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Abstract. I will provide the solution of Erdös-Moser equation based on the proper-

ties of Bernoulli polynomials and prove that there is only one solution satisfying the
above-mentioned equation.
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1. Notation

1 + 2p + 3p + ... + (k)p = (k + 1)p represents Erdös-Moser equation, where k, p ∈ N.
Let bn denotes Bernoulli numbers.
Let

Bn(x) =

n∑
k=0

(
n

k

)
bn−kx

k

denotes Bernoulli polynomials for n ≥ 0.

2. Introduction

The Erdös-Moser equation (EM equation), named after Paul Erdös and Leo Moser has
been studied by many number theorists through history since combines addition, powers
and summation together. The open and very interesting conjecture of Erdös-Moser states
that there is no other solution of EM equation than the trivial 1 + 2 = 3. Investigation
of the properties and identities of the EM equation and ultimately providing the proof of
this conjecture is the main purpose of this article.

3. Solution

Lemma 3.1. The EM equation is equivalent of

(3.1)

x∑
k=0

kp ≡ Bp+1(x + 1)

p + 1
= (x + 1)p

for x ∈ N.

Proof. Sum of pth powers is defined as
x∑

k=0

kp =
Bp+1(x + 1)−Bp+1(0)

p + 1
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Leo Moser proved that for another solution of EM equation two must divide p, see [1],
what yields that p + 1 must be odd and Bp+1(0) with odd subscripts is equal zero. �

Lemma 3.2.

(3.2) Bp+1(x + 1)−Bp+1(x) = (p + 1)xp

(3.3) Bp+1(x + 2)−Bp+1(x + 1) = (p + 1)(x + 1)p

Proof. Relation of Bernoulli polynomials given by Whittaker and Watson, see [2], what
in general form is defined as Bn(x + 1)−Bn(x) = nxn−1. �

Lemma 3.3. Lemma (3.1) in combination with rearranged Eq. (3.2) gives a relation

(3.4)
Bp+1(x + 1)

Bp+1(x)
=

(x + 1)p

(x + 1)p − xp

Proof. Let us express p + 1 from Eq. (3.2) as

(3.5)
Bp+1(x + 1)

xp
− Bp+1(x)

xp
= p + 1

then by putting LHS of Eq. (3.5) in Eq. (3.1) we get

Bp+1(x + 1) = (x + 1)p
(
Bp+1(x + 1)

xp
− Bp+1(x)

xp

)
and after elementary rearrangements we can rearrange Eq. (3.1) to the form as is defined
in Lemma (3.3). �

Theorem 3.4. The EM equation has other solution than trivial if and only if holds the
relation in Eq. (3.6)

(3.6)
Bp+1(x + 2)

Bp+1(x + 1)
= 2

for x ∈ N.

Proof. Let us rearrange Eq. (3.1) as

(3.7) Bp+1(x + 1) = (p + 1)(x + 1)p

the RHS of Eq. (3.3) and Eq. (3.7) are equal so we can define

Bp+1(x + 2)−Bp+1(x + 1) = Bp+1(x + 1)

Bp+1(x + 2) = 2Bp+1(x + 1)

Bp+1(x + 2)

Bp+1(x + 1)
= 2

�

Theorem 3.5. The expression on the LHS of Eq. (3.6)
Bp+1(x+2)
Bp+1(x+1) can be always expressed

by the expression on the LHS of Eq. (3.4)
Bp+1(x+1)
Bp+1(x)

and therefore EM equation does not

have any other solution than trivial.
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Proof. Let us define variable X2 = x2 +2. Let us recall that by the definition of Bernoulli
numbers Bn(x)

Bn(x) =

n∑
k=0

(
n

k

)
bn−kx

k

Bp+1(x2+2)
Bp+1(x2+1) is equal to the following

Bp+1(x2 + 2) =
∑p+1

k=0

(
p+1
k

)
bp+1−k(x2 + 2)k

Bp+1(x2 + 1) =
∑p+1

k=0

(
p+1
k

)
bp+1−k(x2 + 1)k

or in terms of X2

Bp+1(X2) =
∑p+1

k=0

(
p+1
k

)
bp+1−k(X2)k

Bp+1(X2 − 1) =
∑p+1

k=0

(
p+1
k

)
bp+1−k(X2 − 1)k

Let us define variable X1 = x1 + 1.
Bp+1(x1+1)
Bp+1(x1)

is equal to the following

Bp+1(x1 + 1) =
∑p+1

k=0

(
p+1
k

)
bp+1−k(x1 + 1)k

Bp+1(x1) =
∑p+1

k=0

(
p+1
k

)
bp+1−k(x1)k

or in terms of X1

Bp+1(X1) =
∑p+1

k=0

(
p+1
k

)
bp+1−k(X1)k

Bp+1(X1 − 1) =
∑p+1

k=0

(
p+1
k

)
bp+1−k(X1 − 1)k

If X2 = x2 + 2 and X1 = x1 + 1 we can define relation between X2 and X1 as follows

(3.8) X2 − 1 = X1

in other words every natural number representing variable X2 can be expressed by the
natural number representing variable X1 in this relation, in other words the expression

on the LHS of Eq. (3.6)
Bp+1(x2+2)
Bp+1(x2+1) =

Bp+1(X2)
Bp+1(X2−1) is equal to the expression on the LHS

of Eq. (3.4)
Bp+1(x1+1)
Bp+1(x1)

=
Bp+1(X1)

Bp+1(X1−1) if and only if

(3.9) X2 = X1

and Eq. (3.9) holds always if

X2 = X1(3.10)

x2 + 2 = x1 + 1(3.11)

x2 = x1 − 1(3.12)

By mathematical induction can be easily proved that this relations holds ∀X2 > 2 (con-
sidering the EM equation we are only focusing on positive integers).

Example 3.1. Let

Bp+1(x2 + 2)

Bp+1(x2 + 1)
=

Bp+1(X2)

Bp+1(X2 − 1)
=

Bp+1(5 + 2)

Bp+1(5 + 1)
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then x2 = 5 and X2 = 5 + 2. In order to satisfy Eq. (3.9) x1 will be equal to six (based
on Eq. (3.12) and therefore the expression will be

Bp+1(x1 + 1)

Bp+1(x1)
=

Bp+1(X1)

Bp+1(X1 − 1)
=

Bp+1(6 + 1)

Bp+1(6)

what proves that both expressions are equal. It does not matter how the expressions in the
parentheses are expressed so (5 + 2) is equal to (6 + 1) and

Bp+1(5 + 2) =

p+1∑
k=0

(
p + 1

k

)
bp+1−k(5 + 2)k = Bp+1(6 + 1) =

p+1∑
k=0

(
p + 1

k

)
bp+1−k(6 + 1)k

.

Since we have proved that thanks to the Eq. (3.12) we are always able to express

(define) the expression on the LHS of Eq. (3.6)
Bp+1(x+2)
Bp+1(x+1) by the expression on the LHS

of Eq. (3.4)
Bp+1(x+1)
Bp+1(x)

in other words if x2 = x1 − 1 then

(3.13) LHS of Eq. (3.6)
Bp+1(x2 + 2)

Bp+1(x2 + 1)
=

Bp+1(x1 + 1)

Bp+1(x1)
LHS of Eq. (3.4)

Now is enough to prove (mentioned below) that there is no x1 in the expression on LHS

of Eq. (3.4)
Bp+1(x1+1)
Bp+1(x1)

=
Bp+1(X1)

Bp+1(X1−1) for which Eq. (3.4) has an integral solution equal to

two for p > 1 (in order to eliminate the trivial solution) since it will be in contradiction
with Theorem (3.4) and it will unconditionally prove Theorem (3.5). Let us recall that
Eq. (3.4) is defined as

Bp+1(x + 1)

Bp+1(x)
=

Bp+1(x1 + 1)

Bp+1(x1)
=

(x + 1)p

(x + 1)p − xp

and as was mentioned above it is enough to prove that Eq. (3.4) does not have an integral

solution equal to two for p > 1. It is trivial to see that the expression (x+1)p

(x+1)p−xp has

integral solutions for x > 1 if and only if 0 < p < 2 (considering the EM equation, for
this moment is important the exponent p not the variable x) since

(x + 1)p

(x + 1)p − xp
=

xp + pxp−1 + ... + 1

pxp−1 + ... + 1
=

xp

pxp−1 + ... + 1
+ 1

On the basis of this facts we can state that if there is an other solution, than the trivial,
of the EM equation it is possible if and only if the exponent p = 1 what is impossible
since there is only one solution - trivial when p = 1 as it follows from the basic formula
of summation

x∑
k=0

k1 ≡ x ∗ (x + 1)

2
= x + 1⇒ x

2
= 1

where x must be equal to two. All of the above-mentioned facts unconditionally prove
the Theorem (3.5) and at the same time the Erdös-Moser conjecture. �
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