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Introduction

Thermal diffusion is a traditional method for doping semiconductors. Under conditions of thermal diffu-
sion, the impurity transport at all stages of doping is carried out by intensive thermal movement of atomic
particles at elevated temperatures. For the formation of p-n junctions in silicon crystals they are doped with
the impurities formed the local regions of different types of conductivity. The elements of group V (arsenic As,
phosphorus P, antimony Sb) are used for forming the regions with the electron type of conductivity and im-
purity of the III group, namely, boron B, aluminium Al, and others, are used to form the regions with the hole
type of conductivity. Usually, doping due to thermal diffusion includes two different stages: high-temperature
introduction of impurity atoms into a semiconductor from a gas phase, liquid diffusant or deposited doped
layer, and redistribution of injected impurity during subsequent thermal treatments. It is worth noting that
the first semiconductor devices have been created by means of thermal diffusion. A great advantage of such
doping process is the equilibrium state of the defect subsystem of a semiconductor crystal. On the other hand,
thermal diffusion does not allow the formation of highly doped regions with submicron and nanometer di-
mensions. This is a great disadvantage from the point of view of the modern microelectronics. However, at
the present find that thermal diffusion of impurity atoms in silicon is of interest both from the scientific point
of view and due to the cheapness of the process. The low cost of thermal diffusion is very important for manu-
facturing of solar elements [1, 2, 3, 4, 5, 6, 7] and other semiconductor devices. Thermal diffusion is also used
for the gettering of undesirable impurities such as iron [8, 9, 10].

It should be noted that the formation of different nanostructures in the volume or on the surface of a semi-
conductor or in the dielectric layer occurs very often due to the diffusion of impurity atoms and point defects
[11, 12]. In this case, the elastic stresses generated in the nanostructures in the course of their formation
[13, 14] can significantly influence the intensity and character of the diffusion of atomic particles. Below, we
consider different aspects of the processes of transport and of quasichemical reactions of impurity atoms and
point defects in crystalline silicon, including diffusion in a strong nonequilibrium state of the defect–impurity
system. Such nonequilibrium conditions are realized, for example, in the cases of ion implantation, plasma
processing, or on the formation of multilayered structures.
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