diagonal matrix and a permutation matrix.117

Now we can state the result from [1]:118

When Ff (t) 6= 0,119

Rf (t+ ∆t) = Rf (t) + (∆t) det(Cf (t))tr(S′f (t)Ff (t)) +O((∆t)2) (4.6)120

121
R′f (t) = det(Cf (t))tr(S′f (t)Ff (t)) (4.7)122

Now we have the tools needed to prove Theorem 3.1.123

Proof. Given a unitary matrix U that cannot be written as the product of a124

diagonal unitary matrix with a permutation matrix. Given Rm(U) 6= 0. let C be the125

C-matrix of U. let F be the F-matrix of U. Given Z is some arbitrary skew-hermitian126

matrix. We can find a skew-hermitian matrix S such that U = eS .127

We choose:128

Sf (t) = S + tZ (4.8)129

Note that Sf (t) is a smooth function of skew-hermitian matrices. We use it with130

(4.1),(4.2),(4.4),(4.5) and (4.7) to get Rf (t), Uf (t), Cf (t), Ff (t) and R′f (t). Note that131

Uf (0) = U , the unitary matrix we’re originally given. The choice of t = 0 is merely132

for simplicity and has no special significance. We could time-shift Sf (t) to the right133

by t1 to make Uf (t1) = U instead.134

Note that Cf (0) = C135

Note that Ff (0) = F136

Note that Rf (0) = Rm(U). See (1.3) and (4.1).137

This manuscript is for review purposes only.



BOUNDARY MATRICES AND THE MARCUS-DE OLIVEIRA DETERMINANTAL CONJECTURE5

R′f (t) = det(Cf (t))tr(ZFf (t))138

R′f (0) = det(Cf (0))tr(ZFf (0))139

R′f (0) = det(C)tr(ZF )140

therefore141

R′f (0) = Rm(U)tr(ZF ) (4.9)142

This proves Theorem 3.1.143

5. Proof of Theorem 3.2. We will prove the contrapositive. ie: We’ll start144

with a multidirectional matrix U, and prove that it is not a boundary matrix.145

Proof. Given we have a multidirectional matrix U. Let F be its F-matrix and146

C-matrix C. We know Rm(U) = det(C) 6= 0 and we know F is non-zero. See the147

discussion on multidirectional matrices in the second last paragraph of section 2.148

There exist two skew-hermitian matrices Z1 and Z2 such that149

T1 = tr(Z1F ) (5.1)150

T2 = tr(Z2F ) (5.2)151

are both non-zero and non-collinear.152

By Theorem 3.1, there exist two functions R1(t) and R2(t) such that R1(0) =153

R2(0) = Rm(U) and such that154

R′1(0) = Rm(U)tr(Z1F )155

R′2(0) = Rm(U)tr(Z2F )156

substitute in (5.1) and (5.2),157

R′1(0) = Rm(U)T1158

R′2(0) = Rm(U)T2159

Since we know T1 and T2 are non-collinear, R′1(0) and R′2(0) are non-collinear.160

They are also non-zero. Therefore they form a linear basis for all the complex numbers161

over the real numbers. Let Q be an arbitrary complex number.162

Q = aR′1(0) + bR′2(0) where a and b are real.163

Q = a(Rm(U))T1 + b(Rm(U))T2164

Q = Rm(U)(aT1 + bT2)165

substitute in (5.1) and (5.2),166

Q = Rm(U)(tr(aZ1F ) + tr(bZ2F ))167
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6 A. SHARMA

Q = Rm(U)tr((aZ1 + bZ2)F )168

let Z3 = aZ1 + bZ2169

Q = Rm(U)tr(Z3F )170

Note that Z3 is also a skew-hermitian matrix.171

Again by Theorem 3.1, there exists a function R3(t) such that172

R3(0) = Rm(U)173

and174

R′3(0) = Rm(U)tr(Z3F ) = Q175

Therefore R3(t) goes through Rm(U) in a direction parallel to Q. Q was chosen176

arbitrarily. So through Rm(U) there exists curves R3(t) ⊆ ∆ going in all directions.177

Therefore Rm(U) is an internal point of ∆. So it’s not a boundary point. Therefore178

U is not a boundary matrix. That gives us Theorem 3.2.179

6. Proof of Theorem 3.3. For n = 3, we define the following 12 skew-hermitian180

matrices with zero diagonal:181

Z12 =

0 −1 0
1 0 0
0 0 0

 Z13 =

0 0 −1
0 0 0
1 0 0

 Z23 =

0 0 0
0 0 −1
0 1 0

182

Z21 =

 0 1 0
−1 0 0
0 0 0

 Z31 =

 0 0 1
0 0 0
−1 0 0

 Z32 =

0 0 0
0 0 1
0 −1 0

183

Z12,i = Z21,i =

0 i 0
i 0 0
0 0 0

 Z13,i = Z31,i =

0 0 i
0 0 0
i 0 0

 Z23,i = Z32,i =

0 0 0
0 0 i
0 i 0

184

Note that the commas do not indicate tensors. They’re just used here as a label185

to distinguish imaginary and real matrices.186

We define Zab and Zab,i similarly for all n > 3, where a 6= b. For a given n we187

have n(n− 1) real matrices and n(n− 1) imaginary matrices.188

Proof. Given a boundary matrix U with Rm(U) 6= 0. Let F be its F-matrix. We189

know that F is zero-diagonal by (4.5).190

Suppose Fab = Fab,r + iFab,i where Fab,r and Fab,i are real numbers.191

tr(ZabF ) = Fab − Fba192

tr(Zab,iF ) = (Fab + Fba)i193

Substitute in for Fab and Fba194
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BOUNDARY MATRICES AND THE MARCUS-DE OLIVEIRA DETERMINANTAL CONJECTURE7

tr(ZabF ) = (Fab,r − Fba,r) + i(Fab,i − Fba,i) (6.1)195

tr(Zab,iF ) = (−Fab,i − Fba,i) + i(Fab,r + Fba,r) (6.2)196

By Theorem 3.2, we know that U is not multidirectional.197

Therefore198

(Fab,i − Fba,i)(−Fab,i − Fba,i) = (Fab,r + Fba,r)(Fab,r − Fba,r)199

We can simplify this to get:200

F 2
ab,r + F 2

ab,i = F 2
ba,r + F 2

ba,i201

|Fab| = |Fba|202

We can write:203

Fab = |Fab|∠θab204

Fba = |Fab|∠θba205

There are multiple cases we need to deal with.206

Case 1: F-matrix is 0207

F=0 is hermitian so we’re finished.208

Case 2: |Fab| is non-zero for only one pair (a,b) where a 6= b209

In this case,210

H = e−(θab+θba)/2F is a hermitian matrix, and we’re finished.211

Case 3: |Fab| is non-zero for multiple pairs (a,b) where a 6= b. For an212

arbitrary skew-hermitian Z, when tr(ZF) is non-zero, it is imaginary.213

If |Fab| 6= 0, then by (6.1) and (6.2), θab = −θba. So our F-matrix is already214

hermitian, and we’re done.215

Case 4: |Fab| is non-zero for multiple pairs (a,b) where a 6= b. For an216

arbitrary skew-hermitian Z, when tr(ZF) is non-zero, it is real.217

If |Fab| 6= 0, then by (6.1) and (6.2), θab = π − θba.218

H = e−(π2 )F is hermitian and we’re done.219

Case 5: |Fab| is non-zero for multiple pairs (a,b) where a 6= b. For220

an arbitrary skew-hermitian Z, when tr(ZF) is non-zero, it isn’t real or221

imaginary.222

Suppose |Fab| 6= 0 and |Fcd| 6= 0223

if tr(ZabF ) 6= 0, then224
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8 A. SHARMA

slope of tr(ZabF ) = sin(θab)−sin(θba)
cos(θab)−cos(θba) = − cot( θab+θba2 )225

if tr(Zab,iF ) 6= 0:226

slope of tr(Zab,iF ) = cos(θab)+cos(θba)
− sin(θab)−sin(θba) = − cot( θab+θba2 )227

similarly,228

slope of tr(ZcdF ) = − cot( θcd+θdc
2 )229

or230

slope of tr(Zcd,iF ) = − cot( θcd+θdc
2 )231

cot( θcd+θdc
2 ) = cot( θab+θba2 )232

therefore either:233

θcd+θdc
2 = θab+θba

2234

or,235

θcd+θdc
2 = θab+θba

2 + π236

For some specific x, y where x 6= y and |Fxy| 6= 0237

let β =
θxy+θyx

2238

let H = e−iβF239

For any a 6= b,240

Hab = |Hab|∠αab241

αab+αba
2 = 0 or π242

Therefore H is zero-diagonal, with transpositional elements of equal magnitude243

and opposite arguments. Therefore H is hermitian.244

So in all 5 cases we can write F = eiβH for some hermitian matrix H and some245

real β.246

This completes our proof of Theorem 3.3.247

7. Proof of Theorem 3.4. Given a regular boundary matrix U. Let F be the248

F-matrix of U.249

Proof. Therefore by Theorem 3.3 we know that250

F = eiθH (7.1)251

for some real θ and some zero-diagonal hermitian matrix H.252

We can substitute (7.1) into (6.1) and (6.2) and simplify to get:253

tr(ZabF ) = 2Hab,ie
i(θ+π/2) (7.2)254
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tr(Zab,iF ) = 2Hab,re
i(θ+π/2) (7.3)255

As expected the vectors are collinear.256

Since U is a regular boundary matrix, ∂∆ is smooth at Rm(U) ie: the tangent to257

the curve exists at Rm(U).258

So using Theorem 3.1, we see that the tangent line forms an angle arg(Rm(U)) +259

θ + π/2 with the positive real axis. This completes our proof of Theorem 3.4.260

8. Conjectures. Before we state our conjectures we define a region ∆S which261

is a restriction of ∆. See (1.1).262

∆S =
{
det(A0 +OB0O

∗) : O ∈ O(n)
}

(8.1)263

where O(n) is the set of n× n real orthogonal matrices.264

As proven in [3], p.207, theorem 4.4.7, a matrix is normal and symmetric if and265

only if it is diagonalizable by a real orthogonal matrix.266

Therefore ∆S is the set of determinants of sums of normal, symmetric matrices267

with prescribed eigenvalues. We know ∆S contains all the permutation points.268

Conjecture 8.1 (Restricted Marcus-de Oliveira Conjecture).269

∆S ⊆ co
{∏

(ai + bσ(i))
}

270

Conjecture 8.2 (Boundary Conjecture).271

∂∆ ⊆ ∂∆S272

Theorem 8.3. If the boundary conjecture is true, the restricted Marcus-de Oliveira273

conjecture imples the full Marcus-de Oliveira conjecture.274

Proof. Suppose we know Conjecture 8.1 is true. Then ∆S along with its boundary275

is within the convex-hull. Suppose we also know that Conjecture 8.2 is true. Then we276

know that ∂∆ is inside the convex-hull. Can we have a unitary matrix U such that277

Rm(U) is outside the convex-hull? No, because that would mean we have points of278

∆ on both the inside and outside of ∂∆. This is impossible since ∆ is a closed set279

(See the second last paragraph of section 1). So ∆ is within the convex hull proving280

Conjecture 1.1.281

9. Conclusion. We hope that further analysis on boundary matrices of ∆, either282

by expanding on the results in this paper, or novel research, leads to a proof of the283

Boundary Conjecture. Then proving the full Marcus-de Oliveira conjecture would284

amount to proving the restricted conjecture. Whether the restricted conjecture is any285

easier to prove is unknown, but it’s an avenue worth exploring.286
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