Victor Sorokine

The last theorem of Fermat. The simplest proof

In Memory of my MOTHER

The contradiction:

The Fermat equality does not hold over (k+1)-th digits, where k is the number of zeros at the zeroes end of the number U=A+B-C=un^k.

So, let's assume that for co-prime natural numbers A, B, C and prime n>2: 1°) Aⁿ+Bⁿ=Cⁿ, or Aⁿ+Bⁿ-Cⁿ=0, where 2°) U=A+B-C=un^k, where u is not divisible by n.

Proof of the FLT

After deleting the k-digit terminations A°, B°, C° in numbers A, B, C (written in base n), in the remaining part of equality

3°) A'ⁿ+B'ⁿ-C'ⁿ =0 the sum of the last digits D=A'+B'-C', according to Fermat's small theorem, is not equal to zero or n.

However, the recovery in numbers A, B, C of discarded k-digit endings A°, B°, C° cannot affect the values of (k+1)-th digits in degrees Aⁿ, Bⁿ, Cⁿ, because they do not depend on the k-digit endings of the bases (a consequence of Newton's binomial).

This testifies to the truth of Fermat's great theorem.

Mezos, May 13, 2018.