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Abstract
We consider a Blind Source Separation problem. In particular we focus on recon-

struction of digital documents degraded by bleed-through and show-through effects.
In this case, since the mixing matrix, the source and data images are nonnegative, the
solution is given by a Nonnegative Factorization. As the problem is ill-posed, further
assumptions are necessary to estimate the solution. In this paper we propose an it-
erative algorithm in order to estimate the correct overlapping level from the verso to
the recto of the involved document. Thus, the proposed method is a Correlated Com-
ponent Analysis technique. This method has low computational costs and is fully
unsupervised. Moreover, we give an extension of the proposed algorithm in order
to deal with a not translation invariant model. Our experimental results confirm the
goodness of the method.

Key words: Blind Source Separation, Digital Document Restoration, Nonnegative Factor-
ization, Correlated Component Analysis.
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1 Introduction
In this paper we deal with a Blind Source Separation (BSS) problem. This problem has
been an active research topic in signal processing since the end of the last century and
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has several applications in different fields, for example, in the cocktail party problem, in
which the single signal separation is extracted from a number of speech signals which
form a single observed mixture; in image classification and change detection (see also
[7]); in determining the structure of the buildings in thermographic images for seismic
engineering (see also [14, 15, 16]); in the problem of estimating the Cosmic Microwave
Background (CMB) from galactic and extragalactic emissions (see also [20, 39]).

In particular we study the reconstruction of digital documents. There are several
causes which lead a document to be degraded. Some of them are, for instance, weath-
ering, seeping, humidity, powder, mold, light transmission, which cause a progressive
degradation and decay of the paper and the ink of the analyzed documents. Some of the
consequences in damaged documents are, for instance, stains, noise, trasparency of writ-
ing on the reverso side and on the close pages, unfocused or overlapping characters, and
so on. Historically, the first techniques of restoration for degraded documents were man-
ual, and they led to a material restoration. Recently, thanks to the diffusion of scanners
and software for reconstruction of images, videos, texts, photographs and films, several
new techniques were used in the recovery and restoration of deteriorated material, like for
instance digital or virtual restoration. Digital imaging for documents is very important,
because it allows to have digital achieves, to make always possible the accessibility and
the readibility. Indeed, documents are often difficult to be read with the naked eye. More-
over sometimes, in the study of documents, some further informations can be achieved
from images taken at the infrared or ultraviolet wavelenghts. Since the classical man-
ual techniques of restoration are more expensive, irreversible, often ineffective or even
inapplicable, then digital restoration is very successful. The process of acquisition of a
digital document, if necessary, can be preceded by a manual intervention to remove phys-
ical elements like, for example, dust, mud or other impurities. The acquired document is
modified by a set of processes which will give a restored copy, sufficiently close to the
original document. The Digital Document Restoration consists of a set of processes fi-
nalized to the visual and aesthetic improvement of a virtual reconstruction of a corrupted
document, without risk of deterioration. Another field in which these techniques are very
important is to include digital documents into a suitable database. To search into it, some
machine readable versions of the original text are required. When the database is large,
it is suitable that the machine readable documents are read quickly and independently of
human interventions. This is usually done by the Optical Character Recognition (OCR)
system (see also [5, 10, 47]), whose performance, however, depends also on the quality of
the data. Since ancient documents are often very degraded, before applying OCR, image
processing techniques can be viewed as a preprocessing method. When degraded original
documents are managed, different kinds of digital image restoration algorithms can be
useful both to improve human readability and to get acceptable OCR performances.

Here we deal with bleed-through and show-through effects. The bleed-through is an
intrinsic front-back physical deterioration of the document. It occurs, for example, be-
cause of humidity, or particular environmental condition during storage, or simply due to
the passage of time. In the case of handmade documents, it consists in the seeping and the
absorption of the ink from part of the fibers of the paper. The result is a document with an
overlay of the main contents of the involved front and back pages. The show-through is
a front-back interference, mainly due to the scanning process and the paper transparency.
This effect occurs when the paper of the document is not completely opaque and the scan-
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ner uses a white background. In the case of the just described degradation phenomena,
it is advisable to have a model that includes availability of the front and the back of the
involved document, and that the data are combinations of the source ideals (see also [52]).
To remove the bleed-through (or the show-through) patterns from a digital document scan
is in general not an easy task, especially in the case of ancient documents, where the
interferences are often very wide. Indeed, to deal with strong bleed-through by a sim-
ple threshold technique is practically impossible, since the intensities of the unwanted
ink filtered from the back can be very close to the intensity of the ones of the main text.
For instance, in [40] several threshold techniques are compared for separating the text
in degraded historical documents, and in general neither global nor local thresholds have
satisfactory results.

Here initially we deal with the linear and translation invariant model (see also [12, 25,
26, 27, 28, 31, 32, 53, 54, 56]) in the problem of estimating both the two source images
corresponding to the ideal front and the ideal back of the document and the mixture matrix
related to the linear model from two observed data images which are the mixtures of
these sources, produced by the bleed-through or the show-through effect. This problem
is ill-posed in the sense of Hadamard (see also [24]). In fact, as the estimated mixture
matrix varies, the corresponding estimated sources are in general different, and so we
have infinitely many solutions.

So far, many techniques were proposed to solve this ill-posed inverse problem. Among
them, the Independent Component Analysis (ICA) methods are based on the assumption
of mutual independence of the sources (see also [17, 29, 30, 48]). The most known of the
ICA techniques is the so-called FastICA (see also [25, 26, 27, 28, 31, 32, 36, 37, 41, 42,
49]), which by means of a fixed point iteration argument looks for an orthogonal rotation
of prewhitened data, which maximizes a measure of non-Gaussianity of the rotated com-
ponents. FastICA algorithm is a parameter free and extremely fast procedure. However,
the ICA solution to BSS problem presents some drawbacks. Indeed, the independence
condition can be satisfied in some BSS problems, but in our analyzed problem there is
clearly a correlation among the sources.

On the other hand, several of the ill-posed inverse problem techniques impose that
the estimated sources are just mutually uncorrelated. By means of the technique of Prin-
cipal Component Analysis (PCA) (see also [12, 52, 53, 54]), the estimated sources are
determined through a linear transformation of the data by imposing the condition of or-
thogonality between them, while in the Whitening (W) and Symmetric Whitening (SW)
techniques (see also [12, 52, 53, 54, 56]) an orthonormality constraint is imposed. The
PCA, W and SW algorithms require only a single very fast processing step. In [12, 53] it
is observed that the results obtained by means of the SW method are substantially equiv-
alent to those got by an ICA technique in the symmetric mixing case.

In this paper we assume that the mixture matrix is stochastic, because we suppose
that the means of the light intensities of the sources and of those of the data coincide. In
our setting, we do a change of variables of data, in order that high and low light intensity
correspond to presence and absence of that text in the doumen, respectively. We define
the overlapping matrix both of the observed data and of the ideal sources, from which
we deduce the overlapping level, which yields a measure of how the front coincides with
the back. The PCA, W and SW techniques give an estimate of the mixture matrix as a
symmetric factorization of the data covariance matrix, while in our setting we estimate
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the mixture matrix as the best symmetric factorization of data overlapping matrix, which
allows to have the text as disjoint as possible. In particular, we propose an iterating pro-
cedure, in which in every iteration we obtain an estimate of the source overlapping level.
During this estimation we impose, by means of an orthogonal projection operator, a non-
negativity constraint on the estimated source (see also [11, 13, 22, 43, 45]). We repeat this
procedure until we reach a fixed point. By means of this technique, we obtain an estimate
not only of the ideal sources of the mixture matrix, but also of the source overlapping
level. Such a value indicates the correlation between the ideal sources. In this way, our
method can be classified as a Correlated Component Analysis (CCA) technique (see also
[6, 18, 46, 50, 51, 55]). We refer to the proposed algorithm as Minimum Amount of Text
Overlapping in Document Separation (MATODS). Similarly to the FastICA technique,
the MATODS algorithm is a parameter free and extremely fast procedure.

In many ancient documents the infiltration of the ink is not spatially uniform, thus the
fully translation invariant linear model is not always realistic. To overcome this problem,
we propose a locally linear new model, where the mixture matrix varies smoothly. So
we present an extension of the MATODS algorithm that fits this model. We call such an
extension as the Not Invariant for Translation MATODS (NIT-MATODS) algorithm.

In Section 2 we present the initial translation invariant linear model of the problem.
In Section 3 we develop the proposed algorithm MATODS. In Section 4 we analyze how
to choose the algorithm used in MATODS for minimizing the related objective function.
In Section 5 we present the not translation invariant model and give the NIT-MATODS
algorithm. In Section 6 we illustrate the experimental results, comparing the MATODS
algorithm with other fast and unsupervised methods existing in literature and showing
how the NIT-MATODS algorithm works in restoring real ancient documents.

2 Formulation of the problem
A n × n color image is usually encoded in the RGB space, where R, G, B indicate the
red, green and blue color, respectively, and can be represented as a matrix belonging to
Rn2×3, whose elements are the channel light intensity (which varies between 0 and 255)
of the pixels, ordered in the lexicographic sense. We consider a document as a pair of
images, which represent its sides, the front (recto) and the back (verso), respectively. In
particular, we denote by

x̂r =
[
x̂rR x̂rG x̂rB

]
(1)

the RGB color front image of the observed document, where x̂rR, x̂rG, x̂rB ∈ [0, 255]n
2×1,

and by
x̂v =

[
x̂vR x̂vG x̂vB

]
, (2)

with x̂vR, x̂vG, x̂vB ∈ [0, 255]n
2×1, the associated RGB color back image. Here, we

assume that the data recto x̂r in (1) and the data verso x̂v in (2) are spatially registered by
a horizontal flip of the verso. The red, green and blue data components are

x̂R =
[
x̂rR x̂vR

]
, x̂G =

[
x̂rG x̂vG

]
, x̂B =

[
x̂rB x̂vB

]
,

respectively, and finally we write the observed document as

x̂ =
[
x̂rR x̂vR x̂rG x̂vG x̂rB x̂vB

]
,
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which belongs to [0, 255]n
2×6. The source ideal document is given by the matrix

ŝ =
[
ŝrR ŝvR ŝrG ŝvG ŝrB ŝvB

]
,

where ŝ ∈ [0, 255]n
2×6, and we set

ŝR =
[
ŝrR ŝvR

]
, ŝG =

[
ŝrG ŝvG

]
, ŝB =

[
ŝrB ŝvB

]
.

In this paper we initially consider a linear and translation invariant model

x̂T = A ŝT (3)

(see also [12, 25, 26, 27, 28, 31, 32, 53, 54, 56]), where the symbol ·T denotes the trans-
pose operation of a matrix, andA ∈ R6×6, which is called mixture matrix, is the following
block matrix:

A =

AR 0 0
0 AG 0
0 0 AB

 ,
with

AR =

[
aR11 aR12

aR21 aR22

]
, AG =

[
aG11 aG12

aG21 aG22

]
, AB =

[
aB11 aB12

aB21 aB22

]
.

Note that, according to our model, every single observed channel is formed by a linear
combination of components related to the same channel of the front and the back of the
ideal source document.

In this paper we assume that the mean of the light intensities of the sources are similar
to that of the data, so we suppose that AR, AG, AB are stochastic matrices, that is they
are nonnegative matrices and

aR11 + aR12 = aR21 + aR22 = aG11 + aG12 = aG21 + aG22 = aB11 + aB12 = aB21 + aB22 = 1. (4)

Thus, AR, AG, AB ∈ [0, 1]6×6. Moreover we assume that the mixing matrix A is a diago-
nally dominant matrix.

In our approach it is useful that a high light intensity indicates a presence of mean-
ingful data (for example, a letter or a figure), and a low light intensity corresponds to
an absence of data. Since the background usually has bright colors while text or figures
contain dark colors, we apply the following change of variables:

xR = mR e− x̂R, xG = mG e− x̂G, xB = mB e− x̂B, (5)
sR = mR e− ŝR, sG = mG e− ŝG, sB = mB e− ŝB,

where e ∈ Rn2×2 be that matrix such that

ei,j = 1 for each i = 1, 2, . . . , n2 and j = 1, 2, (6)

and mR, mG, mB are the maximum of the light intensity of both sides of the red, green
and blue components, respectively, of the data document. Note that, since we deal with
paper documents, we assume that the involved maximum is achieved on the background.
Set
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Thanks to (5), the values of the light intensity corresponding to the background are
equal to 0, while the other pixels containing the informations have positive light intensity
values, whose maximum is given by mR. Since AR is stochastic, for the red channel we
get

eT = AR e
T , (7)

and hence from (3) and (7) we obtain

xTR = (mR e)
T − AR ŝTR = AR (mR e)

T − AR ŝTR = AR ( (mR e)
T − ŝTR) = AR s

T
R.

Similarly it is possible to verify the analogous relations involving the channels green and
blue.

From now on, we refer only to the red channel, because similar arguments can by
done also in green and blue channel.

Here we define the following 2× 2 data overlapping matrix of the observed data.

CR =

[
cR11 cR12

cR21 cR22

]
. = xTR xR =

[
xTrR · xrR xTrR · xvR
xTvR · xrR xTvR · xvR

]
. (8)

This matrix, when xrR and xvR have zero mean, is denoted by data covariance matrix
(see also [42, 53, 54, 56]). The matrix CR gives an information about how much the text
of the front overlaps with the one of the back. In fact in our case, since xR is a nonnegative
matrix, the data overlapping matrix is always a nonnegative matrix, and it is diagonal if
and olny if there is no overlapping text from the recto to the verso of the document. In
particular we refer to the entries dR = cR12 = cR21 as the data overlapping level.

Similarly as above, it is possible to define the source overlapping matrix as follows:

PR =

[
pR11 pR12

pR21 pR22

]
= sTR sR =

[
sTrR · srR sTrR · svR
sTvR · srR sTvR · svR

]
.

We refer to the entries kR = pR12 = pR21 as the source overlapping level.
Moreover, it is easy to see that the matrices CR and PR are symmetric and positive

semidefinite. Indeed,

xTrR · xTvR = xTvR · xTrR, and sTrR · sTvR = sTvR · sTrR

for the symmetry of the scalar product. Moreover, for every y ∈ R2 we get

yTCR y = yTxTRxR y = (xR y)T · (xR y) = ‖xR y‖2 ≥ 0,

and similarly for the matrix PR.

3 The estimates of the sources
In this paper we deal with the problem of estimating both the ideal sources and the mixture
matrix from the observed data, which in the literature is called Blind Source Separation
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(BSS) (see also [2, 12, 30, 52]). If we have an invertible estimate ÃR of AR, then an
estimate of sR is

s̃TR = Ã−1
R xTR. (9)

Since there are infinitely many choices of ÃR, our problem admits infinitely many solu-
tions. Thus we are dealing with an ill-posed problem in the sense of Hadamard (see also
[24]). Even if we assume that ÃR and s̃R are nonnegative matrices, the problem is NP-
hard (see [57]) and ill-posed (see [23]). To overcome this fact, it is necessary to impose
some constraints on the solutions.

Existing techniques in the literature, like the Principal Component Analysis (PCA),
the Whitening (W) and Symmetric Whitening (SW), by considering data images with zero
mean in each component, deal with the data covariance matrices instead of the data over-
lapping matrices. In our context we extend the use of overlapping matrices to these tech-
niques. In particular, let us consider a spectral decomposition of the red data overlapping
matrix CR = ΠRΛRΠT

R, where ΠR is orthogonal, the columns of ΠR are the eigenvectors
of CR, and ΛR is a diagonal matrix, whose diagonal entries are the eigenvalues of CR. An
assumption used in these techniques is that the source overlapping matrix (source covari-
ance matrix, in the case of red data images with zero mean) PR is diagonal. In particular
in the PCA technique it is supposed that PR = ΛR, while in the W and SW techniques it
is assumed that PR = I , where I is the identity 2 × 2 matrix (see also [52, 53, 54]). By
(8), we obtain

CR = xTRxR = ARs
T
RsRA

T
R = ARPRA

T
R. (10)

The estimates of the mixture matrices by means of the PCA, W and SW techniques are
given by ÃR = ΠR, ÃR = ΠR Λ

1/2
R and ÃR = ΠR Λ

1/2
R ΠT

R = C
1/2
R , respectively. More-

over, in the Optimal Whitening (OW) technique it is assumed that PR = c2I for some
c ∈ R \ {0}. This technique imposes that ‖s̃R − xR‖F is minimal, where ‖ · ‖F is the
Frobenius norm. Thus, we get ÃR = 2√

λR1 +
√
λR2
C

1/2
R , where λR1 and λR2 are the eigenval-

ues of CR (see also [19]).
In the proposed technique, we distinguish two cases, detCR = 0 and detCR 6= 0. We

first assume detCR = 0. From (8), since xrR and xvR are nonnegative vectors, and from
the Cauchy-Schwartz inequality it follows that there exists ζ > 0 with xrR = ζ xvR. An
example can be shown in Figure 1 (a) and (b).
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(a) Recto of the document. (b) Verso of the document.

(c) Symmetric reconstruction of the
recto.

(d) Symmetric reconstruction of the
verso.

Figure 1: Document whose recto is a multiple of the verso.

In this case, it is natural to assume that s̃rR = 0 e or s̃vR = 0 e, where e is as in (6),
and s̃rR, s̃vR are the estimates of the ideal sources srR, svR, respectively, that is the recto
or the verso of the ideal source document is an empty page. When ζ ≥ 1, we assume that

s̃vR = 0 e, and so we get xrR = ãR11 s̃rR, xvR = ãR21 s̃rR and ζ =
ãR11

ãR21

, where ãR11 and ãR21

are estimates of aR11 and aR21, respectively. Therefore we obtain

s̃rR =
1

ãR11

xrR, s̃vR = 0 e, ÃR =

 ãR11 1− ãR11
1

ζ
ãR11 1− 1

ζ
ãR11

 ,
where ãR11 is arbitrarily chosen in ]0, 1] and ÃR is an estimate of the mixing matrix AR. If

we impose that the matrix ÃR is symmetric, then we have ãR11 =
ζ

ζ + 1
. In Figure 1 (c)

and (d) we present a symmetric reconstruction of the document shown in Figure 1 (a) and
(b).

If 0 < ζ < 1, then we put s̃rR = 0 e, and so we get xvR = ãR12 s̃vR, xrR = ãR22 s̃vR

and ζ =
ãR12

ãR22

, where ãR12 and ãR22 are estimates of aR12 and aR22, respectively. Therefore we
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obtain

s̃vR = 0 e, s̃vR =
1

ãR22

xvR, ÃR =

[
1− ζ ãR22 ζ ãR22

1− ãR22 ãR22

]
,

where ãR22 is arbitrarily chosen in ]0, 1]. If we require the symmetry of the estimated

mixing matrix ÃR, then we get ãR22 =
1

ζ + 1
.

Now we deal with the more frequent case detCR 6= 0. We would like to estimate
not only the ideal sources srR and svR and the mixture matrix AR, but also the source
overlapping matrix PR. In particular we would like to estimate the source overlapping
level kR. Since in our algorithm we impose the non-negativity of the estimated sources
s̃rR and s̃vR, the value of the estimate of kR represents the level of overlapping of the
recto of the source document with its verso, that is, how much the text of the estimated
front source is disjoint from the one of the estimated back source. Since the value of kR
is in general different from zero, the proposed method can be classified as a Correlated
Component Analysis (CCA) technique (see also [6, 18, 46, 50, 51, 55]).

Now we define a symmetric factorization of a symmetric and positive definite matrix
Y ∈ Rn×n as an equality of the type Y = ZZT , where Z ∈ Rn×n is a nonsingular matrix.
Observe that, given any orthogonal matrix Q ∈ Rn×n and a symmetric factorization of
the type Y = ZZT , then the equality Y = ZQ(ZQ)T is also a symmetric factorization of
Y . Indeed, if Y = ZZT , then

ZQ(ZQ)T = ZQQTZT = ZZT = Y,

since Q is orthogonal. Moreover, if we consider any two symmetric factorizations of the
type

Y = Z1Z
T
1 = Z2Z

T
2 , (11)

then there is an orthogonal matrix Q ∈ Rn×n with

Z1 = Z2Q. (12)

Indeed, first of all observe that, thanks to the Binet theorem, the matrices Z1 and Z2 are
nonsingular. Let Y , Z1 and Z2 be as in (11), then it is

Z1 = Z2Z
T
2 Z
−T
1 = Z2Q, (13)

where the symbol ·−T denotes the transposed of the inverse matrix, and

Q = ZT
2 Z
−T
1 . (14)

We get
QQT = ZT

2 Z
−T
1 Z−1

1 Z2 = ZT
2 (Z1Z

T
1 )−1Z2

= ZT
2 (Z2Z

T
2 )−1Z2 = ZT

2 Z
−T
2 Z−1

2 Z2 = I.

In the particular case 2× 2, the set of the orthogonal matrices is the union of all rotations
and reflections in R2, which are expressed as

Q1(θ) =

[
sin θ − cos θ
cos θ sin θ

]
and Q−1(θ) =

[
cos θ sin θ
sin θ − cos θ

]
, (15)
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respectively, as θ varies in [0, 2π[. Note that CR = C
1/2
R (C

1/2
R )T = C

1/2
R C

1/2
R is a sym-

metric factorization of CR, and thus all possible factorizations of CR are given by

ZR,ι(θ) = C
1/2
R Qι(θ) =

[
zR,ι11 (θ) zR,ι12 (θ)

zR,ι21 (θ) zR,ι22 (θ)

]
, (16)

where θ ∈ [0, 2π[ and ι ∈ {−1, 1}.
To have a joint estimation of the mixture, the source matrices and the source over-

lapping level, we use an iterative algorithm. At the l-th step, given θ ∈ [0, 2π[ and
ι ∈ {−1, 1}, by using (10) we get

CR = ARP̃
(l)
R,ι(θ)A

T
R, (17)

where the matrix

P̃
(l)
R,ι(θ) =

[
p̃
R,ι,(l)
11 (θ) k

(l)
R

k
(l)
R p̃

R,ι,(l)
22 (θ)

]
(18)

is a symmetric and positive definite estimate of the source overlapping matrix PR, and
k

(l)
R is the estimate of the red source overlapping level obtained at the (l − 1)-th step (we

assume k(0)
R = 0), while p̃R,ι,(l)11 (θ) and p̃R,ι,(l)22 (θ) will be chosen in order that the estimated

mixture matrix is stochastic. Given a factorization

P̃
(l)
R,ι(θ) = W

(l)
R,ι(θ)(W

(l)
R,ι(θ))

T , (19)

where

W
(l)
R,ι(θ) =

[
w
R,ι,(l)
11 (θ) w

R,ι,(l)
12 (θ)

w
R,ι,(l)
21 (θ) w

R,ι,(l)
22 (θ)

]
is a suitable nonsingular matrix, from (18) and (19) we deduce

w
R,ι,(l)
11 (θ)w

R,ι,(l)
21 (θ) + w

R,ι,(l)
12 (θ)w

R,ι,(l)
22 (θ) = k

(l)
R . (20)

Moreover, by virtue of (39) and (19), it is

CR = ARW
(l)
R,ι(θ)(W

(l)
R,ι(θ))

TATR = ARW
(l)
R,ι(θ)(ARW

(l)
R,ι(θ))

T ,

and so ARW
(l)
R,ι(θ) realizes a factorization of CR. Thus we define an estimation

Ã
(l)
R,ι(θ) =

[
a
R,ι,(l)
11 (θ) a

R,ι,(l)
12 (θ)

a
R,ι,(l)
21 (θ) a

R,ι,(l)
22 (θ)

]
of the mixture matrix AR as a matrix such that

Ã
(l)
R,ι(θ)W

(l)
R,ι(θ) = Zι(θ),

where ZR,ι(θ) is as in (16) and W (l)
R,ι(θ) is chosen in order that the matrix Ã(l)

R,ι(θ) satisfies
the stochastic condition in equation (4), that is

zR,ι11 (θ)w
R,ι,(l)
22 (θ)− zR,ι12 (θ)w

R,ι,(l)
21 (θ) + zR,ι12 (θ)w

R,ι,(l)
11 (θ)

−zR,ι11 (θ)w
R,ι,(l)
12 (θ) = w

R,ι,(l)
11 (θ)w

R,ι,(l)
22 (θ)− wR,ι,(l)21 (θ)w

R,ι,(l)
12 (θ),

zR,ι21 (θ)w
R,ι,(l)
22 (θ)− zR,ι22 (θ)w

R,ι,(l)
21 (θ) + zR,ι22 (θ)w

R,ι,(l)
11 (θ)

−zR,ι21 (θ)w
R,ι,(l)
12 (θ) = w

R,ι,(l)
11 (θ)w

R,ι,(l)
22 (θ)− wR,ι,(l)21 (θ)w

R,ι,(l)
12 (θ).

(21)
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If we assume that zR,ι11 (θ) 6= zR,ι21 (θ) and zR,ι12 (θ) 6= zR,ι22 (θ), then a possible choice of
w

(l)
ij (θ), i, j = 1, 2, taking into account (20) and (21), is given by

w
R,ι,(l)
11 (θ) =

det(ZR,ι(θ))

zR,ι22 (θ)− zR,ι12 (θ)
− k(l)

R

(zR,ι11 (θ)− zR,ι21 (θ))2

(zR,ι22 (θ)− zR,ι12 (θ)) det(ZR,ι(θ))
,

w
R,ι,(l)
12 (θ) = k

(l)
R

zR,ι11 (θ)− zR,ι21 (θ)

det(ZR,ι(θ))
,

w
R,ι,(l)
21 (θ) = 0,

w
R,ι,(l)
22 (θ) =

det(ZR,ι(θ))

zR,ι11 (θ)− zR,ι21 (θ)
.

(22)

This choice is arbitrary, since the nonlinear system given by the equations (20) and (21)
has other infinitely many solutions. Moreover, recall that the matrix W

(l)
R,ι(θ) must be

necessarily be non-singular. From equation (22), as det(ZR,ι(θ)) 6= 0, we have that
W

(l)
R,ι(θ) is not singular if and only if wR,ι,(l)11 (θ) 6= 0. Let us examine the case wR,ι,(l)11 (θ) =

0. This is verified if and only if

det(ZR,ι(θ))

zR,ι22 (θ)− zR,ι12 (θ)
− k(l)

R

(zR,ι11 (θ)− zR,ι21 (θ))2

(zR,ι22 (θ)− zR,ι12 (θ)) det(ZR,ι(θ))
= 0,

namely

k
(l)
R =

(det(ZR,ι(θ)))
2

(zR,ι11 (θ)− zR,ι21 (θ))2
=

det(CR)

(zR,ι11 (θ)− zR,ι21 (θ))2
.

Indeed, det(Q1(θ)) = 1 and det(Q2(θ)) = −1 for each θ ∈ R, so we get (det(Zι(θ))
2 =

det(CR). Note that det(CR) > 0, because CR is symmetric and positive definite. As
k

(l)
R > 0, we obtain

(zR,ι11 (θ)− zR,ι21 (θ))2 =
det(CR)

k
(l)
R

,

and hence

zR,ι11 (θ)− zR,ι21 (θ) =
(det(CR))1/2

(k
(l)
R )1/2

(23)

or

zR,ι21 (θ)− zR,ι11 (θ) =
(det(CR))1/2

(k
(l)
R )1/2

. (24)

Given

C
1/2
R =

[
c̄R11 c̄R12

c̄R21 c̄R22

]
,

when ι = 1, the relations (23) and (24) become

(c̄R11 − c̄R21) sin θ + (c̄R12 − c̄R22) cos θ =
(det(CR))1/2

(k
(l)
R )1/2

(25)

11



and

(c̄R21 − c̄R11) sin θ + (c̄R22 − c̄R12) cos θ =
(det(CR))1/2

(k
(l)
R )1/2

, (26)

respectively. When ι = −1, the relations (23) and (24) assume the expressions

(c̄R12 − c̄R22) sin θ + (c̄R11 − c̄R21) cos θ =
(det(CR))1/2

(k
(l)
R )1/2

(27)

and

(c̄R22 − c̄R12) sin θ + (c̄R21 − c̄R11) cos θ =
(det(CR))1/2

(k
(l)
R )1/2

, (28)

respectively.
Now we solve the equation

â sin θ + b̂ cos θ = ĉ. (29)

By setting ξ = tan
θ

2
, the equation (29) becomes

(b̂+ ĉ)ξ2 − 2 â ξ + ĉ− b̂ = 0, (30)

which has no solutions when â2 + b̂2 < ĉ2, and admits the solutions

ξ± =
â±

√
â2 + b̂2 − ĉ2

b̂+ ĉ
(31)

when â2 + b̂2 ≥ ĉ2, provided that b̂+ ĉ 6= 0, while

ξ0 = − b̂
â

(32)

when b̂ = −ĉ and â 6= 0. Moreover, it is readily seen that, when b̂ = −ĉ, (29) has the
solution θ = π.

When b̂ = −ĉ and â = 0, (30) is satisfied for every ξ ∈ R if and only if b̂ = ĉ = 0,
while if b̂ 6= 0 (or equivalently ĉ 6= 0), (30) has no solutions. From (31) and (32) we
obtain that (29) admits the solutions ϕ(9)

R = 2 arctan ξ+, ϕ(10)
R = 2 arctan ξ−, ϕ(11)

R =

2 arctan ξ0. First, observe that, in all cases (25), (26), (27), (28), it is â2 + b̂2 ≥ ĉ2 if and
only if

(c̄R11 − c̄R21)2 + (c̄R12 − c̄R22)2 ≥ det(CR)

k
(l)
R

,

if and only if

(c̄R11 − c̄R21)2 + (c̄R12 − c̄R22)2 <
det(CR)

k
(l)
R

,

that is

k
(l)
R < kRsup =

det(CR)

(c̄R11 − c̄R21)2 + (c̄R12 − c̄R22)2
. (33)

12



Note that the expression in (33) makes sense. Indeed, if

(c̄R11 − c̄R21)2 + (c̄R12 − c̄R22)2 = 0,

then we should get c̄R11 = c̄R21, c̄R12 = c̄R22, and hence det(CR) = 0, which is impossible.
We refer to kRsup in the equation (33) as the red source overlapping level upper bound. We
show in Section 4.2 how the proposed algorithm, in general, avoids the case in which the
source overlapping levels are larger than their upper bounds. Thus, during the computa-
tion, the matrix W (l)

R,ι(θ) is always not singular.
Therefore, (33) is a necessary condition to have wR,ι,(l)11 (θ) = 0. For such values of

k
(l)
R , equation (25) has the solutions

ξ± =

c̄R11−c̄R21±
√

(c̄R11−c̄R21)2+(c̄R12−c̄R22)2+
det(CR)

k
(l)
R

c̄R12−c̄R22+
(det(CR))1/2

(k(l)
R )

1/2

, when c̄R12 + (det(CR))1/2(
k

(l)
R

)1/2 6= c̄R22,

π, when c̄R12 + (det(CR))1/2(
k

(l)
R

)1/2 = c̄R22,

ξ0 =
c̄R22 − c̄R12

c̄R11 − c̄R21

, when c̄R12 + (det(CR))1/2(
k

(l)
R

)1/2 = c̄R22

and c̄R11 6= c̄R21.

Equation (26) admits the solutions

ξ± =

c̄R21−c̄R11±
√

(c̄R11−c̄R21)2+(c̄R12−c̄R22)2+
det(CR)

k
(l)
R

c̄R22−c̄R12+
(det(CR))1/2

(k(l)
R )

1/2

, when c̄R22 + (det(CR))1/2(
k

(l)
R

)1/2 6= c̄12,

π, when c̄R22 + (det(CR))1/2(
k

(l)
R

)1/2 = c̄R12,

ξ0 =
c̄R22 − c̄R12

c̄R11 − c̄R21

, when c̄R22 + (det(CR))1/2(
k

(l)
R

)1/2 = c̄R12

and c̄R11 6= c̄R21.

The solutions of Equation (27) are

ξ± =

c̄R12−c̄R22±
√

(c̄R11−c̄R21)2+(c̄R12−c̄R22)2+
det(CR)

k
(l)
R

c̄R11−c̄R21+
(det(CR))1/2

(k(l)
R )

1/2

, when c̄R11 + (det(CR))1/2(
k

(l)
R

)1/2 6= c̄R21,

π, when c̄R11 + (det(CR))1/2(
k

(l)
R

)1/2 = c̄R21,

ξ0 =
c̄R11 − c̄R21

c̄R22 − c̄R12

, when c̄R11 + (det(CR))1/2(
k

(l)
R

)1/2 = c̄R21

and c̄R12 6= c̄R22.
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Finally, Equation (28) has the solutions

ξ± =

c̄R22−c̄R12±
√

(c̄R11−c̄R21)2+(c̄R12−c̄R22)2+
det(CR)

k
(l)
R

c̄R21−c̄R11+
(det(CR))1/2

(k(l)
R )

1/2

, when c̄R21 + (det(CR))1/2(
k

(l)
R

)1/2 6= c̄R11,

π, when c̄R21 + (det(CR))1/2(
k

(l)
R

)1/2 = c̄R11,

ξ0 =
c̄R11 − c̄R21

c̄R22 − c̄R12

, when c̄R21 + (det(CR))1/2(
k

(l)
R

)1/2 = c̄R11

and c̄R12 6= c̄R22.

Now, we consider the case zR,ι11 (θ) = zR,ι21 (θ) when the equation (20) in not defined.
When ι = 1, we get zR,111 (θ) = c̄R11 sin θ + c̄R12 cos θ and zR,121 (θ) = c̄R21 sin θ + c̄R22 cos θ.
Thus, zR,111 (θ) = zR,121 (θ) if and only if θ assumes the values ϕ(1)

R or ϕ(2)
R , where

ϕ
(1)
R =

 arctan

(
c̄22 − c̄12

c̄11 − c̄21

)
, if c̄11 6= c̄21,

π

2
, if c̄11 = c̄21

, ϕ
(2)
R = ϕ

(1)
R + π. (34)

When ι = −1, it is zR,−1
11 (θ) = c̄11 cos θ+ c̄12 sin θ and zR,−1

21 (θ) = c̄21 cos θ+ c̄22 sin θ,
and hence zR,−1

11 (θ) = zR,−1
21 (θ) if and only if θ assumes the values ϕ(3)

R or ϕ(4)
R , where

ϕ
(3)
R =

 arctan

(
c̄21 − c̄11

c̄12 − c̄22

)
, if c̄12 6= c̄22,

π

2
, if c̄12 = c̄22

, ϕ
(4)
R = ϕ(3) + π. (35)

Now we turn to the case zR,ι12 (θ) = zR,ι22 (θ), that is the last case in which the equation
(20) is not defined. When ι = 1, we get zR,112 (θ) = c̄12 sin θ − c̄11 cos θ and zR,ι22 (θ) =

c̄22 sin θ− c̄21 cos θ. We have that zR,112 (θ) = zR,122 (θ) if and only if θ has the values ϕ(5)
R or

ϕ
(6)
R , where

ϕ
(5)
R =

 arctan

(
c̄11 − c̄21

c̄12 − c̄22

)
, if c̄12 6= c̄22,

π

2
, if c̄12 = c̄22

, ϕ
(6)
R = ϕ

(5)
R + π. (36)

When ι = −1, it is zR,−1
12 (θ) = c̄11 sin θ− c̄12 cos θ and zR,−1

22 (θ) = c̄21 sin θ− c̄22 cos θ,
and hence zR,−1

12 (θ) = zR,−1
22 (θ) if and only if θ assumes the values ϕ(7)

R or ϕ(8)
R , where

ϕ
(7)
R =

 arctan

(
c̄12 − c̄22

c̄11 − c̄21

)
, if c̄11 6= c̄21,

π

2
, if c̄11 = c̄21

, ϕ
(8)
R = ϕ

(7)
R + π. (37)
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In the next section, in formulating the minimization algorithm, we will show how to avoid
these cases.

We have

(Ã
(l)
R,ι(θ))

−1 =

āR,ι,(l)11 (θ) ā
R,ι,(l)
12 (θ)

ā
R,ι,(l)
21 (θ) ā

R,ι,(l)
22 (θ)

 ,
where

ā
R,ι,(l)
11 (θ) =

zR,ι22 (θ)((det(ZR,ι(θ)))
2 − k(l)

R (zR,ι11 (θ)− zR,ι21 (θ))2)

(zR,ι22 (θ)− zR,ι12 (θ))(det(ZR,ι(θ)))2
− zR,ι21 (θ)

k
(l)
R (zR,ι11 (θ)− zR,ι21 (θ))

(det(ZR,ι(θ)))2

=
zR,ι22 (θ)(det(CR)− k(l)

R (zR,ι11 (θ)− zR,ι21 (θ))2)

(zR,ι22 (θ)− zR,ι12 (θ)) det(CR)
− zR,ι21 (θ)

k
(l)
R (zR,ι11 (θ)− zR,ι21 (θ))

det(CR)
,

ā
R,ι,(l)
12 (θ) = −z

R,ι
12 (θ)((det(ZR,ι(θ)))

2 − k(l)
R (zR,ι11 (θ)− zR,ι21 (θ))2)

(zR,ι22 (θ)− zR,ι12 (θ))(det(ZR,ι(θ)))2
+ zR,ι11 (θ)

k
(l)
R (zR,ι11 (θ)− zR,ι21 (θ))

(det(ZR,ι(θ)))2

= −z
R,ι
12 (θ)(det(CR)− k(l)

R (zR,ι11 (θ)− zR,ι21 (θ))2)

(zR,ι22 (θ)− zR,ι12 (θ)) det(CR)
+ zR,ι11 (θ)

k
(l)
R (zR,ι11 (θ)− zR,ι21 (θ))

det(CR)
,

ā
R,ι,(l)
21 (θ) = − zR,ι21 (θ)

zR,ι11 (θ)− zR,ι21 (θ)
,

ā
R,ι,(l)
22 (θ) =

zR,ι11 (θ)

zR,ι11 (θ)− zR,ι21 (θ)
.

Hence, by the equation (9), the estimated sources are given by

s̃
(l)
rR,ι(θ) =

(
zR,ι22 (θ)(det(CR)− k(l)

R (zR,ι11 (θ)− zR,ι21 (θ))2)

(zR,ι22 (θ)− zR,ι12 (θ)) det(CR)

−zR,ι21 (θ)
k

(l)
R (zR,ι11 (θ)− zR,ι21 (θ))

det(CR)

)
xrR +(

−z
R,ι
12 (θ)(det(CR)− k(l)

R (zR,ι11 (θ)− zR,ι21 (θ))2)

(zR,ι22 (θ)− zR,ι12 (θ)) det(CR)
(38)

+zR,ι11 (θ)
k

(l)
R (zR,ι11 (θ)− zR,ι21 (θ))

det(CR)

)
xvR,

s̃
(l)
vR,ι(θ) = − zR,ι21 (θ)

zR,ι11 (θ)− zR,ι21 (θ)
xRr +

zR,ι11 (θ)

zR,ι11 (θ)− zR,ι21 (θ)
xRv.

As we assumed that the mixing matrix AR is diagonally predominant, if the estimated
matrix Ã(l)

R,ι(θ) does not have this property, then we permute the estimated source recto
image with the corresponding verso in order to achieve this condition. Note that, thanks
to (39), (8) and (9), we have

P̃
(l)
R,ι(θ) = (Ã

(l)
R,ι(θ))

−1CR(Ã
(l)
R,ι(θ))

−T = (Ã
(l)
R,ι(θ))

−1xTR xR(Ã
(l)
R,ι(θ))

−T = s
(l)
R,ι(θ))

T s̃
(l)
R,ι(θ).
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So, from (18) we obtain
(s̃

(l)
rR,ι(θ))

T · s̃(l)
vR,ι(θ) = k

(l)
R .

However, we remark that we assumed that our estimated sources have intensity values
between 0 and mR. Thus, we do the orthogonal projection of our estimate s(l)

R,ι(θ) in the
space [0,mR]n

2×2 with respect to the Frobenius norm. Namely, we apply to the estimate
of the sources the following function, which to every vector s ∈ Rn2 associates the n2-
dimensional vector τ(s), whose elements are

(τ(s))i =


0, if si ≤ 0,
si, if 0 < si ≤ mR,
mR, if si > mR,

i = 1, . . . , n2. (39)

Note that the function τ defined in (39) is not of class C1. However, in order to prove
that the proposed minimization algorithm has a superlinear order of convergence, we can
approximate τ with the next function τ̄ , which is of class C4 on Rn2 , whose elements are
given by

(τ̄(s))i =


0, if si ≤ 0,
p9(si), if 0 < si ≤ 1,
si, if 1 < si ≤ mR − 1,
q9(si), if mR − 1 < si ≤ mR

mR, if si > mR,

i = 1, . . . , n2, (40)

where

p9(x) = 35x9 − 160x8 + 280x7 − 224x6 + 70x5,

q9(x) = mR − p9(mR − x), x ∈ R.

In order to obtain (41), we considered a generic polynomial p9 =
9∑
i=0

ci x
i, posed

0 = p9(0) = p′9(0) = p′′9(0) = p′′′9 (0) = p
(IV )
9 (0) =

= p′′9(1) = p′′′9 (1) = p
(IV )
9 (1),

1 = p9(1) = p′9(1),

and obtained ci = 0 for all i = 0, 1, . . . , 4, c5 = 70, c6 = −224, c7 = 280, c8 = −160 and
c9 = 35, by solving the system

c9 + c8 + c7 + c6 + c5 = 1
9 c9 + 8 c8 + 7 c7 + 6 c6 + 5 c5 = 1
72 c9 + 56 c8 + 42 c7 + 30 c6 + 20 c5 = 0
504 c9 + 336 c8 + 210 c7 + 120 c6 + 60 c5 = 0
3024 c9 + 1680 c8 + 840 c7 + 360 c6 + 120 c5 = 0

.

The polynomial q9 is obtained by requiring that its graph is obtained from that of the
polynomial p9 by means of a rotation with respect to the point (mR/2,mR/2).
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By this transformation, the projections of the estimated source images τ(s̃
(l)
rR,ι(θ)) and

τ(s̃
(l)
vR,ι(θ)) turn to be nonnegative (see also [11, 13, 22, 43, 45]). From now on, we refer

to the above projections as the new considered source estimates. Thus, the estimated
source overlapping level is a nonnegative value, and it is zero if and only if there is no
overlapping text from the recto to the verso of the estimated source document. Then we
choose the values of θ and ι which allow to estimate source images with the smallest
source overlapping level. Hence, among the possible values of θ and ι, we choose a
couple (θ(l+1), ι(l+1)) which is a minimum of the following objective function:

f (l)(θ, ι, CR) = (τ(s̃
(l)
rR,ι(θ)))

T · τ(s̃
(l)
vR,ι(θ)). (41)

Note that the index l indicates that the objective function f (l)(θ, ι, CR) depends on the
previous estimated source overlapping level k(l)

R . Thus, we can write the objective function
also as

g(k
(l)
R , θ, ι, CR) = f (l)(θ, ι, CR). (42)

Now we pose
k

(l+1)
R = f (l)(θ(l+1), ι(l+1), CR)

and we iterate this process until a fix point is reached, that is when we find an index
l with k

(l+1)
R = k

(l)
R . We see that, when we reach a fixed point k(l+1)

R = k
(l)
R , then in

all our experimental cases we get τ(s̃
(l)
rR,ι(θ)) = s̃

(l)
rR,ι(θ) and τ(s̃

(l)
vR,ι(θ)) = s̃

(l)
vR,ι(θ).

Thus, s̃(l)
rR,ι(θ) and s̃(l)

vR,ι(θ) are nonnegative matrices, and assuming that the nonnegative
pixels of the recto of the estimated document are not a subset of the nonnegative pixels
of the estimated verso, or vice versa, we have that the estimated mixing matrix Ã(l)

R,ι(θ)

is nonnegative. So, since Ã(l)
R,ι(θ) satisfies (4), then Ã(l)

R,ι(θ) is a stochastic matrix, as we
required. Moreover, we have that Ã(l)

R,ι(θ) · s̃
(l)
R,ι(θ)

T , with Ã(l)
R,ι(θ) ∈ R2×2

+ and s̃(l)
R,ι(θ)

T ∈
R2×n2

+ , is a nonnegative factorization of the matrix x̃(l)
R,ι(θ)

T ∈ R2×n2

+ (see also [13, 22,
43, 45]).

The algorithm related to our method for the red component in the case detCR 6= 0 is
the following.

function MATODS(xR)
CR = xTRxR;
k

(−1)
R = −2ε;
k

(0)
R = 0;
l = 0;
while (|k(l)

R − k
(l−1)
R | ≥ ε) do[

θ(l+1), ι(l+1)
]
=argmin (function g(k

(l)
R , ·, ·, CR));

k
(l+1)
R = g(k

(l)
R , θ

(l+1), ι(l+1), CR);
l = l + 1;

end while
ZR,ι(l)(θ

(l)) = C
1/2
R Qι(l)(θ

(l));
compute s̃(l)

rR,ι(l)
(θ(l)) and s̃(l)

vR,ι(l)
(θ(l)) as in (38);

return s̃
(l)

R,ι(l)
(θ(l))
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where ε is a fixed positive real number, which is a suitable tolerance threshold, while the
function g(·, ·, ·, ·) is computed as follows.

function g(k, θ, ι, CR)

ZR,ι(θ) = C
1/2
R Qι(θ);

compute s̃rR,ι(θ) and s̃vR,ι(θ) as in (38);
return (τ(s̃rR,ι(θ)))

T · τ(s̃vR,ι(θ))

In the next section we present the procedure we use in order to minimizes the objec-
tive function g(k

(l)
R , ·, ·, CR). An analogous algorithm is proposed also for restoring the

green and blue components. We refer to this method as the Minimum Amount of Text
Overlapping in Document Separation (MATODS) algorithm, which is a parameter free
procedure, that makes it an unsupervised technique.

4 The objective function minimization algorithms
In this section we study the problem of finding the minimum of the objective function
g(k, ·, ι, C) (see equations (41) and (42)), for ι ∈ {1,−1} and for a positive definite
matrix C ∈ R2×2. We minimize the functions g(k, ·, 1, C) and g(k, ·,−1, C), and pose
ι(l) = 1 if min

θ∈[0,2π]
g(k, ·, 1, C) ≤ min

θ∈[0,2π]
g(k, ·,−1, C), and ι(l) = −1 otherwise. We start

by analyzing a stochastic technique that assure the convergence to the minimum in prob-
ability.

4.1 The simulated annealing
The simulated annealing techniques have the aim to define a sequence, which converges
to the global minimum of a function, not necessarily convex (see also [21]). However,
since it is dealt with an asymptotic behaviour, in general it is not possible to assure the
convergence to the minimum after a finite number of steps.

To apply the annealing technique, for each temperature Th, where h ∈ N is fixed and
lim

h→+∞
Th = 0, we use the Metropolis Sampler, in order to update the variable θ (see also

[44, 58]). For each fixed h ∈ N, a sequence θ(h)
j , j = 0, . . . , Lh of estimates of θ is

constructed. Given θ(h)
j , at the step j + 1 the proposed θ(h)

j+1 is given by θ(h)
j + ν, where

ν is a random variable, having uniform distribution in the interval (−δ, δ), with given
δ ∈ R+. Hence at the step j + 1, as a new estimate of θ we choose either θ(h)

j or θ(h)
j+1. Let

∆g = g(k, θ
(h)
j , ι, C)− g(k, θ

(h)
j+1, ι, C). We accept θ(h)

j+1 when ∆g > 0 or with probability

e
∆g
Tk when ∆g ≤ 0. By iterating, for every h ∈ N it is possible to construct a Markov

chain θ(h)
j , j = 0, 1, 2, . . ., convergent in L2 and in probability to an equilibrium state

having probability

π(h)(θ) =
e
− g(k,θ,ι,C)

Th∫ 2π

0

e
− g(k,θ,ι,C)

Th dθ

,

fixed k, ι and C, where the involved integral is intended in the discrete sense (see also
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[58, Theorem 8.2.2 (a)]). As h tends to +∞, if

Th ≥
∆

lnh
, (43)

where ∆ denotes the maximal local increase of g(k, ·, ι, C) (see also [58]), then the sta-
tionary probability distribution of the Markov chain converges in probability to the set of
the global minima of g(k, ·, ι, C) (see also [58, Theorem 8.2.3]).

In the practical cases, it is impossible to obtain asymptotic results, and furthermore
the assumption (43) it is not advisable in terms of computational times, and thus one has
to establish: an initial value of the temperature T0; the number of steps of the Metropolis
technique, that is the length Lh of the involved Markov chain; a suitable function which
expresses the decay of the temperature; a stop criterion.

The initial temperature T0 must be sufficiently high, in order to accept the variations
of configurations with high probability. In correspondence with the temperature T0, let
χ(T0) = A(T0)/P (T0), where A(T0) and P (T0) are the numbers of the accepted and pro-
posed transitions, respectively, at the temperature T0. Successively, we impose χ(T0) ' 1.
Let n1 (resp. n2) the number of the decreasing (resp. increasing) transitions in corrispon-
dence with the temperature T0. Observe that n1 + n2 = L0, where L0 is the length of
the Markov chain associated with the temperature T0. Let us denote by 〈∆g〉+ the mean
value of ∆g associated with the transition which increases the energy. We assume the
following approximation:

χ(T0) =
n1 + n2 e

− 〈∆g〉
+

T0

n1 + n2

,

obtaining

T0 =
〈∆g〉+

ln
( n2

n2 χ(T0)− n1(1− χ(T0))

) . (44)

In order to estimate T0 by means of (44), we can compute experimentally n1, n2 and
〈∆g〉+, where χ(T0) is a suitable positive constant close to 1.

As mentioned before, to obtain convergence of the global minimum of the function
g(k, ·, ι, C), it is necessary to have a logarithmic decay of the temperature. Anyway, to
get good results, it is possible to suppose to have a linear decay, namely Th+1 = γ Th,
where γ is a suitable real constant, which in general is taken between 0.95 and 0.99 (see
also [1, 58]). At the last step, we establish that the stop criterion is as follows: when the
values of the estimated θ remain constant after a complete Markov chain, then we stop.

The simulated annealing algorithm can be expressed as follows:

function SA(k, ι, C)
h = 0;
θ

(0)
1 = 0;
θ

(−1)
1 = θ

(0)
1 + 2ε;

while (|θ(h)
1 − θ

(h−1)
1 | > ε) do

for j=1 to Lh − 1 do
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θ
(h)
j+1 = θ

(h)
j + random(−δ, δ);

∆g = g(k, θ
(h)
j , ι, C)− g(k, θ

(h)
j+1, ι, C);

if ((∆g ≤ 0) and (random(0, 1) > e
∆g
Tk )) then

θ
(h)
j+1 = θ

(h)
j ;

end if
end for
θ

(h+1)
1 = θ

(h)
Lh

;
Th+1 = γ Th;
h = h+ 1;

end while
return θ

(h)
1

where ε is a suitable tolerance threshold. We refer to this algorithm as Simulated Anneal-
ing (SA).

4.2 Local quasi-convexity of the objective function
Here we analyze experimentally the trend of the objective function g(k, ·, ι, C) (see equa-
tions (41) and (42)) to be minimized, for fixed k ≥ 0, ι ∈ {1,−1} and C ∈ R2×2 definite
positive matrix. First, we observe that g(k, ·, ι, C) is a periodic function with period π.
Indeed, from (15) we have Qι(θ + π) = −Qι(θ), ι ∈ {1,−1}. Then, from (16) we get
ZR,ι(θ + π) = −ZR,ι(θ), ι ∈ {1,−1}. Finally, from (38), we obtain that the equation
related to the estimated sources s̃(l)

R,ι(θ+ π) = s̃
(l)
R,ι(θ) holds for ι ∈ {1,−1} and for every

positive definite matrix CR ∈ R2×2. In Figures 3–8 we present some examples of graphs
of the function g(k, ·, ι, C). In order to obtain such graphs, we take the following mixing
matrices

AR =

(
0.6 0.4
0.4 0.6

)
, AG =

(
0.6 0.4
0.4 0.6

)
, AB =

(
0.6 0.4
0.4 0.6

)
, (45)

and consider as original sources the images in Figures 11–14. Then, by (3) we construct
the observed data and the related overlapping matrix CR, CG, and CB. Recalling that
the value of k is estimated independently on each of the three channels, we saw experi-
mentally that, during the execution of the MATODS algorithm, the value of k is always
increasing, as it is shown in Figure 2.
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(a) Document in Figure 11 with ι =
1.

(b) Document in Figure 11 with ι =
1.

(c) Document in Figure 12 with ι =
1.

(d) Document in Figure 12 with ι =
−1.

(e) Document in Figure 13 with ι =
1.

(f) Document in Figure 14 with ι = 1.

Figure 2: Trend of k(l)
R , k(l)

G and k(l)
B during the execution of MATODS

In Figure 3, we deal with the document in Figure 11 where ι = 1 is fixed. We recall
that, in order to assume that the system (22) is well-defined, we have to impose that (see
(33))

k ≥ det(CR)

(c̄R11 − c̄R21)
2

+ (c̄R12 − c̄R22)
2 = kRsup,

k ≥ det(CG)

(c̄G11 − c̄G21)
2

+ (c̄G12 − c̄G22)
2 = kGsup,

k ≥ det(CB)

(c̄B11 − c̄B21)
2

+ (c̄B12 − c̄B22)
2 = kBsup.
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In Figure 2 (a) we see that k, in the three RGB channels, converges monotonically to
the source overlapping levels kR, kG and kB, respectively. In this case, we have kR =
9855291 < kRsup = 132751132.62, kG = 7753236 < kGsup = 105650226.17, kB =
834224 < kBsup = 11122735.89. Indeed, the values source overlapping level upper bounds
kRsup, k

G
sup and kBsup are much closer to data overlapping levels dR = 139503525.96, dG =

108090739.20, dB = 11444930.24. Since the source overlapping levels are in general
much smaller than the respective data overlapping levels, we can assume that, during
the execution of the MATODS algorithm in the three channels, the value of k is always
smaller than kRsup, k

G
sup or kBsup, respectively.

(a) k = 0. (b) k = 9000000.

(c) k = 10000000. (d) k = 50000000.

Figure 3: Graphs of the objective functions g(k, ·, 1, CR), g(k, ·, 1, CG) and g(k, ·, 1, CB) in cor-
respondence with the document in Figure 11.

In Figure 3 the values of k are the following: k = 0, that is the MATODS source
overlapping level initial value for all three channels; k = 9000000, which is near to the
red ideal source overlapping level kR; k = 10000000, which is close but smaller than the
green source overlapping level upper bound kGsup; k = 50000000, which is greater than all
source overlapping level upper bounds.

We observe that, in this case, the points of discontinuity of the objective functions
g(k, ·, 1, CR), g(k, ·, 1, CG) and g(k, ·, 1, CB), for all k smaller than their source overlap-
ping level upper bounds, are ϕ(1)

R = 0.53873315, ϕ(2)
R = 3.68032580, ϕ(5)

R = 5.25112213

and ϕ(6)
R = 2.10952948, for the red channel, ϕ(1)

G = 0.57955014, ϕ(2)
G = 3.72114279,

ϕ
(5)
G = 5.29193912 and ϕ(6)

G = 2.15034646, for the green channel, ϕ(1)
B = 0.57021981,

ϕ
(2)
B = 3.71181247, ϕ(5)

B = 5.28260880 and ϕ(6)
B = 2.14101614, for the blue channel

(see also equations (34) and (36)). In Figures 3 we note that, when k is smaller than the
source overlapping level upper bounds then for all three channels the objective functions
g(k, ·, 1, CR), g(k, ·, 1, CG) and g(k, ·, 1, CB) turn to be quasi-convex in the intervals in-
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cluded between any two successive points of discontinuity. We recall that a function
f : [a, b]→ R is quasi-convex iff

f((1− α)θ1 + α θ2) ≤ max{f(θ1), f(θ2)},

for each α ∈ [0, 1] and θ1, θ2 ∈ [a, b] with θ1 6= θ2. A function f : [a, b] ⊂ R → R is
said to be weakly unimodal iff there exists a value θ̂, for which it is weakly monotonically
increasing for θ ∈ [a, θ̂] and weakly monotonically decreasing for θ ∈ [θ̂, b]. A function
f : [a, b] ⊂ R → R is quasi- convex in the convex and compact set [a, b] ⊂ S iff it is
weakly unimodal. When f : S ⊂ Rn → R, similar definitions can be done. In this case
quasi-convex functions are weakly unimodal functions, but not all the weakly unimodal
functions are quasi-convex (see also [4, 35]).

Concerning Figure 4, we consider again the document in Figure 11, choose ι = −1
and take the same values of k. In this case, the values of the points of discontinuity of
the objective functions g(k, ·,−1, CR), g(k, ·,−1, CG) and g(k, ·,−1, CB) are given by
ϕ

(3)
R = 1.03206318, ϕ(4)

R = 4.17365583, ϕ(7)
R = 5.74445216 and ϕ

(8)
R = 2.60285950

for the red channel, ϕ(3)
G = 0.99124619, ϕ(4)

G = 4.13283884, ϕ(7)
G = 5.70363517 and

ϕ
(8)
G = 2.56204252 for the green channel, ϕ(3)

B = 1.00057651, ϕ(4)
B = 4.14216917,

ϕ
(7)
B = 5.71296549 and ϕ

(8)
B = 2.57137284 for the blue channel (see also equations

(35) and (37)). Such values are the unique ones which differ from those of the previous
case. In Figure 4 we note that, when k is smaller than the upper bounds, the objective
functions g(k, ·,−1, CR), g(k, ·,−1, CG) and g(k, ·,−1, CB) are quasi-convex on each
interval which lies between any two successive points of discontinuity.

(a) k = 0. (b) k = 9000000.

(c) k = 10000000. (d) k = 50000000.

Figure 4: Graphs of the objective functions g(k, ·,−1, CR), g(k, ·,−1, CG) and g(k, ·,−1, CB) in
correspondence with the document in Figure 11.

In Figure 5, we take the document in Figure 12 and choose ι = 1. Also in this
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case, it is kR = 34612679 < kRsup = 131593024.23 < dR = 136166103.08, kG =
31495751 < kGsup = 130553408.73 < dG = 141445576.28, kB = 44013514 < kBsup =
157271106.68 < dB = 172518952.96, The discontinuity of the objective functions
g(k, ·, 1, CR), g(k, ·, 1, CG) and g(k, ·, 1, CB) are given by ϕ(1)

R = 0.56948411, ϕ(2)
R =

3.71107676, ϕ(5)
R = 5.28187309 and ϕ

(6)
R = 2.14028043 for the red channel, ϕ(1)

G =

0.50318323, ϕ(2)
G = 3.64477588, ϕ(5)

G = 5.215572207 and ϕ(6)
G = 2.07397955, for the

green channel, and ϕ
(1)
B = 0.48885097, ϕ(2)

B = 3.63044362, ϕ(5)
B = 5.20123995 and

ϕ
(6)
B = 2.05964730 for the blue channel. We choose k = 0, because it is the MATODS

initial estimate, k = 40000000, since it is near to all ideal source overlapping levels,
k = 100000000, as it is close, but inferior, to all source overlapping level upper bounds,
and k = 200000000, because it is beyond these upper bounds. In Figure 5 we note that,
when k is smaller than its source overlapping level upper bound, the objective functions
g(k, ·, 1, CR), g(k, ·, 1, CG) and g(k, ·, 1, CB) are quasi-convex on each interval which lies
between any two successive points of discontinuity.

(a) k = 0. (b) k = 40000000.

(c) k = 100000000. (d) k = 200000000.

Figure 5: Graphs of the objective functions g(k, ·, 1, CR), g(k, ·, 1, CG) and g(k, ·, 1, CB) in cor-
respondence with the document in Figure 12.

In Figure 6, we consider the document in Figure 12 again, but we take ι = −1
and use the same values of k. In this case, the values of the points of discontinuity of
the objective functions g(k, ·,−1, CR), g(k, ·,−1, CG) and g(k, ·,−1, CB) are given by
ϕ

(3)
R = 1.00131222, ϕ(4)

R = 4.14290487, ϕ(7)
R = 5.71370120 and ϕ(8)

R = 2.57210855,
for the red channel, ϕ(3)

G = 1.06761310, ϕ(4)
G = 4.20920575, ϕ(7)

G = 5.78000208 and
ϕ

(8)
G = 2.63840943 for the green channel, ϕ(3)

B = 1.08194536, ϕ(4)
B = 4.22353801,

ϕ
(7)
B = 5.79433434 and ϕ

(8)
B = 2.65274169, for the blue channel. Note that, in Fig-

ure 6, when k is smaller than its upper bound, for all three channels the objective func-
tions g(k, ·,−1, CR), g(k, ·,−1, CG) and g(k, ·,−1, CB) are quasi-convex on each inter-

24



val which lies between any two successive points of discontinuity.

(a) k = 0. (b) k = 40000000.

(c) k = 100000000. (d) k = 200000000.

Figure 6: Graphs of the objective functions g(k, ·,−1, CR), g(k, ·,−1, CG) and g(k, ·,−1, CB) in
correspondence with the document in Figure 12.

From now on, since the graphs obtained with ι = 1 and ι = −1 are very similar, we
consider only the case ι = 1. Concerning the graphs in Figure 7, we take the document in
Figure 13. In this case we have the inequalities kR = 32685410 < dR = 72365832.56 <
kRsup = 73936335.04, kG = 30815153 < dG = 68222469.08 < kGsup = 69702847.74,
kB = 33805612 < dB = 74981471.44 < kBsup = 76611523.60. The discontinuity of the
objective functions g(k, ·, 1, CR), g(k, ·, 1, CG) and g(k, ·, 1, CB) are ϕ(1)

R = 0.81450982,
ϕ

(2)
R = 3.95610247, ϕ(5)

R = 5.52689880 and ϕ
(6)
R = 2.38530615, for the red channel,

ϕ
(1)
G = 0.81453870, ϕ(2)

G = 3.95613135, ϕ(5)
G = 5.52692768 and ϕ(6)

G = 2.38533503,
for the green channel, ϕ(1)

B = 0.81446681, ϕ(2)
B = 3.95605946, ϕ(5)

B = 5.52685579 and
ϕ

(6)
B = 2.38526314, for the blue channel. Here, we choose k = 0, that is the initial value,

k = 30000000 which is close to all ideal solutions, k = 65000000 which is inferior but
near to all upper bounds and k = 90000000 which is higher than all upper bounds. Finally
in Figure 7, when k is smaller than its upper bound, the objective functions g(k, ·, 1, CR),
g(k, ·, 1, CG) and g(k, ·, 1, CB) are quasi-convex on each interval which lies between any
two successive points of discontinuity.
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(a) k = 0. (b) k = 30000000.

(c) k = 65000000. (d) k = 90000000.

Figure 7: Graphs of the objective functions g(k, ·, 1, CR), g(k, ·, 1, CG) and g(k, ·, 1, CB) in cor-
respondence with the document in Figure 13.

The Figure 8 is obtained by considering the document in Figure 14. Here we get
kR = 15812614 < kRsup = 44683913.34 < dR = 79303165.36, kG = 14928144 <
kGsup = 64082928.34 < dG = 65712248.40, kB = 78431743 < dB = 144848191.56 <
kBsup = 147729606.55. Thus, we choose to show the graphs for k = 0, k = 15000000,
k = 40000000 and k = 70000000. The points of discontinuity of the objective functions
g(k, ·, 1, CR), g(k, ·, 1, CG) and g(k, ·, 1, CB) are ϕ(1)

R = 1.41814710, ϕ(2)
R = 4.55973976,

ϕ
(5)
R = 6.13053609 and ϕ

(6)
R = 2.98894343 for the red channel, ϕ(1)

G = 0.98719285,
ϕ

(2)
G = 4.12878550, ϕ(5)

G = 5.69958183 and ϕ(6)
G = 2.55798917 for the green channel,

ϕ
(1)
B = 0.85077026, ϕ(2)

B = 3.99236291, ϕ(5)
B = 5.56315924 and ϕ(6)

B = 2.42156658 for
the blue channel. In Figure 8 we note again that, when k is smaller than its upper bound,
for all three channels the objective functions are quasi-convex on every interval which lies
between any two successive points of discontinuity.
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(a) k = 0. (b) k = 15000000.

(c) k = 40000000. (d) k = 70000000.

Figure 8: Graphs of the objective functions g(k, ·, 1, CR), g(k, ·, 1, CG) and g(k, ·, 1, CB) in cor-
respondence with the document in Figure 14.

Thus, for all graphs in Figures 3–8, when k is smaller than its upper bound (which
is always true during the execution of the MATODS algorithm) the objective functions
g(k, ·, ι, CR), g(k, ·, ι, CG) and g(k, ·, ι, CB) are quasi-convex on each interval which lies
between any two successive points of discontinuity. Moreover the values of the local
minima, on each interval where an objective function is quasi-convex, are almost iden-
tical. Thus, to find the minimum of an objective function, it is sufficient to minimize it
in an interval which lies between any two successive points of discontinuity, where the
involved function is quasi-convex. In our experiments similar results were obtained also
by choosing any mixing matrix different from those chosen in (62).

In the sequel we give some different algorithms, which can be used to find the min-
imum in an interval in which the involved function is quasi-convex. Successively, we
compare the obtained results, to establish the algorithm to use. In order to compare the
convergence speed of such algorithms, we recall that the sequence {θ(h)}h converges to θ̂
with strong order p and asymptotic costant γ > 0 if and only if

lim
h→+∞

|θ(h+1) − θ̂|
|θ(h) − θ̂|p

= γ.

When p = 1, the asymptotic costant γ is also called convergence factor. We say that the
sequence {θ(h)}h converges to θ̂ with weak order p if and only if

lim inf
h→+∞

(− ln |θ(h) − θ̂|p)1/h = p.

Note that strong convergence implies weak convergence, but in general the converse does
not hold.
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4.3 The three point search
In this section we describe an algorithm to minimize the objective function g(k, ·, ι, C) in
one of the intervals in which it is supposed to be quasi-convex. Given a generic step of
length ph, we consider the vector

ψ(h) =
[
θ(h) − ph θ(h) θ(h) + ph

]
.

We now denote the corresponding values of the objective function by

ξ(h) =
[
g(k, ψ

(h)
1 , ι, C) g(k, ψ

(h)
2 , ι, C) g(k, ψ

(h)
3 , ι, C)

]
.

Supposed that in the interval [a, b] the function g(k, ·, ι, C) is quasi-convex, we apply the
following algorithm.

function TPS(k, CR, a, b)
h = 0;
ψ(0) = [a (a+ b)/2 b];
ξ(0) = [g(k, ψ

(0)
1 , ι, C) g(k, ψ

(0)
2 , ι, C) g(k, ψ

(0)
3 , ι, C)];

p0 = (b− a)/2;
if (ξ(0)

1 < ξ
(0)
2 ) then

while ((ξ(0)
1 < ξ

(0)
2 ) and (ph > ε)) do

ψ
(0)
3 = ψ

(0)
2 ;

ξ
(0)
3 = ξ

(0)
2 ;

ψ
(0)
2 = (ψ

(0)
1 + ψ

(0)
3 )/2;

ξ
(0)
2 = g(k, ψ

(0)
2 , ι, C);

p0 = p0/2;
end while

else
while ((ξ(0)

3 < ξ
(0)
2 ) and (ph > ε)) do

ψ
(0)
1 = ψ

(0)
2 ;

ξ
(0)
1 = ξ

(0)
2 ;

ψ
(0)
2 = (ψ

(0)
1 + ψ

(0)
3 )/2;

ξ
(0)
2 = g(k, ψ

(0)
2 , ι, C);

p0 = p0/2;
end while

end if
while (ph > ε) do

if ((ξ(h)
2 < ξ

(h)
1 ) and (ξ(h)

2 < ξ
(h)
3 )) then

if (ξ(h)
1 < ξ

(h)
3 ) then

ψ
(h+1)
3 = ψ

(h)
2 ;

ξ
(h+1)
3 = ξ

(h)
2 ;

else
ψ

(h+1)
1 = ψ

(h)
2 ;

ξ
(h+1)
1 = ξ

(h)
2 ;

end if

28



ψ
(h+1)
2 = (ψ

(h+1)
1 + ψ

(h+1)
3 )/2;

ξ
(h+1)
2 = g(k, ψ

(h+1)
2 , ι, C);

ph+1 = ph/2;
else

if (ξ(h)
1 < ξ

(h)
3 ) then

ψ(h+1) = [ψ
(h)
1 − ph ψ

(h)
1 ψ

(h)
2 ];

ξ(h+1) = [g(k, ψ
(h+1)
1 , ι, C) ξ

(h)
1 ξ

(h)
2 ];

else
ψ(h+1) = [ψ

(h)
2 ψ

(h)
3 ψ

(h)
3 + ph];

ξ(h+1) = [ξ
(h)
2 ξ

(h)
3 g(k, ψ

(h+1)
3 , ι, C)];

end if
ph+1 = ph;

end if
h = h+ 1;

end while
return ψ

(h)
2

where ε is a positive real number which indicates a suitable tolerance. Such algorithm
is formed by an if block and a while block. The if block is necessary to ensure that the
conditions

ψ
(0)
1 , ψ

(0)
2 , ψ

(0)
3 ∈ [a, b], ξ

(0)
2 ≤ ξ

(0)
1 , ξ

(0)
2 ≤ ξ

(0)
3 (46)

hold. The main while body has three cases. In the first one, the value of the function at
the point ψ(h)

2 is less than those evaluated at the other two nodes (see Figure 9 (a)). In
this case, the node which assumes the greater value is removed and the intermediate point
between the other two nodes is added, halving the size step p(h) (see Figure 9 (b)). In the
second case, the value of the function at the node ψ(h)

1 is greater than or equal to the one
at the node ψ(h)

2 , which is greater than or equal to the one at the node ψ(h)
3 (see Figure

9 (c)). In this case we eliminate the node ψ(h)
1 and add a node to the right of ψ(h)

3 with
distance p(h) (see Figure 9 (d)). Analogously, in the third case, the value of the function at
the node ψ(h)

3 is greater than or equal to the one at the node ψ(h)
2 , which is greater than or

equal to the one at the node ψ(h)
1 . So we delete the node ψ(h)

3 and add a node to the left of
ψ

(h)
1 with distance p(h). Since the function g(k; ·, ι, C) is quasi-convex, there are no other

possible cases.
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(a) First case. (b) Successive configuration to the
first case.

(c) Second case. (d) Successive configuration to the
second case.

Figure 9: Cases in the body of the while in the TPS algorithm.

Note that at each iteration it is necessary only one evaluation of the function g(k, ·, ι, C).
Furthermore, observe that in the body of the while, at every step h at which the algorithm
halves the length ph, it is

ξ
(h)
2 ≤ ξ

(h)
1 , ξ

(h)
2 ≤ ξ

(h)
3 . (47)

Let θ̂ be a minimizer of the function g(k, ·, ι, C). From (47), since g(k, ·, ι, C) is quasi-
convex, we have

θ̂ ∈ [ξ
(h)
1 , ξ

(h)
2 ], (48)

at every step h at which the algorithm halves the length of the step. Note that from (46)
we deduce that the property (48) holds also for h = 0. Furthermore, observe that by the
conditions (46), the algorithm halves the length of the step when h = 0.

Theorem 4.1. Suppose that at the step h − 1 the algorithm halves the length of the step
ph−1, then the TPS algorithm halves again the length of the step not later than the step
h+ 2. That is

ph+3 ≤
1

2
ph (49)

holds.

Proof. We suppose that at the step h − 1 we halve the length of the step so that p(h) =

p(h−1)/2, and we delete, let us say, the node ψ(h−1)
1 . Let θ̂ be a minimizer of the functions

g(k, ·, ι, C). Suppose first that ψ(h−1)
2 = ψ

(h)
1 ≤ θ̂, then we have two cases. The first is

when ξ(h)
2 < ξ

(h)
1 . In this case, ξ(h)

2 is the smallest value of the vector ξ(h), and hence the
size of the step is halved at the step h. The second case is when ξ(h)

2 ≥ ξ
(h)
1 . In this case
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ψ
(h−1)
1 < ψ

(h+1)
1 < ψ

(h+1)
2 , ξ(h+1)

1 < ξ
(h+1)
2 and ξ(h+1)

2 = ξ
(h)
1 < ξ

(h+1)
3 = ξ

(h)
2 , hence the

length step is halved at the step h + 1. Now we assume that ψ(h−1)
2 = ψ

(h)
1 > θ̂. Then,

ξ
(h)
1 < ξ

(h)
2 < ξ

(h)
3 . So, ψ(h+1)

1 = ψ
(h)
1 − p(h) = ψ

(h−1)
1 + p(h). If the length step is not

halved at the step h + 1, then ξ(h+2)
1 = ξ

(h−1)
1 > ξ

(h+2)
3 = ξ

(h−1)
2 and ξ(h+2)

2 = ξ
(h+1)
1 <

ξ
(h+2)
1 = ξ

(h+1)
2 . So, at the step h + 3 the length step is halved. When we eliminate the

node ψ(h−1)
2 at the step h− 1, we proceed similarly.

The relation (49) can be also obtained by imposing the condition

ph+1

ph
≤
(

1

2

) 1
3

' 0.7937,

so we obtain that the algorithm has a linear convergence with a factor of convergence of
at least 0.7937. Note that, in the best cases, the length of the step can be halved at each
step, and so a convergence factor of 0.5 is obtained. Note that, if at the step h − 1 the
algorithm halves the length of the step and if at the step h+ 1 the length of the step is not
yet halved, it has to be halved at the next step. Moreover, at the h + 2-th step, the value
of the function g(k, ·, ι, C) to be evaluated is assumed exactly at the node deleted at the
step h − 1. Thus, the steps h + 1 and h + 2 can be unified using only one evaluation of
the function g(k, ·, ι, C), by means of the following algorithm.

function TPS(k, CR, a, b)
h = 0;
ψ(0) = [a (a+ b)/2 b];
ξ(0) = [g(k, ψ

(0)
1 , ι, C) g(k, ψ

(0)
2 , ι, C) g(k, ψ

(0)
3 , ι, C)];

p0 = (b− a)/2;
if (ξ(0)

1 < ξ
(0)
2 ) then

while ((ξ(0)
1 < ξ

(0)
2 ) and (ph > ε)) do

ψ
(0)
3 = ψ

(0)
2 ;

ξ
(0)
3 = ξ

(0)
2 ;

ψ
(0)
2 = (ψ

(0)
1 + ψ

(0)
3 )/2;

ξ
(0)
2 = g(k, ψ

(0)
2 , ι, C);

p0 = p0/2;
end while

else
while ((ξ(0)

3 < ξ
(0)
2 ) and (ph > ε)) do

ψ
(0)
1 = ψ

(0)
2 ;

ξ
(0)
1 = ξ

(0)
2 ;

ψ
(0)
2 = (ψ

(0)
1 + ψ

(0)
3 )/2;

ξ
(0)
2 = g(k, ψ

(0)
2 , ι, C);

p0 = p0/2;
end while

end if
while (ph > ε) do

if ((ξ(h)
2 < ξ

(h)
1 ) and (ξ(h)

2 < ξ
(h)
3 )) then

if (ξ(h)
1 < ξ

(h)
3 ) then
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aux = ξ
(h)
3 ;

ψ
(h+1)
3 = ψ

(h)
2 ;

ξ
(h+1)
3 = ξ

(h)
2 ;

v = 0;
else
aux = ξ

(h)
1 ;

ψ
(h+1)
1 = ψ

(h)
2 ;

ξ
(h+1)
1 = ξ

(h)
2 ;

v = 0;
end if
ψ

(h+1)
2 = (ψ

(h+1)
1 + ψ

(h+1)
3 )/2;

ξ
(h+1)
2 = g(k, ψ

(h+1)
2 , ι, C);

ph+1 = ph/2;
else

if (ξ(h)
1 < ξ

(h)
3 ) then

if (v 6= 1) then
ψ(h+1) = [ψ

(h)
1 − ph ψ

(h)
1 ψ

(h)
2 ];

ξ(h+1) = [g(k, ψ
(h+1)
1 , ι, C) ξ

(h)
1 ξ

(h)
2 ];

ph+1 = ph;
v = 1;

else
ph+1 = ph/2;
v = 0;
if (aux < ξ

(h)
2 ) then

ψ(h+1) = [ψ
(h)
1 − 2ph ψ

(h)
1 − ph ψ

(h)
1 ];

ξ(h+1) = [aux g(k, ψ
(h+1)
2 , ι, C) ξ

(h)
1 ];

aux = ξ
(h)
2 ;

else
ψ(h+1) = [ψ

(h)
1 ψ

(h)
2 − ph ψ

(h)
2 ];

ξ(h+1) = [ξ
(h)
1 g(k, ψ

(h+1)
2 , ι, C) ξ

(h)
2 ];

end if
end if

else
if (v 6= 1) then
ψ(h+1) = [ψ

(h)
2 ψ

(h)
3 ψ

(h)
3 + ph];

ξ(h+1) = [ξ
(h)
2 ξ

(h)
3 g(k, ψ

(h+1)
3 , ι, C)];

ph+1 = ph;
v = 1;

else
ph+1 = ph/2;
v = 0;
if (aux < ξ

(h)
2 ) then

ψ(h+1) = [ψ
(h)
3 ψ

(h)
3 + ph ψ

(h)
3 + 2ph];

ξ(h+1) = [ξ
(h)
3 g(k, ψ

(h+1)
2 , ι, C) aux];

aux = ξ
(h)
2 ;
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else
ψ(h+1) = [ψ

(h)
2 ψ

(h)
2 + ph ψ

(h)
3 ];

ξ(h+1) = [ξ
(h)
2 g(k, ψ

(h+1)
2 , ι, C) ξ

(h)
3 ];

end if
end if

end if
end if
h = h+ 1;

end while
return ψ

(h)
2 .

Thus, asymptotically we have the relation

ph+2 ≤
1

2
ph.

This relation can be also obtained by imposing the condition

ph+1

ph
≤
(

1

2

) 1
2

' 0.70711,

so the algorithm has a linear convergence with a factor of convergence smaller than or
equal to 0.70711. We refer to this algorithm as Three Point Search (TPS).

4.4 The golden section search
In this section we present an algorithm in which the uncertainty interval is reduced by a
constant factor by means of one valuation of the function g(k, ·, ι, C) (see also [38]). Here
we consider the vector

ψ(h) =
[
ψ

(h)
1 ψ

(h)
2 ψ

(h)
3 ψ

(h)
4

]
. (50)

Let (a, b) be the initial uncertainty interval, containing the minimum of the function
g(k, ·, ι, C), and let φ = (

√
5 + 1)/2 be the golden ratio or golden section, then we

apply the following algorithm:

function GSS(k, CR, a, b)
h = 0;
ψ

(0)
1 = a;
ψ

(0)
4 = b;
ψ

(0)
2 = ψ

(0)
4 − (ψ

(0)
4 − ψ

(0)
1 )/φ;

ψ
(0)
3 = ψ

(0)
1 + (ψ

(0)
4 − ψ

(0)
1 )/φ;

while ((|ψ(h)
4 − ψ

(h)
1 | > ε) do

if (g(k, ψ
(h)
2 , ι, C) < g(k, ψ

(h)
3 , ι, C)) then

ψ(h+1) = [ψ
(h)
1 ψ

(h+1)
4 −(ψ

(h+1)
4 −ψ(h+1)

1 )/φ ψ
(h+1)
1 +(ψ

(h+1)
4 −ψ(h+1)

1 )/φ ψ
(h)
3 ];

else
ψ(h+1) = [ψ

(h)
2 ψ

(h+1)
4 −(ψ

(h+1)
4 −ψ(h+1)

1 )/φ ψ
(h+1)
1 +(ψ

(h+1)
4 −ψ(h+1)

1 )/φ ψ
(h)
4 ];

end if
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h = h+ 1;
end while
return ψ

(h)
2

where ε is a suitable tolerance threshold. In the body of the while we have two cases. In
the first one, g(k, ψ

(h)
2 , ι, C) < g(k, ψ

(h)
3 , ι, C) (see Figure 10 (a) and (b)). So the mini-

mizer θ̂ of the functions g(k, ·, ι, C) lies between ψ(h)
1 and ψ(h)

3 , thus the new uncertainty
interval is [ψ

(h)
1 , ψ

(h)
3 ]. In the second one, g(k, ψ

(h)
2 , ι, C) ≥ g(k, ψ

(h)
3 , ι, C) (see Figure

10 (c) and (d)). Thus θ̂ lies between ψ
(h)
2 and ψ

(h)
4 , so the new uncertainty interval is

[ψ
(h)
1 , ψ

(h)
3 ].

(a) First case. (b) Alternative first case.

(c) Second case. (d) Alternative second case.

Figure 10: Cases in the body of the while of the GSS algorithm.

In both cases it is

ψ
(h)
2 = ψ

(h)
4 −

ψ
(h)
4 − ψ

(h)
1

φ
(51)

and

ψ
(h)
3 = ψ

(h)
1 +

ψ
(h)
4 − ψ

(h)
1

φ
. (52)

Let `(h+1) = ψ
(h+1)
4 − ψ(h+1)

1 be the length of the uncertainty interval at the step h+ 1. If
g(k, ψ

(h)
2 , ι, C) < g(k, ψ

(h)
3 , ι, C), then from the equation (52) we have

`(h+1) = ψ
(h)
3 − ψ

(h)
1 = ψ

(h)
1 +

ψ
(h)
4 − ψ

(h)
1

φ
− ψ(h)

1 =
ψ

(h)
4 − ψ

(h)
1

φ
, (53)
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while, if g(k, ψ
(h)
2 , ι, C) ≥ g(k, ψ

(h)
3 , ι, C), then from the equation (51) we get

`(h+1) = ψ
(h)
4 − ψ

(h)
2 = ψ

(h)
4 − ψ

(h)
4 +

ψ
(h)
4 − ψ

(h)
1

φ
=
ψ

(h)
4 − ψ

(h)
1

φ
. (54)

Thus, we obtain

`(h+1) = ψ
(h+1)
4 − ψ(h+1)

1 =
ψ

(h)
4 − ψ

(h)
1

φ
=
`(h)

φ
. (55)

So, in any case, the uncertainty interval is reduced at each step by a constant factor. Now,
in order to compute the factor of convergence of the method, first we have to show that at
each step just one valuation of the function g(k, ·, ι, C) is necessary.

To prove this, we observe that the golden section has the following property:

1

φ2
=

(√
5− 1

2

)2

=
3−
√

5

2
= 1−

√
5− 1

2
= 1− 1

φ
.

From this, if g(k, ψ
(h)
2 , ι, C) < g(k, ψ

(h)
3 , ι, C) then from the equations (51), (52) and (53)

we get

ψ
(h+1)
3 = ψ

(h+1)
1 +

ψ
(h+1)
4 − ψ(h+1)

1

φ
= ψ

(h)
1 +

ψ
(h)
3 − ψ

(h)
1

φ

= ψ
(h)
1 +

ψ
(h)
4 −ψ

(h)
1

φ

φ
=

(
1− 1

φ2

)
ψ

(h)
1 +

1

φ2
ψ

(h)
4

=
1

φ
ψ

(h)
1 +

(
1− 1

φ

)
ψ

(h)
4 = ψ

(h)
4 −

ψ
(h)
4 − ψ

(h)
1

φ

= ψ
(h)
2 ,

while, if g(k, ψ
(h)
2 , ι, C) ≥ g(k, ψ

(h)
3 , ι, C), from the equations (51), (52) and (54) we have

ψ
(h+1)
2 = ψ

(h+1)
4 − ψ

(h+1)
4 − ψ(h+1)

1

φ
= ψ

(h)
4 −

ψ
(h)
4 − ψ

(h)
2

φ

= ψ
(h)
4 −

ψ
(h)
4 −ψ

(h)
1

φ

φ
=

(
1− 1

φ2

)
ψ

(h)
4 +

1

φ2
ψ

(h)
1

=
1

φ
ψ

(h)
4 +

(
1− 1

φ

)
ψ

(h)
1 = ψ

(h)
1 +

ψ
(h)
4 − ψ

(h)
1

φ

= ψ
(h)
3 .

Thus, if we define

ξ(h) =
[
g(k, ψ

(h)
1 , ι, C) g(k, ψ

(h)
2 , ι, C) g(k, ψ

(h)
3 , ι, C) g(k, ψ

(h)
4 , ι, C)

]
,

the algorithm can be written as follows:
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function GSS(k, CR, a, b)
h = 0;
ψ

(0)
1 = a;
ψ

(0)
4 = b;
ψ

(0)
2 = ψ

(0)
4 − (ψ

(0)
4 − ψ

(0)
1 )/φ;

ψ
(0)
3 = ψ

(0)
1 + (ψ

(0)
4 − ψ

(0)
1 )/φ;

ξ(0) = [g(k, ψ
(0)
1 , ι, C) g(k, ψ

(0)
2 , ι, C) g(k, ψ

(0)
3 , ι, C) g(k, ψ

(0)
4 , ι, C)];

while ((|ψ(h)
4 − ψ

(h)
1 | > ε) do

if (ξ(h)
2 < ξ

(h)
3 ) then

ψ(h+1) = [ψ
(h)
1 ψ

(h+1)
4 − (ψ

(h+1)
4 − ψ(h+1)

1 )/φ ψ
(h)
2 ψ

(h)
3 ];

ξ(h+1) = [ξ
(h)
1 g(k, ψ

(h+1)
2 , ι, C) ξ

(h)
2 ξ

(h)
3 ];

else
ψ(h+1) = [ψ

(h)
2 ψ

(h)
3 ψ

(h+1)
1 + (ψ

(h+1)
4 − ψ(h+1)

1 )/φ ψ
(h)
4 ];

ξ(h+1) = [ξ
(h)
2 ξ

(h)
3 g(k, ψ

(h+1)
3 , ι, C) ξ

(h)
4 ];

end if
h = h+ 1;

end while
return ψ

(h)
2 .

During each iterate, in every case, the function g(k, ·, ι, C) is evaluated only one time, so,
from the equation (55), the algorithm has a linear convergence with factor of convergence
given by

l(h+1)

l(h)
=
ψ

(h+1)
4 − ψ(h+1)

1

ψ
(h)
4 − ψ

(h)
1

=

ψ
(h)
4 −ψ

(h)
1

φ

ψ
(h)
4 − ψ

(h)
1

=
1

φ
=

√
5− 1

2
' 0.61803.

We refer to this algorithm as Golden Section Search (GSS).

4.5 Successive parabolic interpolation
Given a finite sequence of approximations of the required minimum, the method in-
troduced in this section constructs a parabola which interpolates the objective function
g(k, ·, ι, C) in the last three terms of the considered sequence and add a new term to the
sequence, corresponding to the argument of the minimum of the obtained parabola (see
also [9, 34]). That is, given the sequence θ(0), . . . , θ(h+2), we call p2(θ) the interpolation
polynomial of the function g(k, ·, ι, C) at the point θ(h), θ(h+1), θ(h+2), and choose θ(h+3)

by posing

p′2(θ(h+3)) = 0. (56)

We recall that the divided differences of the function g(k, ·, ι, C) are

g[θ(h)] = g(k, θ(h), ι, C), h = 0, 1, . . . ,

and

g[θ(h), θ(h+1), . . . , θ(h+k−1), θ(h+k)] =
g[θ(h+1), θ(h+2), ..., θ(h+k)]− g[θ(h), θ(h+1) . . . , θ(h+k−1)]

θ(h+k) − θ(h)

h = 0, 1, . . . , k = 1, 2, . . . .
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It is possible to prove that, if g(k, ·, ι, C) ∈ C2([a, b]), where [a, b] contains the argument
of the minimum of g(k, ·, ι, C), then the sequence {θ(h)}h∈N is well-defined (see also [9]).
If

g[θ(h), θ(h+1), θ(h+2)] 6= 0,

then the unique solution of (56) is

θ(h+3) =
1

2

(
θ(h+1) + θ(h+2) − g[θ(h+1), θ(h+2)]

g[θ(h), θ(h+1), θ(h+2)]

)
. (57)

Fix n ∈ N, a function f : [a, b] → R is said to be of class LCn([a, b]) iff its n-th
derivative exists and is Lipschitz, namely iff there exists a positive real number M0 with

sup
x,y∈[a,b],|x−y|≤δ

|f(x)− f(y)| ≤M0 δ

for each δ > 0. The following result holds.

Theorem 4.2. (see also [9, Theorem 3.7.1]) Let g(k, ·, ι, C) : [a, b] → R be of class
LC3([a, b]), and θ̂ ∈]a, b[ be such that g′(k, θ̂, ι, C) = 0 and g′′(k, θ̂, ι, C) 6= 0. If θ(0),
θ(1), θ(2) are distinct and sufficiently close to θ̂, then a sequence {θ(h)}h∈N is univoquely
defined by (57), and {θ(h)}h∈N either converges with strong order p ' 1.325, or converges
with weak order p = ((3 +

√
5)/2)1/3 ' 1.378.

Note that, if in the expression of g(k, ·, 1, CR) we use the function τ̄ in (40) instead
of τ in (39), then we obtain that g(k, ·, 1, CR) is of class C4( (ϕ

(1)
R + η, ϕ

(6)
R − η) ), so

Theorem 4.2 can be applied.
The relative algorithm is the following

function SPI(k, CR)
h = 0;
θ(0) = ϕ

(1)
R + η;

θ(1) = ϕ
(6)
R − η;

θ(2) = (θ(0) + θ(1))/2;
ξ(h) = g(k, θ(h), ι, C);
ξ(h+1) = g(k, θ(h+1), ι, C);
ξ(h+2) = g(k, θ(h+2), ι, C);
g[θ(h), θ(h+1)] = ξ(h+1)−ξ(h)

θ(h+1)−θ(h) ;
while (|θ(h+2) − θ(h+1)| > ε) do
g[θ(h+1), θ(h+2)] = ξ(h+2)−ξ(h+1)

θ(h+2)−θ(h+1) ;

g[θ(h), θ(h+1), θ(h+2)] = g[θ(h+1),θ(h+2)]−g[θ(h),θ(h+1)]

θ(h+2)−θ(h) ;

θ(h+3) = 1
2

(
θ(h+1) + θ(h+2) − g[θ(h+1),θ(h+2)]

g[θ(h),θ(h+1),θ(h+2)]

)
;

ξ(h+3) = g(k, θ(h+3), ι, C);
h = h+ 1;

end while
return θ(h+2)
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where ε is the tolerance threshold. To accelerate the order of convergence of the
sequence (θ(h)), we can pose

θ(h+3) = Ξ(h) −
(g[θ(h−1), θ(h), θ(h+1), θ(h+2)]

2 g[θ(h), θ(h+1), θ(h+2)]

)
Υ(h), (58)

where

Ξ(h) =
1

2

(
θ(h+1) + θ(h+2) − g[θ(h+1), θ(h+2)]

g[θ(h), θ(h+1), θ(h+2)]

)
and

Υ(h) = (θ(h) − Ξ(h))(θ(h+1) − Ξ(h)) + (θ(h) − Ξ(h))(θ(h+2) − Ξ(h))

+ (θ(h+1) − Ξ(h))(θ(h+2) − Ξ(h)).

Indeed, we have the following

Theorem 4.3. (see also [9, Theorem 3.8.1]) Let g(k, ·, ι, C) : [a, b] → R be of class
LC3([a, b]), θ̂ ∈]a, b[ be such that g′(k, θ̂, ι, C) = 0 and g′′(k, θ̂, ι, C) 6= 0. If θ(0), θ(1),
θ(2) are distinct and sufficiently close to θ̂, then the sequence {θ(h)}h∈N is univoquely
defined by (58), and {θ(h)}h∈N converges with weak order p ' 1.465.

The relative algorithm is the following

function SPI(k, CR)
h = 0;
θ(0) = ϕ

(1)
R + η;

θ(1) = ϕ
(6)
R − η;

θ(2) = (θ(0) + θ(1))/2;
ξ(h) = g(k, θ(h), ι, C);
ξ(h+1) = g(k, θ(h+1), ι, C);
ξ(h+2) = g(k, θ(h+2), ι, C);
g[θ(h), θ(h+1)] = ξ(h+1)−ξ(h)

θ(h+1)−θ(h) ;

g[θ(h+1), θ(h+2)] = ξ(h+2)−ξ(h+1)

θ(h+2)−θ(h+1) ;

g[θ(h), θ(h+1), θ(h+2)] = g[θ(h+1),θ(h+2)]−g[θ(h),θ(h+1)]

θ(h+2)−θ(h) ;

θ(h+3) = 1
2

(
θ(h+1) + θ(h+2) − g[θ(h+1),θ(h+2)]

g[θ(h),θ(h+1),θ(h+2)]

)
;

ξ(h+3) = g(k, θ(h+3), ι, C);
h = h+ 1;
while (|θ(h+2) − θ(h+1)| > ε) do
g[θ(h+1), θ(h+2)] = ξ(h+2)−ξ(h+1)

θ(h+2)−θ(h+1) ;

g[θ(h), θ(h+1), θ(h+2)] = g[θ(h+1),θ(h+2)]−g[θ(h),θ(h+1)]

θ(h+2)−θ(h) ;

Ξ(h) = 1
2

(
θ(h+1) + θ(h+2) − g[θ(h+1),θ(h+2)]

g[θ(h),θ(h+1),θ(h+2)]

)
;

Υ(h) = (θ(h) − Ξ(h))(θ(h+1) − Ξ(h)) + (θ(h) − Ξ(h))(θ(h+2) − Ξ(h)) + (θ(h+1) −
Ξ(h))(θ(h+2) − Ξ(h));
g[θ(h−1), θ(h), θ(h+1), θ(h+2)] = g[θ(h),θ(h+1),θ(h+2)]−g[θ(h−1),θ(h),θ(h+1)]

θ(h+2)−θ(h−1) ;

θ(h+3) = Ξ(h) −
(
g[θ(h−1),θ(h),θ(h+1),θ(h+2)]

2 g[θ(h),θ(h+1),θ(h+2)]

)
Υ(h);
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ξ(h+3) = g(k, θ(h+3), ι, C);
h = h+ 1;

end while
return θ(h+2).

where ε is the tolerance threshold.
We refer to this algorithm as Successive Parabolic Interpolation (SPI).

4.6 Hybrid SPI and GSS
In our case the SPI algorithm could not converge to the desired solutions, since the deriva-
tive of the function g(k, ·, ι, C), on each interval lying between any two successive points
of discontinuity, can vanish also in correspondence of the points which are not minimiz-
ers. Moreover, it is possible that the updates of the solution do not belong to the initial
uncertainty interval, that is the interval in which the objective function is quasi-convex.
We saw experimentally that, in general, the SPI algorithm does not converge to the mini-
mum of the function g(k, ·, ι, C). To guarantee the convergence to that minimum a hybrid
Successive Parabolic Interpolation and Golden Section Search technique is necessary (see
also [9]).

By means of this algorithm, a sequence {θ(h)}h∈N such that

g(k, θ(h), 1, CR) ≥ g(k, θ(h+1), 1, CR) h = 0, 1, . . . , (59)

is constructed, while at the h-th step we have an uncertainty interval, say [a(h), b(h)].
Given ϕ(1)

R and ϕ(6)
R as in the equations (34) and (36) and η ∈ R+ small enough, we

take the initial uncertainty interval as [a(0) = ϕ
(1)
R +η, b(0) = ϕ

(6)
R −η]. Let φ = (

√
5+1)/2

be the golden ratio or golden section. The sequence is initialized as

θ(0) = θ(1) = θ(2) = a(2) +
b(2) − a(2)

φ
,

which is equivalent to a golden section search step.
The main step of the successive parabolic interpolation algorithm can be written as

θ(h+3) = θ(h+2) +
p

q
,

where

p = (θ(h+2) − θ(h))2(g(k, θ(h+2), 1, CR)− g(k, θ(h+1), 1, CR))

−(θ(h+2) − θ(h+1))2(g(k, θ(h+2)1, CR)− g(k, θ(h), 1, CR))

and

q = 2(θ(h+2) − θ(h))(g(k, θ(h+2), 1, CR)− g(k, θ(h+1), 1, CR))

−2(θ(h+2) − θ(h+1))(g(k, θ(h+2), 1, CR)− g(k, (θ(h), 1, CR)).

If some of the points θ(h), θ(h+1) and θ(h+2) coincide or the parabola degenerates in a line
(in this case, q = 0), or if the successive parabolic interpolation updating is outside of
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the current uncertainty interval [a(h), b(h)], then an updating is done by the golden section
search algorithm.

This algorithm can be described as follows:

function SPI-GSS(k, CR)
h = 0;
[a(0), b(0)] = [ϕ

(1)
R + η, ϕ

(6)
R − η];

θ(0) = θ(1) = θ(2) = a(2) + (b(2) − a(2))/φ;
while (|θ(h+2) − θ(h+1)| > ε) do
p = (θ(h+2) − θ(h))2(g(k, θ(h+2), ι, CR)− g(k, θ(h+1), ι, CR));
p = p− (θ(h+2) − θ(h+1))2(g(k, θ(h+2), ι, CR)− g(k, θ(h), ι, CR));
q = 2(θ(h+2) − θ(h))(g(k, θ(h+2), ι, CR)− g(k, θ(h+1), ι, CR));
q = q − 2(θ(h+2) − θ(h+1))(g(k, θ(h+2), ι, CR)− g(k, (θ(h), ι, CR));
if ((q 6= 0) and (θ(h+2) + p/q ∈ [a(h), b(h)])) then
θ(h+3) = θ(h+2) + p/q;

else
if (θ(h+2) < (a(h+2) + b(h+2))/2) then
θ(h+3) = θ(h+2) + (b(h+2) − θ(h+2))/r;

else
θ(h+3) = θ(h+2) + (a(h+2) − θ(h+2))/r;

end if
end if
Compute the new uncertainty interval [a(h+1), b(h+1)];
Order {θ(i)}i=h,...,h+3 in such a way that (59) holds;
h = h+ 1;

end while
return θ(h+2)

where ε is a suitable tolerance threshold.
During the last steps, usually the algorithm stops choosing golden section search steps

and computes only parabolic interpolation steps. Thus, the asymptotic convergence de-
pends only on the SPI algorithm. We refer to this algorithm as Successive Parabolic
Interpolation– Golden Section Search (SPI-GSS).

4.7 The Newton method
To find the minimum of the function g(k, ·, ι, C), it is possible to apply the classical
Newton method to its derivative, that is the following algorithm is performed:

function Newton(k, CR)
h = 0;
θ(1) = (ϕ

(1)
R + ϕ

(6)
R )/2;

θ(0) = θ(1) + 2ε;
while (|θ(h+1) − θ(h)| > ε) do
h = h+ 1;

θ(h+1) = θ(h) − g′(k,θ(h),ι,CR)

g′′(k,θ(h),ι,CR)
;

end while
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return θ(h+1)

where ε is the tolerance threshold, and

g(k
(l)
R , θ, ι, CR) = f (l)(θ, ι, CR) = (τ(s̃

(l)
rR,ι(θ)))

T · τ(s̃
(l)
vR,ι(θ))

=
n2∑
i=1

(τ(s̃
(l)
rR,ι(θ)))i(τ(s̃

(l)
vR,ι(θ))i,

and τ is as in (39). Note that

∂(τ(·)i)
∂sj

=


0, if sj > 0,
δi,j, if 0 < sj < mR,
0, if sj > mR,

i, j = 1, . . . , n2, (60)

where δi,j denotes the Kronecker delta. When the following quantities make sense, we
get

d

dθ
f (l)(θ, ι, CR) =

n2∑
i=1

(
τ(s̃

(l)
vR,ι(θ))i

( d
dθ

(τ(s̃
(l)
rR,ι(θ))i

)
+ (τ(s̃

(l)
rR,ι(θ))i

( d
dθ

(τ(s̃
(l)
vR,ι(θ))i

))
where for each i = 1, 2, . . . , n2 it is

d

dθ
(τ(s̃

(l)
rR,ι(θ))i =

n2∑
j=1

∂(τ(·)i)
∂sj

((s̃
(l)
rR,ι(θ))j) · ((s̃

(l)
rR,ι(θ))j)

′ =

=
∂(τ(·)i)
∂si

((s̃
(l)
rR,ι(θ))i) · ((s̃

(l)
rR,ι(θ))i)

′ =

=

{
((s̃

(l)
rR,ι(θ))i)

′, if 0 < (s̃
(l)
rR,ι(θ))i < mR,

0, otherwise
;

d

dθ
(τ(s̃

(l)
vR,ι(θ))i =

n2∑
j=1

∂(τ(·)i)
∂sj

((s̃
(l)
vR,ι(θ))j) · ((s̃

(l)
vR,ι(θ))j)

′ =

=
∂(τ(·)i)
∂si

((s̃
(l)
vR,ι(θ))i) · ((s̃

(l)
vR,ι(θ))i)

′

=

{
((s̃

(l)
vR,ι(θ))i)

′, if 0 < (s̃
(l)
vR,ι(θ))i < mR,

0, otherwise
.

Moreover, we have:

d2

dθ2
f (l)(θ, ι, CR) =

n2∑
i=1

(
τ(s̃

(l)
vR,ι(θ))i

( d2

dθ2
(τ(s̃

(l)
rR,ι(θ))i

)
+ (τ(s̃

(l)
rR,ι(θ))i

( d2

dθ2
(τ(s̃

(l)
vR,ι(θ))i

))
+

+ 2
( d
dθ

(τ(s̃
(l)
rR,ι(θ))i

)( d
dθ

(τ(s̃
(l)
vR,ι(θ))i

)
,

where

d2

dθ2
(τ(s̃

(l)
rR,ι(θ))i =

{
((s̃

(l)
rR,ι(θ))i)

′′, if 0 < (s̃
(l)
rR,ι(θ))i < mR,

0, otherwise
;
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d2

dθ2
(τ(s̃

(l)
vR,ι(θ))i =

{
((s̃

(l)
vR,ι(θ))i)

′′, if 0 < (s̃
(l)
vR,ι(θ))i < mR,

0, otherwise
.

For every i = 1, 2, . . . , n2, we get:

(s̃
(l)
rR,ι(θ))i = ā

R,ι,(l)
11 (θ)(xrR)i + ā

R,ι,(l)
12 (θ)(xvR)i,

(s̃
(l)
vR,ι(θ))i = ā

R,ι,(l)
21 (θ)(xrR)i + ā

R,ι,(l)
22 (θ)(xvR)i,

((s̃
(l)
rR,ι(θ))i)

′ = (ā
R,ι,(l)
11 )′(θ)(xrR)i + (ā

R,ι,(l)
12 )′(θ)(xvR)i,

((s̃
(l)
vR,ι(θ))i)

′ = (ā
R,ι,(l)
21 )′(θ)(xrR)i + (ā

R,ι,(l)
22 )′(θ)(xvR)i,

((s̃
(l)
rR,ι(θ))i)

′′ = (ā
R,ι,(l)
11 )′′(θ)(xrR)i + (ā

R,ι,(l)
12 )′′(θ)(xvR)i,

((s̃
(l)
vR,ι(θ))i)

′′ = (ā
R,ι,(l)
21 )′′(θ)(xrR)i + (ā

R,ι,(l)
22 )′′(θ)(xvR)i,

where

ā
R,ι,(l)
11 (θ) =

zR,ι22 (θ)(det(CR)− k(l)
R (zR,ι11 (θ)− zR,ι21 (θ))2)

(zR,ι22 (θ)− zR,ι12 (θ)) det(CR)
− zR,ι21 (θ)

k
(l)
R (zR,ι11 (θ)− zR,ι21 (θ))

det(CR)
,

ā
R,ι,(l)
12 (θ) = −z

R,ι
12 (θ)(det(CR)− k(l)

R (zR,ι11 (θ)− zR,ι21 (θ))2)

(zR,ι22 (θ)− zR,ι12 (θ)) det(CR)
+ zR,ι11 (θ)

k
(l)
R (zR,ι11 (θ)− zR,ι21 (θ))

det(CR)
,

ā
R,ι,(l)
21 (θ) = − zR,ι21 (θ)

zR,ι11 (θ)− zR,ι21 (θ)
,

ā
R,ι,(l)
22 (θ) =

zR,ι11 (θ)

zR,ι11 (θ)− zR,ι21 (θ)
.

We have

(ā
R,ι,(l)
11 )′(θ) = −z

R,ι
22 (θ)((zR,ι22 )′(θ)− (zR,ι12 )′(θ)))(det(CR)− k(l)

R (zR,ι11 (θ)− zR,ι21 (θ))2)

(zR,ι22 (θ)− zR,ι12 (θ))2 det(CR)
+

+
(zR,ι22 )′(θ)(det(CR)− k(l)

R (zR,ι11 (θ)− zR,ι21 (θ))2)

(zR,ι22 (θ)− zR,ι12 (θ)) det(CR)
−

− k
(l)
R (zR,ι21 )′(θ)(zR,ι11 (θ)− zR,ι21 (θ))

det(CR)
−

− −2
k

(l)
R z

R,ι
22 (θ)(zR,ι11 (θ)− zR,ι21 (θ))((zR,ι11 )′(θ)− (zR,ι21 )′(θ))

(zR,ι22 (θ)− zR,ι12 (θ)) det(CR)
−

− k
(l)
R z

R,ι
21 (θ)((zR,ι11 )′(θ)− (zR,ι21 )′(θ))

det(CR)
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Therefore,

(ā
R,ι,(l)
11 )′′(θ) = −z

R,ι
22 (θ)((zR,ι22 )′′(θ)− (zR,ι12 )′′(θ))(det(CR)− k(l)

R (zR,ι11 (θ)− zR,ι21 (θ))2)

(zR,ι22 (θ)− zR,ι12 (θ))2 det(CR)
+

+
(zR,ι22 )′′(θ)(det(CR)− k(l)

R (zR,ι11 (θ)− zR,ι21 (θ))2)

(zR,ι22 (θ)− zR,ι12 (θ)) det(CR)
+

+ 2
zR,ι22 (θ)((zR,ι22 )′(θ)− (zR,ι12 )′(θ))2(det(CR)− k(l)

R (zR,ι11 (θ)− zR,ι21 (θ))2)

(zR,ι22 (θ)− zR,ι12 (θ))3 det(CR)
−

− 2
(zR,ι22 )′(θ)((zR,ι22 )′(θ)− (zR,ι12 )′(θ))(det(CR)− k(l)

R (zR,ι11 (θ)− zR,ι21 (θ))2)

(zR,ι22 (θ)− zR,ι12 (θ))2 det(CR)
+

+ 4
k

(l)
R z

R,ι
22 (θ)(zR,ι11 (θ)− zR,ι21 (θ))((zR,ι11 )′(θ)− (zR,ι21 )′(θ))((zR,ι22 )′(θ)− (zR,ι12 )′(θ))

(zR,ι22 (θ)− zR,ι12 (θ))2 det(CR)
−

− 4
k

(l)
R z
′
22(θ)((zR,ι11 )′(θ)− (zR,ι21 )′(θ))(zR,ι11 (θ)− zR,ι21 (θ))

(zR,ι22 (θ)− zR,ι12 (θ)) det(CR)
−

− k
(l)
R (zR,ι11 (θ)− zR,ι21 (θ))(zR,ι21 )′′(θ)

det(CR)
−

− 2
k

(l)
R z

R,ι
22 (θ)(zR,ι11 (θ)− zR,ι21 (θ))((zR,ι11 )′′(θ)− (zR,ι21 )′′(θ))

(zR,ι22 (θ)− zR,ι12 (θ)) det(CR)
−

− k
(l)
R (z′′11(θ)− z′′21(θ))zR,ι21 (θ)

det(CR)
−

− 2
k

(l)
R z
′
21(θ)(z′11(θ)− z′21(θ))

(det(CR)
−

− 2
k

(l)
R z

R,ι
22 (θ)(z′11(θ)− z′21(θ))

(zR,ι22 (θ)− zR,ι12 (θ)) det(CR)
,
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and hence

(ā
R,ι,(l)
12 )′′(θ) =

zR,ι12 (θ)((zR,ι22 )′′(θ)− (zR,ι12 )′′(θ))(det(CR)− k(l)
R (zR,ι11 (θ)− zR,ι21 (θ))2)

(zR,ι22 (θ)− ((zR,ι12 (θ)))2 det(CR)
−

− (zR,ι12 )′′(θ)(det(CR)− k(l)
R (zR,ι11 (θ)− (zR,ι21 (θ)))2)

(zR,ι22 (θ)− zR,ι12 (θ)) det(CR)
−

− 2
zR,ι12 (θ)((zR,ι22 )′(θ)− ((zR,ι12 )′(θ)))2(det(CR)− k(l)

R (zR,ι11 (θ)− zR,ι21 (θ))2)

(zR,ι22 (θ)− zR,ι12 (θ))3 det(CR)
+

+ 2
(zR,ι12 )′(θ)((zR,ι22 )′(θ)− (zR,ι12 )′(θ))(det(CR)− k(l)

R (zR,ι11 (θ)− zR,ι21 (θ))2)

(zR,ι22 (θ)− zR,ι12 (θ))2 det(CR)
−

− 4
k

(l)
R z

R,ι
12 (θ)(zR,ι11 (θ)− zR,ι21 (θ))((zR,ι11 )′(θ)− (zR,ι21 )′(θ))((zR,ι22 )′(θ)− (zR,ι12 )′(θ))

(zR,ι22 (θ)− zR,ι12 (θ))2 det(CR)
+

+ 4
k

(l)
R (zR,ι12 )′(θ)((zR,ι11 )′(θ)− (zR,ι21 )′(θ))(zR,ι11 (θ)− zR,ι21 (θ))

(zR,ι22 (θ)− zR,ι12 (θ)) det(CR)
+

+
k

(l)
R (zR,ι11 (θ)− zR,ι21 (θ))(zR,ι11 )′′(θ)

det(CR)
+

+ 2
k

(l)
R z

R,ι
12 (θ)(zR,ι11 (θ)− zR,ι21 (θ))((zR,ι11 )′′(θ)− (zR,ι21 )′′(θ))

(zR,ι22 (θ)− zR,ι12 (θ)) det(CR)
+

+
k

(l)
R ((zR,ι11 )′′(θ)− (zR,ι21 )′′(θ)) zR,ι11 (θ)

det(CR)
+

+ 2
k

(l)
R (zR,ι11 )′(θ)((zR,ι11 )′(θ)− (zR,ι21 )′(θ))

(det(CR)
+

+ 2
k

(l)
R z

R,ι
12 (θ)((zR,ι11 )′(θ)− (zR,ι21 )′(θ))

(zR,ι22 (θ)− zR,ι12 (θ)) det(CR)
.

Moreover, we get

(ā
R,ι,(l)
21 )′(θ) =

zR,ι21 (θ)((zR,ι11 )′(θ)− (zR,ι21 )′(θ))

(zR,ι11 (θ)− zR,ι21 (θ))2
− (zR,ι21 )′(θ)

zR,ι11 (θ)− zR,ι21 (θ)
,

(ā
R,ι,(l)
21 )′′(θ) =

zR,ι21 (θ)((zR,ι11 )′′(θ)− (zR,ι21 )′′(θ))

(zR,ι11 (θ)− zR,ι21 (θ))2
− (zR,ι21 )′′(θ)

zR,ι11 (θ)− zR,ι21 (θ)
+

+
2(zR,ι21 )′(θ)((zR,ι11 )′(θ)− (zR,ι21 )′(θ))

(zR,ι11 (θ)− zR,ι21 (θ))2
− 2zR,ι21 (θ)((zR,ι11 )′(θ)− (zR,ι21 )′(θ))2

(zR,ι11 (θ)− zR,ι21 (θ))3
,

(ā
R,ι,(l)
22 )′(θ) =

zR,ι11 (θ)((zR,ι11 )′(θ)− (zR,ι21 )′(θ))

(zR,ι11 (θ)− zR,ι21 (θ))2
+

(zR,ι11 )′(θ)

zR,ι11 (θ)− zR,ι21 (θ)
,

(ā
R,ι,(l)
22 )′′(θ) = −z

R,ι
11 (θ)((zR,ι11 )′′(θ)− (zR,ι21 )′′(θ))

(zR,ι11 (θ)− zR,ι21 (θ))2
+

(zR,ι11 )′(θ)

zR,ι11 (θ)− zR,ι21 (θ)
−

− 2(zR,ι11 )′(θ)((zR,ι11 )′(θ)− (zR,ι21 )′(θ))

(zR,ι11 (θ)− zR,ι21 (θ))2
+

2zR,ι11 (θ)((zR,ι11 )′(θ)− (zR,ι21 )′(θ))2

(zR,ι11 (θ)− zR,ι21 (θ))3
.
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Let θ̂ be a minimizer of the function g(k, ·, ι, C). If g′′(k, θ̂, ι, C) 6= 0, then the Newton
method is locally convergent with order 2. Anyway, we experimentally check that in our
case the Newton method does not converge to a minimizer of the function g(k, ·, ι, C).

4.8 The Armijo Line Search
Another method based on the derivative of the function g(k, ·, ι, C) is the Armijo Line
Search (ALS). The relative algorithm is the following

function ALS(k, CR)
h = 0;
θ(1) = (ϕ

(1)
R + ϕ

(6)
R )/2;

θ(0) = θ(1) + 2ε;
while (|θ(h+1) − θ(h)| > ε) do
h = h+ 1;
θ(h+1) = θ(h);
ξ(h+1) = g(k, θ(h), ι, CR);
der = g′(k, θ(h), ι, CR);
i = 0;
θ

(i)
= θ(h) − der;

while (θ
(i)
/∈ [ϕ

(1)
R + η, ϕ

(6)
R − η]) do

i = i+ 1;
θ

(i)
= θ(h) − der/2i;

end while
ξ

(i)
= g(k, θ

(i)
, ι, CR);

while (ξ
(i)
> ξ(h+1) − |der|/2i+1) do

if (ξ
(i)
< ξ(h+1)) then

θ(h+1) = θ
(i)

;
ξ(h+1) = ξ

(i)
;

end if
i = i+ 1;
θ

(i)
= θ(h) − der/2i;

ξ
(i)

= g(k, θ
(i)
, ι, CR);

end while
if (ξ

(i)
< ξ(h+1)) then

θ(h+1) = θ
(i)

;
ξ(h+1) = ξ

(i)
;

end if
end while
return θ(h+1)

where ε is a suitable threshold tolerance. The following result holds.

Theorem 4.4. (see also [8, Theorem 11], [48, Theorem 5.4.1.8]) Let g(k, ·, ι, C) : [a, b]→
R+

0 and θ(0) ∈ [a, b] be such that the setK = {θ ∈ [a, b] : g(k, θ, ι, CR) ≤ g(k, θ(0), ι, CR)}
is compact and g(k, ·, ι, CR) ∈ C1(A), where K ⊂ A and A ⊂ [a, b] is open. Then every
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sequence {θ(h)}h∈N defined by the ALS method has at least a limit point θ ∈ K, and every
limit point is a stationary point for h.

4.9 Comparison of the results
We initially compared the results of methods which do not use derivatives, like the SA,
TPS, GSS, SPI-GSS algorithms. We tested them in restoring the documents of the Figures
(11)-(14), which were mixed with the mixture matrix (62). In Tables 1 and 2 there are
the calculation times and the mean square errors, indicated with MSE, with respect to
the ideal documents of the four previously presented algorithms. From these tables we
deduce that the algorithm SPI-GSS is the most efficent in terms of computational costs,
among the considered ones. Moreover, we tested the SPI-GSS algorithm with ι = 1 fixed.
The related results are presented in Table 3. We observe that the errors in terms of MSE
are similar to those found in Table 2 where ι was not fixed, while the computational costs
are substantially halved. From now on, we do not minimize with respect to ι, but we fix
ι = 1. Successively we compare the SPI-GSS technique with the Armijo algorithm. The
results are shown in Table 3, in which we deduce that the SPI-GSS algorithm is more
efficient, and thus we choose it for minimizing functions with MATODS techniques.

Ideal SA TPS
Document Time MSE recto MSE verso Time MSE recto MSE verso
Figure 11 32.78 s 1.15 · 10−6 2.24 · 10−8 0.50 s 1.09 · 10−10 2.94 · 10−11

Figure 12 47.08 s 3.01 · 10−7 8.36 · 10−8 0.67 s 4.16 · 10−9 6.54 · 10−10

Figure 13 41.55 s 7.40 · 10−8 1.02 · 10−7 0.71 s 6.74 · 10−8 9.44 · 10−8

Figure 14 515.80 s 0.63 5.35 7.24 s 0.63 5.35

Table 1: Results obtained by algorithms SA and TPS.

Ideal GSS SPI-GSS
Docment Time MSE recto MSE verso Time MSE recto MSE verso
Figure 11 0.42 s 2.75 · 10−10 3.00 · 10−12 0.40 s 1.47 · 10−10 1.71 · 10−11

Figure 12 0.64 s 5.30 · 10−9 7.51 · 10−10 0.61 s 5.62 · 10−9 9.02 · 10−10

Figure 13 0.59 s 6.96 · 10−8 9.74 · 10−8 0.56 s 6.92 · 10−8 9.68 · 10−8

Figure 14 7.64 s 0.63 5.35 5.37 s 0.63 5.35

Table 2: Results obtained by algorithms GSS and SPI-GSS.

5 A not translation invariant model
Actually the linear model is not always realistic, because in many ancient documents the
infiltration of the ink is not spatially uniform. Thus, in order to obtain a not translation in-
variant model for our problem, we proceed as follows. For the red component we consider
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Ideal SPI-GSS ALS
Document Time MSE recto MSE verso Time MSE recto MSE verso
Figure 11 0.20 s 1.34 · 10−10 4.26 · 10−11 0.47 s 3.78 · 10−10 1.28 · 10−15

Figure 12 0.30 s 3.69 · 10−9 6.27 · 10−10 0.95 s 6.05 · 10−9 9.12 · 10−10

Figure 13 0.27 s 6.88 · 10−8 9.63 · 10−8 1.27 s 7.02 · 10−8 9.81 · 10−8

Figure 14 3.28 s 0.63 5.35 6.71 s 0.63 5.35

Table 3: Results obtained by algorithms SPI-GSS, NL-SOR and ALS by fixing ι = 1.

different subimages x̄(p,q)
R , p, q = 1, . . . ,

⌈
n−n
ν

⌉
, of a fixed size n× n and solve the linear

problem in each subimage. These subimages are chosen in such a way that the range of
each of them is obtained from the previous range, by shifting ν pixels in the horizontal
or vertical way. Finally, we pose the light intensity value of every pixel of the estimated
source s̃R as the arithmetic mean of the light intensity of estimated subsources value in
which such a pixel belongs. If we assume that n and n are multiples of ν, then the main
procedure for the red component is the following.

function NIT-MATODS(xr)
Initialize s̃R as a null matrix;
for p = 1 to n− n with step ν do

for q = 1 to n− n with step ν do
for i = 1 to n do

for j = 1 to n do
x̄

(p,q)
rR i,j = xrR i+p,j+q;

x̄
(p,q)
vR i,j = xvR i+p,j+q;

end for
end for
s̄

(p,q)
R =MATODS(x̄

(p,q)
R )

dimy = min{n/ν, d(i+ p)/νe , d(n+ 1− i− p)/νe};
dimx = min{n/ν, d(j + q)/νe , d(n+ 1− j − q)/νe};
for i = 1 to n do

for j = 1 to n do
s̃rR i+p,j+q = s̃rR i+p,j+q + s̄

(p,q)
rR i,j/(dimx · dimy);

s̃vR i+p,j+q = s̃vR i+p,j+q + s̄
(p,q)
vR i,j/(dimx · dimy);

end for
end for

end for
end for
return s̃R

We refer to this method as Not Invariant for Translation MATODS (NIT-MATODS) algo-
rithm.
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6 Experimental results
We have implemented both MATODS and NIT-MATODS algorithms in C language in
an Ubuntu operating system on a computer with a 2.80GHz processor. In this section
we illustrate our experimental results. In particular we first compare the MATODS algo-
rithm with other methods existing in literature and then we see how the NIT-MATODS
algorithm works in restoring real ancient documents.

For restoring color image documents of dimension 256×256 in most cases MATODS
has a computation time less than one second, as we saw in the previous section, so we
compare it with other fast and unsupervised methods as FastICA, SW, W and PCA al-
gorithms. We proceed as follows. First, we generate a synthetic data document from
a given mixing matrix and a fixed source document using the linear model in equation
(3). Then we compare the estimated sources with the given source document by means
of the Mean Squared Error (MSE) and the Peak Signal-to-Noise Ratio (PSNR). Since
we deal with data overlapping matrices, in order to better compare the W, SW and PCA
techniques with our algorithm, we apply the pre-processing phase as in equation (5) also
to such algorithms. At the end of execution of FastICA, SW, W and PCA algorithms, we
normalize the estimated mixture matrices in order to make them stochastic. Moreover, for
these algorithms, as we assumed that the mixing matrix AR is a diagonally predominant
matrix, if the estimated matrix does not have this property, then we permute the estimated
source recto image with the corresponding verso, in order to achieve this condition, and
then we apply an orthogonal projection operator in order to have estimated results in the
space [0, 255]n

2×6. As source documents we consider the 256×256 documents in Figures
11-17.

(a) Recto of the document. (b) Verso of the document.

Figure 11: Ideal sources.
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(a) Recto of the document. (b) Verso of the document.

Figure 12: Ideal sources.

(a) Recto of the document. (b) Verso of the document.

Figure 13: Ideal sources

(a) Recto of the document. (b) Verso of the document.

Figure 14: Ideal sources.

49



(a) Recto of the document. (b) Verso of the document.

Figure 15: Ideal sources.

(a) Recto of the document. (b) Verso of the document.

Figure 16: Ideal sources.

(a) Recto of the document. (b) Verso of the document.

Figure 17: Ideal sources.
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First, we have mixed our documents with the mixture matrices

AR =

(
0.7 0.3
0.3 0.7

)
, AG =

(
0.7 0.3
0.3 0.7

)
, AB =

(
0.7 0.3
0.3 0.7

)
. (61)

In Tables 4 and 5 there are the MSE with respect to the original documents obtained by
means of the algorithms MATODS, FastICA, SW, W and PCA. Note that, in general, the
errors obtained by means of the W and PCA algorithms are larger than the corresponding
ones obtained by MATODS, FastICA and SW. This confirms the observations made in
[53]. Thus, being the level of mixing degradation in the subsequent experimental tests
greater than the one here presented, from now on we give the results related only to MA-
TODS, FastICA and SW algorithms. Note that, in such tables, the MATODS algorithm
obtains always a MSE smaller than the other ones.

Ideal BOFIS FastICA SW
Document MSE recto MSE verso MSE recto MSE verso MSE recto MSE verso
Figure 11 1.54 · 10−10 4.15 · 10−11 53.27 1.45 0.15 4.87
Figure 12 3.56 · 10−9 6.21 · 10−10 17.71 12.14 15.84 40.66
Figure 13 6.93 · 10−8 9.69 · 10−8 171.23 30.92 74.87 68.74
Figure 14 1.09 6.99 20.62 25.67 45.40 20.41
Figure 15 1.25 · 10−5 5.04 · 10−12 4.46 1.78 0.22 1.86
Figure 16 1.13 · 10−9 4.54 · 10−11 130.81 24.84 21.77 34.97
Figure 17 0.15 0.19 42.77 70.79 341.69 342.18

Table 4: Errors of algorithms BOFIS, FastICA and SW with the mixture matrix as in (61) in terms
of MSE.

Ideal W PCA
Document MSE recto MSE verso MSE recto MSE verso
Figure 11 55.56 2.38 890.46 473.76
Figure 12 134.82 30.12 1035.10 853.17
Figure 13 40.20 43.94 3610.01 3794.41
Figure 14 39.07 106.85 1636.92 899.77
Figure 15 22.57 2.16 478.03 382.44
Figure 16 296.42 36.80 525.31 112.09
Figure 17 245.89 262.93 9249.91 10330.02

Table 5: Errors of the algorithms W and PCA with the mixture matrix as in (61) in terms of MSE.

In Tables 6 and 7 there are the PSNR with respect to the same algorithms. The PSNR
is used to evaluate the quality of an image compressed in connection with the original
one. This index of quality of images is defined as the ratio between the greatest power
of a signal and the noise power, which can invalidate the faithfulness of its compressed
representation.

Since several signals have a very large dynamic wideness, the PSNR is in general
expressed in terms of logarithmic scale of decibels. In particular, it is

PSNR = 20 log10

(
255√
MSE

)
.
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As this function is decreasing, to evaluate the goodness of the results in terms of PSNR
one has to consider the highest values which correspond to the lowest ones in terms of
MSE.

Ideal MATODS FastICA SW
document PSNR recto PSNR verso PSNR recto PSNR verso PSNR recto PSNR verso
Figure 11 146.27 151.95 30.87 46.53 56.48 41.26
Figure 12 132.62 140.20 35.65 37.29 36.13 32.04
Figure 13 119.73 118.27 25.80 33.23 29.39 29.76
Figure 14 47.75 39.69 34.99 34.04 31.56 35.03
Figure 15 97.18 161.11 41.64 45.62 54.63 45.43
Figure 16 137.59 151.56 26.96 34.18 34.75 32.69
Figure 17 56.23 55.26 31.82 29.63 22.79 22.79

Table 6: Errors of the algorithms MATODS, FastICA and SW with the mixture matrix as in (61)
in terms of PSNR.

Ideal W PCA
document PSNR recto PSNR verso PSNR recto PSNR verso
Figure 11 30.68 44.36 18.64 21.38
Figure 12 26.83 33.34 17.98 18.82
Figure 13 32.09 31.70 12.56 12.34
Figure 14 32.21 27.84 15.99 18.59
Figure 15 34.60 44.78 21.34 22.31
Figure 16 23.41 32.47 20.93 27.64
Figure 17 24.22 23.93 8.47 7.99

Table 7: Errors of the algorithms W and PCA with the mixture matrix as in (61) in terms of PSNR.

In Table 8 there are the errors in terms of MSE related to the mixture matrices obtained
by all considered algorithms. Note that the difference between the ideal mixing matrices
in (61) and the MATODS estimated mixing matrices is substantially zero.
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Document MATODS FastICA SW W PCA
Figure 11 3.30 · 10−15 0.0052 6.71 · 10−4 0.0030 0.020
Figure 12 7.91 · 10−14 0.0031 0.0017 0.0046 0.020
Figure 13 7.74 · 10−12 0.049 0.0026 0.0049 0.038
Figure 14 4.10 · 10−7 0.012 0.0037 0.0073 0.021
Figure 15 6.79 · 10−10 0.0020 5.30 · 10−4 0.0023 0.025
Figure 16 1.51 · 10−14 0.019 0.0053 0.011 0.0083
Figure 17 4.09 · 10−6 0.0066 0.0048 0.0086 0.038

Table 8: Errors of the mixing matrices estimated by the algorithms MATODS, FastICA and SW
with respect to the mixture matrix as in (61) in terms of MSE.
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In Figures 18 (a) and (b) there are the mixtures of the document obtained with the
mask (61), while in Figures 18 (c) and (d) the results of the MATODS are presented.
Figures 19 (a) and (b) contain the results obtained by means of the FastICA, while in
Figures 19 (c) and (d) the results obtained by the SW algorithm are presented. In Figures
20 (a) and (b) there are the results obtained with the W technique, while Figures 20 (c)
and (d) contain the results of the PCA algorithm.

(a) Recto of the mixture. (b) Verso of the mixture.

(c) Recto estimated by MATODS. (d) Verso estimated by MATODS.

Figure 18: Document in Figure 13 mixed with a mixture matrix as in (61).
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(a) Recto estimated by FastICA. (b) Verso estimated by FastICA.

(c) Recto estimated by SW. (d) Verso estimated by SW.

Figure 19: Document in Figure 13 mixed by a mixture matrix as in (61).
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(a) Recto estimated by W. (b) Verso estimated by W.

(c) Recto estimated by PCA. (d) Verso estimated by PCA.

Figure 20: Document in Figure 13 mixed by a mixture matrix as in (61).
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Now we consider the same documents mixed by the following mixture matrices

AR =

(
0.6 0.4
0.4 0.6

)
, AG =

(
0.6 0.4
0.4 0.6

)
, AB =

(
0.6 0.4
0.4 0.6

)
. (62)

In Table 9 the errors in terms of MSE are illustrated. In Table 10 the PSNR with respect
to the original source documents of the estimated ones by the considered algorithms are
presented. Table 11 contains the errors in terms of the MSE related to the obtained mix-
ing matrices. We observe that MATODS allows to obtain better results than the other
algorithms, as it is readily seen.

Ideal BOFIS FastICA SW
Document MSE recto MSE verso MSE recto MSE verso MSE recto MSE verso
Figure 11 1.34 · 10−10 4.26 · 10−11 58.60 2.03 0.89 4.56
Figure 12 3.69 · 10−9 6.27 · 10−10 21.89 14.76 21.92 38.51
Figure 13 6.88 · 10−8 9.63 · 10−8 245.40 111.11 73.94 69.74
Figure 14 0.63 5.35 61.37 118.79 42.99 24.11
Figure 15 1.24 · 10−5 5.42 · 10−12 5.82 2.30 0.56 1.76
Figure 16 9.07 · 10−10 3.67 · 10−11 491.63 198.74 63.14 37.30
Figure 17 0.12 3.46 37.17 58.61 337.60 344.68

Table 9: Errors of the algorithms BOFIS, FastICA and SW with the mixture matrix as in (62) in
terms of MSE.

Ideal MATODS FastICA SW
document PSNR recto PSNR verso PSNR recto PSNR verso PSNR recto PSNR verso
Figure 11 146.87 151.84 30.45 45.07 48.64 41.54
Figure 12 132.46 140.16 34.73 36.44 34.72 32.28
Figure 13 119.76 118.30 24.23 27.67 29.44 29.70
Figure 14 50.16 40.85 30.25 27.38 31.80 34.31
Figure 15 97.18 160.79 40.48 44.52 50.62 45.67
Figure 16 138.55 152.49 21.21 25.15 30.13 32.41
Figure 17 57.36 42.74 32.43 30.45 22.85 22.76

Table 10: Errors of the algorithms MATODS, FastICA and SW with the mixture matrix as in (62)
in terms of PSNR.

In Figures 21 (a) and (b) there are the mixtures of the document obtained with the
mask (62), while in Figures 21 (c) and (d) the results of the MATODS are presented.
Figures 22 (a) and (b) contain the results obtained with the FastICA. In Figures 22 (c) and
(d) the results obtained by means of the SW technique are presented. Note that in the SW
results the colors are not quite correct. Figures 23 (a) and (b) contain the images related
to the document in Figure 16 mixed by the mixture matrix (62). In Figures 23 (c) and (d)
it is possible to observe the results obtained by the MATODS, while in Figures 23 (e) and
(f) there are the results got by means of the FastICA. Observe that, in the results obtained
with the FastICA, there are still some ink infiltrations, while by means of the MATODS
we obtain substantially perfectly clean images.
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Document MATODS FastICA SW
Figure 11 2.01 · 10−15 0.0058 3.46 · 10−4

Figure 12 6.77 · 10−14 0.0057 6.45 · 10−4

Figure 13 7.96 · 10−12 0.024 6.43 · 10−4

Figure 14 8.46 · 10−6 0.0074 0.0013
Figure 15 4.98 · 10−10 0.0027 2.61 · 10−4

Figure 16 9.71 · 10−15 0.012 0.0023
Figure 17 2.35 · 10−5 0.0055 0.0012

Table 11: Errors of the estimated mixing matrices by the algorithms MATODS, FastICA and SW
with the mixture matrix as in (62) in terms of MSE.

(a) Recto of the mixture. (b) Verso of the mixtura.

(c) Recto estimated by MATODS. (d) Verso estimated by MATODS.

Figure 21: Document in Figure 14 mixed with a mixture matrix as in (62).
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(a) Recto estimated by FastICA. (b) Verso estimated by FastICA.

(c) Recto estimated by SW. (d) Verso estimated by SW.

Figure 22: Document in Figure 14 mixed with a mixture matrix as in (62).
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(a) Recto of the mixture. (b) Verso of the mixture.

(c) Recto estimated by MATODS. (d) Verso estimated by MATODS.

(e) Recto estimated by FastICA. (f) Verso estimated by FastICA.

Figure 23: Document in Figure 16 mixed by a mixture matrix as in (62).
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Now we consider the following mixture matrices:

AR =

(
0.55 0.45
0.45 0.55

)
, AG =

(
0.55 0.45
0.45 0.55

)
, AB =

(
0.55 0.45
0.45 0.55

)
. (63)

Note that the mixtures obtained with such matrices have the recto very similar to the
verso, and the problem turns out to be difficult to solve, since such matrices are more ill-
conditioned than the previous ones. In Table 12 there are the errors in terms of MSE given
by the examined algorithms. The PSNR of the involved algorithms are presented in Ta-
ble 13. In Table 14 there are the errors in terms of MSE of the estimated mixture matrices.

Ideal BOFIS FastICA SW
Document MSE recto MSE verso MSE recto MSE verso MSE recto MSE verso
Figure 11 5.76 · 10−11 5.88 · 10−11 97.82 27.61 2.04 3.66
Figure 12 4.49 · 10−9 8.52 · 10−10 192.34 105.86 27.03 34.02
Figure 13 6.95 · 10−8 9.71 · 10−8 381.62 331.93 73.07 70.62
Figure 14 0.44 4.61 198.80 243.44 39.20 27.40
Figure 15 1.24 · 10−5 3.67 · 10−12 49.58 26.03 1.04 1.46
Figure 16 4.44 · 10−10 2.50 · 10−11 951.51 807.94 93.28 34.08
Figure 17 0.11 8.06 118.10 193.36 334.49 347.00

Table 12: Errors of the algorithms BOFIS, FastICA and SW with the mixture matrix as in (63) in
terms of MSE.

Ideal MATODS FastICA SW
document PSNR recto PSNR verso PSNR recto PSNR verso PSNR recto PSNR verso
Figure 11 150.53 150.43 28.23 33.72 45.03 42.49
Figure 12 131.61 138.83 25.29 27.88 33.81 32.81
Figure 13 119.71 118.26 22.32 22.92 29.49 29.64
Figure 14 51.69 41.49 25.15 24.27 32.20 33.75
Figure 15 97.18 162.48 31.18 33.98 47.98 46.49
Figure 16 141.65 154.16 18.35 19.06 28.43 32.81
Figure 17 57.54 39.07 27.41 25.27 22.89 22.73

Table 13: Errors of the algorithms MATODS, FastICA and SW with the mixture matrix as in (63)
in terms of PSNR.

In Figures 24 (a) and (b) there are the mixtures of the document in Figure 11 obtained
by means of the mixture matrices (63). In Figures 11 (c) and (d) there are the results
obtained with the MATODS and in Figures 11 (e) and (f) there are those got by means
of the FastICA. Figures 25 (a) and (b) show the mixtures of the document in Figure 12
obtained by means of the mixture matrices (63). In Figures 12 (c) and (d) we have the
results obtained with the MATODS and in Figures 12 (e) and (f) there are those obtained
by means of the FastICA. In Figures 26 (a) and (b) there are the mixtures of the document
in Figure 15 obtained by means of the mixture matrices (63). In Figures 26 (c) and (d) we
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Document MATODS FastICA SW
Figure 11 1.05 · 10−15 0.0032 1.22 · 10−4

Figure 12 7.90 · 10−14 0.0028 2.01 · 10−4

Figure 13 8.17 · 10−12 0.026 1.61 · 10−4

Figure 14 1.50 · 10−5 0.0084 4.06 · 10−4

Figure 15 4.19 · 10−10 0.0017 9.08 · 10−5

Figure 16 4.21 · 10−15 0.015 7.38 · 10−4

Figure 17 5.76 · 10−5 0.0027 3.01 · 10−4

Table 14: Errors of the estimated mixing matrices by the algorithms MATODS, FastICA and SW
with the mixture matrix as in (63) in terms of MSE.

have the results obtained with the MATODS and in Figures 26 (e) and (f) there are these
got by means of the FastICA. Figures 17 (a) and (b) contain the mixtures of the document
in Figure 17 obtained by means of the mixture matrices (63). In Figures 17 (c) and (d) we
show the results obtained with the MATODS, and in Figures 17 (e) and (f) there are those
got in connection with the FastICA. Even in this context the MATODS technique obtains
the best results.
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(a) Recto of the mixture. (b) Verso of the mixture.

(c) Recto estimated by MATODS. (d) Verso estimated by MATODS.

(e) Recto estimated by FastICA. (f) Verso estimated by FastICA.

Figure 24: Document in Figure 11 mixed by a mixture matrix as in (63).
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(a) Recto of the mixture. (b) Verso of the mixture.

(c) Recto estimated by MATODS. (d) Verso estimated by MATODS.

(e) Recto estimated by FastICA. (f) Verso estimated by FastICA.

Figure 25: Document in Figure 12 mixed by a mixture matrix as in (63).
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(a) Recto of the mixture. (b) Verso of the mixture.

(c) Recto estimated by MATODS. (d) Verso estimated by MATODS.

(e) Recto estimated by FastICA. (f) Verso estimated by FastICA.

Figure 26: Document in Figure 15 mixed by a mixture matrix as in (63).
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(a) Recto of the mixture. (b) Verso of the mixture.

(c) Recto estimated by MATODS. (d) Verso estimated by MATODS.

(e) Recto estimated by FastICA. (f) Verso estimated by FastICA.

Figure 27: Document in Figure 17 mixed by a mixture matrix as in (63).
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Now we deal with not symmetric mixture matrices. For example, let us take

AR =

(
0.7 0.3
0.4 0.6

)
, AG =

(
0.6 0.4
0.3 0.7

)
, AB =

(
0.7 0.3
0.4 0.6

)
. (64)

In Table 15 there are the errors in terms of MSE. The PSNR of the considered algorithms
is presented in Table 16. Table 17 contains the errors in terms of MSE related to the
estimated mixing matrices.

Ideal BOFIS FastICA SW
Document MSE recto MSE verso MSE recto MSE verso MSE recto MSE verso
Figure 11 1.28 · 10−10 4.56 · 10−11 43.71 2.27 15.27 6.28
Figure 12 3.51 · 10−9 6.07 · 10−10 19.90 17.64 39.06 40.51
Figure 13 6.95 · 10−8 9.71 · 10−8 175.96 68.05 94.41 63.01
Figure 14 0.78 5.93 18.94 33.65 48.50 13.97
Figure 15 1.24 · 10−5 3.90 · 10−12 3.33 2.91 6.18 2.35
Figure 16 1.43 · 10−10 1.76 · 10−11 258.04 96.14 132.46 49.94
Figure 17 0.12 3.46 45.77 55.89 373.00 320.18

Table 15: Errors of the algorithms BOFIS, FastICA and SW with the mixture matrix as in (64) in
terms of MSE.

Ideal MATODS FastICA SW
document PSNR recto PSNR verso PSNR recto PSNR verso PSNR recto PSNR verso
Figure 11 147.07 151.54 31.73 44.58 36.29 40.15
Figure 12 132.68 140.30 35.14 35.67 32.21 32.06
Figure 13 119.71 118.26 25.68 29.80 28.38 30.14
Figure 14 49.21 40.40 35.36 32.86 31.27 36.68
Figure 15 97.18 162.22 42.91 43.49 40.22 44.43
Figure 16 146.58 155.68 24.01 28.30 26.91 31.15
Figure 17 57.36 42.74 31.53 30.66 22.41 23.08

Table 16: Errors of the algorithms MATODS, FastICA and SW with the mixture matrix as in (64)
in terms of PSNR.

In Figures 28 (a) and (b) there are the mixtures of the document in Figure 12, obtained
by means of the mixture matrices (64). In Figures 28 (c) and (d) we present the results
obtained with the MATODS, while in Figures 28 (e) and (f) there are those got by means
of the SW algorithm. Note that, in the results obtained by the SW method, the colors
are not identical to those of the original document in Figure 12, especially if we see the
picture in the bottom-right corner of the estimated recto.
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(a) Recto of the mixture. (b) Verso of the mixture.

(c) Recto estimated by MATODS. (d) Verso estimated by MATODS.

(e) Recto estimated by SW. (f) Verso estimated by SW.

Figure 28: Document in Figure 12 mixed with a mixture matrix as in (64).
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Document MATODS FastICA SW
Figure 11 2.59 · 10−15 0.0047 0.0018
Figure 12 7.21 · 10−14 0.0036 0.0027
Figure 13 7.87 · 10−12 0.035 0.0035
Figure 14 7.17 · 10−7 0.013 0.0057
Figure 15 6.18 · 10−10 0.0023 0.0015
Figure 16 1.89 · 10−15 0.0089 0.0037
Figure 17 1.66 · 10−5 0.0060 0.0049

Table 17: Errors of the estimated mixing matrices by the algorithms MATODS, FastICA and SW
with the mixture matrix as in (64) in terms of MSE.
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Observe that, in general, even considering the overlapping matrices, the results ob-
tained by means of the SW and FastICA are very similar. This confirms the results ob-
tained in [53] using covariance matrices. Moreover, note that the estimation of the source
overlapping level is very useful for a correct reconstruction of the original sources. In-
deed, the MATODS algorithm obtaines always the best results.

Now we see how the NIT-MATODS algorithm restores real ancient documents. In
this case, we take some practical measures. Namely, we compare the maximum of the
light intensity of the recto and of the verso corresponding to our data. If the two values do
not coincide, then we add a constant to the light intensity of the darker image, in order to
make its background similar to that of the brighter image. This is justified by the fact that
the color of the paper has to be the same both in the recto and in the verso. Since images
of real documents present a noise degradation phenomena, in general the brightest value
does not coincide with that of the background. So, for all three components red, green
and blue, instead of estimating the maximum value of the light intensity, we compute the
statistical mode of the recto and the verso. We assume that the determinant of the overlap-
ping matrix of the observed data CR (CG, or CB), corresponding to each channel of each
involved subimage, is zero when det(CR)/‖CR‖∞ ≤ ε (resp. det(CG)/‖CG‖∞ ≤ ε or
det(CB)/‖CB‖∞ ≤ ε), where ε is a prefixed threshold and ‖CB‖∞ is the infinity norm.
In the following experiments we set the subwindow size as n = 128, and this subwin-
dow is shifted during the execution of the algorithm by ν = 16 pixels. In this setting, the
NIT-MATODS algorithm, dealing with 512×512 documents, has an average computation
time of 59.72 seconds.

The data document in Figures 29–33 (a) and (b) are taken by the database created by
the project Irish Script on Screen (ISOS) of the School of Celtic Studies, Dublin Institute
for Advances Studies, in conjunction with the SIGMEDIA group of the Department of
Electrical and Electronic Engineering at the Trinity College in Dublin (see [33]). This
database contains ancient documents affected by bleed-through. The obtained results by
NIT-MATODS are presented in Figures 29–33 (c) and (d).
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(a) Data document recto. (b) Data document verso.

(c) NIT-MATODS estimated recto. (d) NIT-MATODS estimated verso.

Figure 29: 512× 512 ISOS document.

71



(a) Data document recto. (b) Data document verso.

(c) NIT-MATODS estimated recto. (d) NIT-MATODS estimated verso.

Figure 30: 512× 512 ISOS document.

(a) Data document recto. (b) Data document verso.

(c) NIT-MATODS estimated recto. (d) NIT-MATODS estimated verso.

Figure 31: 1024× 512 ISOS document.
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(a) Data document recto. (b) Data document verso.

(c) NIT-MATODS estimated recto. (d) NIT-MATODS estimated verso.

Figure 32: 512× 512 ISOS document.
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(a) Data document recto. (b) Data document verso.

(c) NIT-MATODS estimated recto. (d) NIT-MATODS estimated verso.

Figure 33: 512× 512 ISOS document.
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Conclusions
In this article, we dealt with a Blind Source Separation problem in the particular case
of document restoration. We proposed a Correlated Component Analysis technique that
gives as a solution a Nonnegative Factorization of the observed data. We initially ana-
lyzed a linear invariant for translation model, and we developed a fixed point algorithm
that iteratively estimates the overlapping level of the recto and the verso of the docu-
ment to be restored. From the estimated overlapping level we compute the estimation of
the ideal sources and of the mixture matrix. The given algorithm was called Minimum
Amount of Text Overlapping in Document Separation (MATODS). The MATODS algo-
rithm is a fast and unsupervised method. Then we proposed a translation not invariant
and local linear model in order to deal with real ancient documents. The algorithm re-
lated to this model was called Not Invariant for Translation MATODS (NIT-MATODS).
The experimental results confirmed that MATODS works better than some classical fast
and unsupervised developed algorithms for a linear and translation invariant model, while
the NIT-MATODS algorithm gives qualitatively good results in reconstructing ancient
documents degraded by a bleed-through effect.
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